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SUM AND PRODUCT THEOREMS OF (p,q)-¢
RELATIVE GOL’DBERG TYPE AND (p,q)-» RELATIVE
GOL’DBERG WEAK TYPE OF ENTIRE FUNCTIONS
OF SEVERAL COMPLEX VARIABLES

TANMAY BISWAS* AND CHINMAY BISWAS

ABSTRACT. In this paper, we established sum and product theorems
connected to (p, q)-¢ relative Gol’dberg type and (p,q)-¢ relative
Gol'dberg weak type of entire functions of several complex variables
with respect to another one under somewhat different conditions.

1. Introduction, Definitions and Notations

The symbols C"* and R™ will stand for complex and real n-spaces
respectively . In addition, let us assume that the points (z1, 22, - -, 2n),
(mqy,ma,- - -,m,) of C" or I" be represented by their corresponding
unsuffixed symbols z, m respectively where I denotes the set of non-
negative integers. Then the modulus of z, denoted by |z|, is defined
as |z| = (Jz1]2 + - - - 4 |22[*)2. If the coordinates of the vector m are
non-negative integers, then the expression 2z;™ - - - 2/ will be denoted
by 2™ where ||m|| =m; + - - -+ my,.

Consider D C C" to be an arbitrary bounded complex n-circular
domain with center at the origin of coordinates. Then for any entire
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function f(z) of n complex variables and R > 0, My p(R) may be defined

as My p(R) = sup |f(2)| where a point z € D if and only if £ € D. If
z€Dp

f(#) is non-constant, then M/ p(R) is strictly increasing and its inverse
Mf_llj (| £(0)], 00) — (0, 00) exists such that }%EEOMJTE(R) = 00.

For k € N, we define exp®! R = exp(exp®* ! R) and log"! R =
log(log[k_l] R) where N is the set of all positive integers. We also denote
log" R = R, logm™ YR = expR, exp® R = R and exp"Y R = log R.
Further we assume that throughout the present paper p, ¢ and m always
denote positive integers. Also throughout the paper an entire function
f(2) of n-complex variables will stand for an entire function f(z) for
any bounded complete n-circular domain D with center at origin in C".
Considering this Biswas et al. [3] introduced the definitions of (p, ¢)-¢
Gol’dberg order and (p, ¢)-¢ Gol’dberg lower order of an entire function
f(2) of n-complex variables which are as follows:

DEFINITION 1.1. [3] Let ¢(R) : [0, +00) — (0, +00) be a non-decreasing
unbounded function. Then the (p, ¢)-¢ Gol’dberg order pg”)( f,¢) and

(p, q)-¢ Gol'dberg lower order )\(g’q)(f, ¢) of an entire function f(z) of
n-complex variables are defined as

p%w) (f, o) iy Sup M

1 .
MED(fr)  roroe il logld o(R)

However, an entire function f(z) for which p%)’q)( f,p) and

)\%”Q) (f, ) are the same is called a function of regular (p, q)-¢ Gol’dberg
growth. Otherwise, f(z) is said to be irregular (p, q)- Gol’dberg growth.

- loglp(aR)
REMARK 1.2. [3] If RLHEOO oeTo() = 1 for all @ > 0 where ¢(R)

: [0,400) — (0,400) is any non-decreasing unbounded function, then

pg’Q)( f, ) and /\%’Q)( f, ) are independent of the choice of the domain
D.

However for any two entire functions f(z) and g(z) of n-complex
variables, Mondal et al. [6] introduced the concept of relative Gol’dberg
order of f(z) with respect to g(z). In the case of relative Gol’dberg
order, it therefore seems reasonable to define suitably the (p, ¢)-¢ relative
Gol’dberg order. With this in view Biswas et al. [3] introduced the
following definitions:
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DEFINITION 1.3. [3] Let ¢(R) : [0, 400) — (0, +00) be a non-decreasing
unbounded function. Also let f(z) and g(z) be any two entire functions
of n-complex variables. The (p, q)-¢ relative Gol’dberg order and the
(p, q)-p relative Gol’dberg lower order of of f(z) with respect to g(z) are
defined as

PgD(f, ?) _ iy SUP log?”! M1 (My,p(R))
(f ©) R—+too Inf log[q] o(R)

Further an entire function f(z) of n-complex variables for which
pg 9 (f,¢) and )\;’7’ " (f,¢) are the same is called a function of regular
(p, q)-p relative Gol’dberg growth with respect to an entire function g(z)
of n-complex variables. Otherwise, f(z) is said to be irregular (p, q)-¢
relative Gol’dberg growth.with respect to g(z).

However in the present paper, we assume that the nondecreas-
ing unbounded function p(R) : [0,+00) — (0,+00) always satisfies

lim bg[cf]]ﬂ = 1 for all @ > 0. Since, Biswas et al. [3] have already
R—+o00 log'? (R)

shown that pgj g)( f,p) and Aé’; /’g)( f, ) are independent of the choice of
the domain D when ¢(R) : [0, +00) — (0, +00) is a nondecreasing un-

[
bounded function and satisfies lim log"l p(aR)

RHJFOO 1Og[q1 o(R) 1 for all a > 0, so here

we shall always use the notations p ( fip) and Ag (p:a) (f,¢) instead of

ngg)(f ¢) and /\gpg)(f ) respectively.

Now, for the development of such growth indicators, one may
introduce (p, q)-¢ relative Gol’dberg type agD (f ©), (p,q)-¢ relative
Gol'dberg lower type O'(p Q)(f ©), (p,q)- go relatlve Gol'dberg weak type

(p q)( f, ) and another growth indicator 7 7' ( f, ) in the following way:

DEFINITION 1.4. Let ¢(R) : [0,400) — (0, +00) be a non-decreasing
unbounded function. Let f(z) and g( ) be any two entire functions of

n-complex variables such that 0< p (f ¢) < +o0. Then the (p, q)-¢
relative Gol’dberg type cr ( fy®) and the (p, q)-p relative Gol’dberg

lower type a(pq (f, ) of f( ) with respect to g(z) are defined as:

oy (fo9) _ i sup 08" My h(Myp(R))

= N R .
pq)<f (p) R——+o00 inf (log[q 1] @(R))pgnq)(f’@)
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DEFINITION 1.5. Let ¢(R) : [0, +00) — (0, +00) be a non-decreasing
unbounded function. Let f(z) and g(z) be any two entire functions

of m-complex variables such that 0 < )\p D(f ) < 4oo. Then the
(p,q)- <,0 relative Gol'dberg weak type Tg b ( f,v) and the growth indi-
cator T 7' (f ¢) of f(z) with respect to g(z) are defined as:

=) (f, ) oy SUP log[pfl] ]\/[;})(MﬂD(R))
?pq R—4oo inf (1Og[q—11SD(R))Agm(f,@'

As Gol dberg has shown that (see [4,5]) Gol’dberg type depends
on the domain D, all the growth indicators defined in Definition 1.4 and
Definition 1.5 also depend on D.

In this connection, we finally remind the following definitions
from which are needed in the sequel.

DEFINITION 1.6. [7] A non-constant entire function f(z) of n-complex
variables is said to have Property (G), if for any § > 1, (M;p(R))* <
M; p(R%).

DEFINITION 1.7. A pair of entire functions f(z) and g(z) of n-complex
variables are mutually said to have Property (X) if for all sufficiently
large values of R, both M., p(R) > My p(R) and My, p(R) > M, p(R)

hold simultaneously.

During the past decades, several authors {cf. [1] to [7]} made
closed investigations on the growth properties of entire functions of sev-
eral complex variables using different growth indicators such as rela-
tive gol’dberg order, relative (p, ¢)-th Gol'dberg order, (p, q)-¢ relative
Gol’dberg order, (p, q)-¢ relative Gol’dberg lower order (p, q)-p relative
Gol’dberg type etc. In the present paper our aim is to investigate several
basic properties of (p, ¢)-¢ relative Gol’dberg type and (p, ¢)-¢ relative
Gol’dberg weak type of entire functions of several complex variables with
respect to another one under somewhat different conditions.

2. Existing Results

THEOREM 2.1. [3] Let us consider f1(z), f2(z) and g;(z) are any three
entire functions of n-complex variables. Also let at least fi(z) or fa(z) is
of regular (p, q)-p relative Gol’dberg growth with respect to g1(z). Then

APD (£t £y o) < max{APD(f1,0), APV (f,, 0)}. The equality holds
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when any one of )\(pq (fi,p) > )\é’;’Q)(fj, ¢) hold with at least f;(z) is of
regular (p,q)-¢ re]atwe Gol’dberg growth with respect to gi(z) where
i,j=1,2 and i # ;.

THEOREM 2.2. [3] Let us consider fi(z), fo(2) and gi(z) are any
three entire functions of n- comp]ex variables such that p pq)(fl, v) and

pi” (f2, @) exists. Then pff (f1if2, ) < max {08 (f1,0), P27 (o, 0)}-
The equality holds when ,0 (fl, ) # pg1 (fg, ©).

THEOREM 2.3. [3] Let f1(z), g1(z) and g2(z) be any three entire func-
tions of n-complex variables such that \Z? (f1, o) and A29 (1, @) exists.
Then A2 (f1,0) > min{A\P?(f1,0), A29(f,, ©)}. The equality holds

g1%g2

when AP (f1,0) # AEV(f1, ¢).

THEOREM 2.4. [3] Let f1(z), g1(2) and g2(z) be any three entire func-
tions of n-complex variables. Also let fi(z) is of regular (p, q)-p relative
Gol’dberg growth with respect to at least any one of g1(z) or go(z). Then

pé1ig2<f1 QO) > mln{p (fl,go) pg (f1,¢)}. The equality holds when

any one ofpgi (fl, p) < pg] (fl, ¢) hold with at least fi(z) is of regular
(p, q)-p relative Gol'dberg growth with respect to g;(z) where i,j = 1,2
and i # j.

THEOREM 2.5. [3] Let f1(z), g1(z) and g2(z) be any three entire func-
tions of n-complex variables. Then

pPD (fi £ forp) < max [min{pP?(f1,0), g2 (f1, 0)}
mln{p(pq(an )pgg (f27 )}:|

when the following two conditions holds:

(i) P (F1,0) < P (1, p) with at least fi(2) is of regular (p,q)-p
relative Gol’dberg growth with respect to g;(z) fori =1, 2, j = 1,2 and
i # j; and

(i) p ¥ (fo.0) < P (forp) with at least fy(z) is of regular (p,q)~p
relative Gol’dberg growth with respect to g;(z) fori =1, 2, j = 1,2 and
i ],

The equality holds when any one of p&?(f;, ) < pi9

one of ¥ (fi,¢) < pih?

1,2 and i # j.

(fj, ) and any
(fj, %) hold simultaneously for i = 1,2; j =
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THEOREM 2.6. [3] Let f1(z), g1(2) and g2(z) be any three entire func-
tions of n-complex variables. Then

g1:i:g2(f1:|:f27 ) > min [max{)‘g’q)(thO% g1 (f27 )}7
maX{/\g;q)(flv )7)\32)(1)(]02, )}]

when the following two conditions holds:

(i) APD(fi,0) > APV(f;, ) with at least f;(z) is of regular (p,q)-¢
relative Gol’dberg growth with respect to g;(z) fori =1, 2, j = 1,2 and

i # j; and

(i7) )\gz’q)(fi,cp) > /\g”)(fj,gp) with at least f;(z) is of regular (p,q)-¢
relative Gol’dberg growth with respect to go(z) fori =1, 2, j = 1,2 and
i .

The equality holds when any one of AP (f, o) < )\gj’q)(fl, ¢) and any
one of APV (f2,0) < AP (f2, ) hold simultaneously for i = 1,2; j =
1,2 and i # j.

THEOREM 2.7. [3] Let us consider fi(z), fa(z) and gi(z) are any
three entire functions of m-complex variables. Also let at least fi(z)
or fy(z) is of regular (p,q)-p relative Gol’dberg growth with respect

to gl(z) and 91(2) satisfy the Property (G). Then )\gf’q)(ﬁ - farp) <
max {)\ (fl, ©), A (fz, ©)}. The equality holds when f1(z) and f3(2)
satisfy Property (X)

THEOREM 2.8. [3] Let us consider fi(z), fa2(z) and gl( ) are any
three entire functions of n-complex variables such that pg, (.a) (f1,¢) and
pg1 ( fa, )eX1sts and gl( )samsfy the Property (G). Then p(p Q)( f1-f2,0)
< max { p (fl, ©), pg1 (fg, ©) }. The equality holds when f, and fo
satisfy Property (X).

THEOREM 2.9. [3] Let f1(2), g1(2) and gz(z) be any three entire func-
tions of n-complex variables such that A% (f1 v) and )\g];q (f1,0) ex-
ists and g1 - gg( ) satisfy the Property (G). Then A9 (f1,¢) > min
{)\ (fl, ©), A PO ©)}. The equality holds when g,(z) and go(z) sat-
isfy Property (X)

THEOREM 2.10. [3] Let fi(2), ¢g1(2) and g2(z) be any three entire
functions of n-complex variables. Also let fi(z) is of regular (p,q)-¢
relative Gol’dberg growth with respect to at least any one of gi(z) or

g2(2) and ¢y - g2(2) satisfy the Property (G). Then pgl g2(f1, ) > min
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{00 (f1,0), p9(f1,0)}. The equality holds when gi(z) and gs(z) sat-
isfy Property (X).

THEOREM 2.11. [3] Let fi(z), fo(2), g1(2) and g¢2(z) be any four
entire functions of n- complex variables. Also let g - g2(z) be satisfy the
Property (G). Then

PR (- forp) = max [min{p®9(f1,0), 07" (fo 0)}
min{pZ(f1, ), 5 (f2. )}

when the following two conditions hold:

(i) fi(z) is of regular (p, q)-¢ relative Gol’dberg growth with respect
to at least any one of g;(z) or go(2);

(ii) fa(2) is of regular (p, q)-¢ relative Gol’dberg growth with respect
to at least any one of g(z) orgs(z);

(iii) f1(z) and fo(z) satisty Property (X); and

(iv) g1(2) and g5(z) satisty Property (X).

THEOREM 2.12. [3]Let fi1(z), f2(2), g1(2) and g2(z) be any four entire
functions of n- complex variables. Also let g1 - go(2), 91(2) and g2(z) be
satisfy the Property (G). Then

glgg(fl f27 ) S min [max{)‘g(y%q)(fﬁO% g1 <f27 )}7
maX{)‘g’Q)(fleD)a 92 (anSO)}]

when the following two conditions hold:

(i) At least fi(z) or fa(z) is of regular(p,q)-¢ relative Gol'dberg
growth with respect to g1(2);

(ii) At least fi(z) or fa(z) is of regular (p,q)-¢ relative Gol’dberg
growth with respect to go(2);

(iii) f1(z) and fo(z) satisfy Property (X); and

(iv) g1(z) and go(z) satisfy Property (X)

3. Main Results

In this section we state the main results of the paper.

THEOREM 3.1. Let fi(z), fa(2), g1(2) and g2(z) be any four en-
tire functions of n- complex variables and D be a bounded complete

n-circular domain with center at origin in C". Also let ,0 ( f1,9),
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pg1 (f27 ©), pg2 (fl, ¢) and p (fg, ) are all non zero and finite where
p and q are any two pos1t1ve integers.

(A) If p2V (£, 0) > p& (fj, @) fori=j =1,2 and i # j, then
ng(fl + fo, ) = Ugl D(fz> ) and Uglp(fl =+ fo, ) = Ugl D(fu@)

(B) If pV(f1, ) < pgj (1, ¢) with at least f1(z) is of regular (p,q)-¢
relative Gol’dberg growth with respect to g;(z) fori = j = 1,2 and i # j,

then

O'(ligz D(flﬂo) - U(pq)<f1 ) and 0 1i92 D(fla ) - U (flago)

(C)Assume the functions f1(z), fa(z), g1(z) and go(z) samsfy the follow-
ing cond1t1ons

(i) P (F1,0) < " (1, p) with at least fi(2) is of regular (p,q)-p
relative Gol’dberg growth with respect to g;(z) fori =1, 2, j = 1,2 and

i FJ;
(i6) ™ (far0) < P (forp) with at least fo(2) is of regular (p,q)-¢
relative Gol’dberg growth with respect to g;(z) fori =1, 2, j = 1,2 and

i#J,
(”7') pgl (flu ) > P91 (f]? ) and p(pq (quO) > ng (f]v ) holds si-
multaneously for i =1,2; j = 1,2 and i # j;

(lv)pg’iq)(fz, ) = maX[min{p ’f’q)(fl,so) P (f1.0)},
mln{p (fg, ©), p2D(fy. o)} | I = m = 1,2:then we have

Oorty (1S 0) = 00 (fir0) and o8y, p(Fifa,0) = Ty p(frn o)
Proof. We obtain for all sufficiently large values of R that
(1) My, p(R)
My p(exp? (oD (fi o) + £)llog™ (R ),

IN

k>

(2) My, .p(R)
> M, p(exp? I{(@PY(fi, o) — )[loght~V o(R)]PH " r))
> My, p(exp? (@05 (fr, ) — )[logh )
and for a sequence of values of R tending to infinity, we obtain that
(3) My, .p(R)
p—1] 1] Pl (fres0)
> My, p(exp?” (o (fr, ) — €)[logl ™ p(R))7oi )
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and
_ (p»a)
< My, D(GXp[p (7 éf;;l))qk’@ + &) [loglt T p(R)]Pot " Une) Y,
where € > 0 is any arbltrary positive number k=1, 2 and [ = 1, 2.

Case 1. Suppose that p ( fi,0) > pg’q)( f2,¢) hold. Then for arbitrary
£(> 0) and for all sufficiently large values of R,we get in view of (1) that

My 1y, p(R) < My, p(R)+ My, p(R)

(5) < My, p(expP (0P D1, 0) +&)logh Y p(R)P1 " 1911) (14 A)

P,q)
Mg, p(expP{(oD (f2,¢)+2)[loglt 1 (R )1”g1 (zoely)
q)
Mglmexplp U{(o$9) (f1.¢)+e)[logle ™ (R oy

pg1 ( fi,0) > pg1 ( f2, %), and for all sufficiently large values of R, we
can make the term A sufficiently small. Hence for any a = 1 + ¢4, it
follows from (5) for all sufficiently large values of R that

My, 15, p(R)
_ (p,q)
< My, p(exp? (07D (f1,¢) + ) [logl ™ p(R)P 19} (1 + )

€., Mf1:|:f2 (R)
_ (pq)
< My, p(expPH{(@PD(f1,0) +€)[log" ! p(R)JPH" (19} -

Since in VleW of Theorem 2 2, p ( fit fo,0) <

max{pl? (1, 2), 520 (fo,9)} = P20 (f1, ), letting a — 1+,and for all
sufficiently large values of R, we get

. log? M (Myy1pp(R))
lim sup T <o
R—+00 Uog[qfll o R)]pql (fr£f2,0)

and in view of

where A =

g1 D(flaw)

(6) i, aPD(fir £ fo,0) < aPD(frre) -
Next we take f(z) = f1( )£ fa(2). Smcep (fl,sO) > oD (f, )
hold. Then ag:‘g(f, ) = ng D(f1 + fo,) < crgl D(f1 ¢). Further, let

fi(z ) = (f(2) & fa(2)). Now, 1n VleW of Theorem 2.2 and pP?(f1, ¢)
> pgl (fg, ©), we obtain that ,0 (f ) > ,og1 (fg, ¢) holds. Hence
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in view of (6) ;f%)(fl p) < agf‘g(f p) = O'ng(fl + f2,¢). Therefore
g1 D(fa ) = Ugl D(flﬂgo) = Ugl D(fl + f2? ) = Ugl D(fla )

Similarly, if We consider p ( f17 ©) < pgzl) 9)

easily verify that agl D(f1 + fo,0) = ‘791 D(fz, ©).

(f2,¢), then one can

Case IL. Let us consider that p'? (f1,) > PO (£, ¢) hold. Also let
e(> 0) are arbitrary. Then we get from (1) and (4) for a sequence of
values R,, tending to infinity that

My +5, p(Rn) < My, p(R,)+ My, p(Ry)

(7)< My, p(expP H{GPY(f1,0)+e)[logh ™ (R, " 9)}) (14B)

(p,q)
Mg, p(explt= (D (f2,0)+2)lloglt =1 o(Rn))P91 " 290

where B = and in view

My, o (explP=1{(@ ) (f1,¢)+¢)logle ! ¢<Rn>}”§?’q)“w>}>
of pM)(fl, ) > pgzj q)<f2, ¢), we can make the term B sufficiently small
by taking n sufficiently large and therefore using the similar technique
for as executed in the proof of Case I we get from (7) that Eéf ’f‘g( fi+

f27 ) = ng D(flagp) when p (flagp) > pgl (f27 ) hold. Likewise, if
we consider p ( fi,0) < pg1 ( fa, %), then one can easily verify that

91 D(fl + f2> ) - Ugl D(fZa )
Thus combining Case I and Case II, we obtain the first part of
the theorem.

Case III. Let us consider that ,0 (f1 p) < pg’; Q)(fl,gp) with at least
fi(z) is of regular (p,q)-¢ relative Gol’dberg growth with respect to
g2(2). Therefore we obtain from (2) and (3) for a sequence of values R,
tending to infinity that

M91ig2,D(Rn) < Mgl,D(Rn) + Mgz,D<Rn)7

— P,q)
= My 14, p(exp? {(o ng(fla‘;O) &)[logl" Y (R, )]pgl (19)})
- _ (p;q)
< Mgl,D(exp[P }{(géfl?afg(f ) —5)[log[q 1] (R, (f1,e0)}>

(p;a)

+M,, p(exp? (o ng(fh ) — ) loglt 1 (R, )] 10
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(p,q)

(8) i My sg, plexp® (oL D(f1,0) — ) llogh ™V p(R,)PH" 019)))
< (1+C)Mj, p(R,)

(p,a)
Mgy p(expP= {09 (f1.0)—e)lloglt = o(R,)]P91 19

(p,9) .
My, p(explP= 1]{( &D (f1.0)—e)loglt 1 (R, 02 19y

where C =

Since p(p ) (fi,9) < p92 ( fl, ¢), we can make the term C sufficiently
small (< g; for ey > 0) by taking n sufficiently large. Therefore for any
a =1+ ¢y, we obtain in view of C' < ¢; from (8) and Theorem 2.4, for
a sequence of values of R, tending to infinity that

(p,a)

My, 1, p(exp? (0 D(f1, 0)—e)[log" ™V (R)H " V19}) < aMy, p(Rn)

Therefore, making o — 14, we obtain from above for a sequence
of values R, tending to infinity that

_ (p,9)
(o D(frr0) — e)logt ™ p(R) " ) < loglh M L My, p(Ry) -
Since € > 0 is arbitrary, we find that

9) glng, p(fi, @) > O-g]f,q (fi, ) -

Now we may consider that g(z) = g1(2)£g2(2). Also p@9(f,, p) <
p92 (fl,ap) and at least fi(z) is of regular (p,q)-¢ relative Gol’dberg
grovvth with respect to go(2). Then agg)(fl,gp) = oéligzD(fl,go) >

Ogy, D(f 1, ). Further let g;(2) = ( (2)£g2(2)). Therefore in view of The-

orern 2.4 and p(gf’q)(fl,go) < pi (fl, ), we obtain that p q)(fl,go) <
p92 ( fi,¢) as at least fi(z) is of regular (p,q)-p relative Gol'dberg
growth with respect to g¢s(z). Hence in view of (9), o ng(f p) >

a;’z?(f ) = o0 L(fi.9). Therefore o (f1,0) = 0P D(f1,9) =

g1:|:gz D(f17 ) ;f,q)(fl 90)

Similarly if we consider p?(f1, ) > p@P(f1, ) with at least
fi(z) is of regular (p,q)-¢ relatlve Gol'dberg growth with respect to

g(Z) then UglztggD(fl? ) 92, (fh )

Case IV. In this case suppose that p (fl,cp) < p92 (fl,go) with at
least fi(2) is of regular (p, q)-¢ relative Gol’dberg growth with respect
to ga(z). Therefore from (2), we get for all sufficiently large values of R
that
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Mgli92,D<R) < Mgl,D<R) + M927D(R)7

(p,a)

— Mg1ig2,D(eXp[p {( g%(fb )_g)ﬂog[qfl] o(R)]P (fl,so)})
< My, p(exp? 1]{( T, D( L) — &)[loglr™ ! SD(R)]pgl‘”(ﬁ 1)
+ My, p(exp? (@GP (f1,0) — €)[logl ™" o(R)]PH " o))

(psq)

(10)  iee, Myyga p(exp (@0 D (f1, ) — €)logl"™p(R)P1" 19
< (14 D)My, p(R)

(p,q)
Mg, p(expP={(@9) (f1.0)—e)loglt =1 p(R)]P91 " T19)})

where D = and now in

My, (explp— 11{( P” ) (r0)—e)lloglt =1 p(r) " 1))
view of p(pq (fi,0) < pg2 (fl, ¢), we can make the term D sufficiently
small by taking R sufficiently large and therefore using the similar tech-
nique for as executed in the proof of Case III we get from (10) that

gligg D(fl ) = O, D(fl ) where p (flaSO) < p92 (fl> ) and at
least f1(z) is of regular (p, q)-¢ relative Gol’dberg growth with respect
to g2(2).

Similarly, if we consider ,0 ( fi, ) > pg2 ( f1, ) with at least
fi(z) is of regular (p,q)-¢ relatlve Gol'dberg growth with respect to
91(2), then 7%, b (fr, ) = T D (fr. ).

Thus combining Case III and Case IV, we obtain the second part
of the theorem.

The third part of the theorem is a natural consequence of The-
orem 2.5 and the first part and second part of the theorem. Hence its
proof is omitted O

THEOREM 3.2. Let fi(2), fa(z), ¢1(z) and g2(z) be any four en-
tire functions of n- complex variables and D be a bounded complete

n circu]ar domain with center at origin in C". Also let Aé’j’q)( fi,9),

(fg, ©), A (fl7 v) and Ag’;’q)(fQ, ) are all non zero and finite where
P and q are any two positive integers.
(A) IFAPD (£, ) > )\g’q)(fj, o) with at least f;(z) is of regular (p, q)-¢
relative Gol’dberg growth with respect to g,(z) fori =j = 1,2 and i # j,
then

Tor. D(fl * fo,0) = (f:g(fi? @) and Tgl D(fl * fo,0) = ?ffi’,%(fi,w) .
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(B) 1prq>(f1, ©) < APD(f, ) fori = j = 1,2 and i # j, then

Tt o (i 9) = BB (fr ) and TRE p(f1s0) = 7B (F )
(C) Assume the functions f1(z), f2(2), g1(z) and go(z) satisfy the follow-

ing cond1t1ons

(i) pPO(f;, 0) > pb? (f;, ) with at least f;(z) is of regular (p, q)-¢ rel-
ative Gol’dberg growth with respect to g1(z) fori = j = 1,2 and i # j;

(17) ,092 (fl, ©) > pgq (fj, ) with at least f;(z) is of regular (p, q)-¢ rel-
ative Gol’dberg growth With respect to go(z) for i = j = 1,2 and i # j;

(iii) p? (fr,0) < pLP(fr, ) and p? (fa,0) < pi (f2,0) holds si-
multaneously for i = j =1,2 and i # j;

(1) ALY (f1,0) = min[max{A\E? (f1, ), AP? (fa, )3,
maX{Aé’Q’Q)(fh ©), Ag’;q)(f% ©)} |l =m =1,2; then we have

ggfﬁng(flif% ) (Z’?g(fl? )and Tm:ﬁ:ggD(flj:f?? )_T(P‘I) (fb )

Proof. For any arbitrary positive number £(> 0), we have for all suf-
ficiently large values of R that

(11)  M.p(R)
< My p(exp? H{EPD (fr,0) + o)llogh=! (R e},
(12) My p(R)

_ (p,q)
> M, p(exp® {( ;lpg (frr ) — £)[loglt=1 (RPN (0}
and for a sequence of values of R tending to infinity we obtain that
(13) My, p(R)
_ (p,q)
> Mgl,D<€Xp 1]{( ,D(fka ) _ 5)[log[q 1] ¢<R)]Agl (fk,gp)})
and
(14) My, p (R)
< My, p(exp?” 1]{( Toi,D (fk, ©) + ¢)[loglY! go(R)]’\-EfIz)’Q)(fk*P)})7
where £k =1,2 and [ =1, 2.

Case L Let AP?(f1, ) > APV (f,, ©) with at least fo(z) is of regular
(p, q)-¢ relative Gol'dberg growth with respect to ¢1(z). Also let e(> 0)
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be arbitrary. Hence we get in view of (11) and (14) for a sequence of
values R,, tending to infinity that

Mflif27D<Rn> < Mfl,D(Rn) + Mfz,D(Rn>

(p,q)
< Mgl,D(eXp[p 1{( ;f%)(fl )+5)[log[q 1] SO(Rn)]/\-‘“ (fw,)})
+Mg1,D(eXp[p 1] {( ;I;(g(fm(pq) (f2,0)})

(15) Z"6'7]\4f1ﬂtf2 (R)
(p,q)
< My, p(expP (D (f1, ) + &) logh ™! (R, ) (1 + B),

My o (@0 (f2.0)+llog ()" 022y
My p(expl= 0P D1 p)+e)lloglt =) (R U190y
of )\g(fl”q)(fl, ©) > Aé’f’”(ﬁ, ¢), we can make the term E sufficiently small
by taking n sufficiently large. Therefore with the help of Theorem 2.1

and using the similar technique of Case I of Theorem 3.1, we get from
(15) that

(16) TPD(fL £ for ) < TP (1, 0)-

Further, we may consider that f(z) = fi(z) =+ fa(z). Also suppose
that AZ?(f1, ) > APP(f, ©) and at least fo(z) is of regular (p,q)-
¢ relative Gol’dberg growth with respect to g;(z). Then Téf ,’,%)( fio) =

T B E o 0) S 7B (1, ). Now let fi(2) = (f(2) £ f(2)). Therefore
in view of Theorem 2.1, AZ?(f1,0) > APP(f,,¢) and at least fo(z) is
of regular (p, q)-¢ relatlve Gol’dberg growth with respect to g(z), we

obtain that A\Z?(f,¢) > )\gﬁ?q (fg, ¢) holds. Hence in view of (16),
b (fie) < éf%)(f 0) = Tglpmifa, ?). Thercfore 708 (f, ) =

D (1, 0) = 1D fop) = 7D ().

Similarly, if we consider AZ?(f1, ) < AP (f,, ) with at least

fi(z) is of regular (p, q)-¢ relative Gol dberg growth with respect to ¢1(2)

then one can easily verify that 7' (f1 £ fo,p) = Tg%)(fg, ©).

where F = and in view

Case II. Let us consider that )\gf’q)(fl,go) > APD(f, ) with at least
fa(2) is of regular (p,q)-¢ relative Gol’dberg growth with respect to
g1(2). Also let e(> 0) be arbitrary. Therefore we get in view of (11) for
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all sufficiently large values of R that
Mp+p,p(R) < My, p(R) + My, p(R)

(p.q)
< My, D(eXp 1]{( Tgu, D(fr, ©) + 8)[logq 1] @(R)]Agl (fw)})
+Mg, p(exp?” 1]{( Tq1, D(f27 ©) + ¢)[logleY! gp(R)]Ag’Q)(f?’%@)})

(17) i.e. MflifQ (R)
_ (p,q)
< My, p(exp? H{FPD(f1,0) + ) logl ™ (R)1 " V19 )(1 + F),

Mg, p(expP~ (78D (f2,0)+e) [logle <R>ré‘i’“<f2 )y
,q)
M91D<expp U{FPD (f10)+e)lloglt 1 () R ey

of APV (£, o) > AP (f5, ), one can make the term F sufficiently small
by taking R sufficiently large and therefore for similar reasoning of Case |

we get from (17) that ?g’f’g)(fl:l:fz, Q) = Tgl D(f1 ©) when AL (f1, ) >
AP (1, o) and at least fo(z) is of regular (p,q)-¢ relative Gol'dberg
growth with respect to g;(z).

Likewise, if we consider AZ?(f1,0) < AP (f,, o) with at least
fi(z) is of regular (p, q)-¢ relative Gol dberg growth with respect to g1(2)
then one can easily verify that 7' (f L £ fo, ) = Té’l' ‘g( fa, )

Thus combining Case [ and Case II, we obtain the first part of
the theorem.

Case III. Let us consider that )\(gf’q)(fl, p) < )\gg’q)(fl,go). Now we get
from (12) for all sufficiently large values of R that

M91igz7D(R) < MghD(R) + Mgz,D(R)

and in view

where F =

(p,q)
Mgring(exp l]{( To1, D(f1,<,0) — S)Uog[q 1] @(R)]’\cu (fl#)})
— (p,q)
My, p(expP U{(rPD(f1, 0) — e)[logl™ (R " (1))
(prq
+M92D<epr 11{( To1, D(f17 ©) — 8)[10g[q71] (p(R)])‘gl )(f1,<p)})

IN

_ _ (p,q)
(18)  Myagn(exp? H{(TPD(f1, ) — &)[loglt p(R)P" (110}
(1+ G)Mj, p(R)

IA
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92 j_‘)(exp[l0 1]{(7_(19 q)(fl ©)— )[log lp(R)] gl (fl W)})

+q)
Mg, p(explP— 1]{(7—<p q>(f1 ©)—e)loglt—1 o(R)]* 92 (pr)})

and as AP (f1,0) < APD(f,. 0), we can make the term G sufficiently
small by taking R sufficiently large. Now with the help of Theorem 2.3

and using the similar technique of Case III of Theorem 3.1, we get from
(18) that

(19) TP (i) = TP (i) .

Again, we may consider that g(z) = gl(z):l:g2( ) As APV (f1 o) <

ALY (frr0)s 5o 7 (o) = 10t p(fi0) 2 Tl (f ). Also let

91(2) = (g(2)%g2(2)). Therefore in view of Theorem 2.3 and AP (f,, ¢) <

)\g’q)(fl,go) we obtain that )\p'q (fi,9) < AE,’;’q (f1,¢) holds. Hence

in view of (19) gf,%)(fh ) > T(pq (fi,0) = Téli%D(fl,SD) Therefore
78 (f0) = 70 B (fr ) = T;?ﬁ;2D<f1, ?) = T b (1, 0)

Likewise, if we consider that A% ( fl, ©) > APD(f, ), then one

can easily verify that T(f:g;2 p(f1,0) = 7'92 D(fl, ©).

Case IV. In this case further we consider AL?(f1) < A2 (f). Now
we obtain from (12) and (13) for a sequence of values of R tending to
infinity that

where G =

M91i927D<Rn> < Mgl,D(Rn> + M92,D(Rn)

(p;q)
Mg1i927D(eXp 1]{( ng(f ©) _5)[10g[q 1]¢(Rn)]Agl (fl’(’p)})
< My, p(expP H{FPY(f1,0) — &) logh 1 (R, )" 1))
+ My, p(exp? H{FPD(f1, 0) — ) lloglt ™! p(R)P " U120}

. _ (p,)
(20) .., Mypga,n(expP? TR D (f1,0) — &) [logl"™ ! p(R,) " 19}
< (14 H)M; p(R,)

(p,q)
Mgy p(explP={(7PD (f1,0)—e)lloglt = (R, 91 (190}

My (explr= 11 {728 (1,0)—o)lloglt =1 p(Ra) 5" (1193
of )\Eff’q)(fl, p) < )\g(,é”q)(fl, ¢), we can make the term H sufficiently small
by taking n sufficiently large and therefore using the similar technique as

executed in the proof of Case IV of Theorem 3.1, we get from (20) that

where H = , and in view
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Tor o p(f1,0) = T;;%oa, @) when A (fi,0) < AL (f1, ). Similarly,
if we consider that A ( f1,0) > )\_((,é”q)( f1,¢), then one can easily verify

that ﬂfﬁ)ggpﬁl, p) = Téi%(fb ©).

Thus combining Case III and Case IV, we obtain the second part
of the theorem.

The proof of the third part of the Theorem is omitted as it can
be carried out in view of Theorem 2.6 and the above cases. O]

THEOREM 3.3. Let fi(2), fa(2), g1(2) and g2(z) be any four entire
functions of n- complex variables and D be a bounded complete n-
circular domain with center at origin in C"and p, q are any two positive
integers.

(A) The following condition is assumed to be satisfied:

(i) Bither oD (f1,) # 0D (fa, ) or T D (1, 0) # TLD(far @) holds,

then
pgl (fl:i:f% >_pgl (f17 >_pg1 (fQ; )

(B) The fo]]owmg conditions are assumed to be sat1sﬁed

(i) Either 0,5 (f1.9) # o5 (f1.0) or T (f1,0) # 5 (f1. ) holds;
(17) f1(2) is of regular (p, q)-p relative Gol’dberg growth with respect to
at least any one of g(z) or gs(z), then

pPD (frop) = PPV (fi1,0) = pPD(f1, ) .

P7“00f Case L Suppose that pgi? (f1,) = pi™ (f2,0) (0 < i (f1,0),
pg1 (f27(,0) < 00). Now in view of Theorem 2.2 it is easy to see that

Pg1 (f1 + fo, ) < pq)(f1, ) = pg1 (fg,(,D) If possible let
(21) Pgl (fl + fa,0) < p (f1>90> = Pgl (f2, ©) .

Let 0’;11):%( fi,0) # crg1 D(fg, ¢). Then in view of the first part of
Theorem 3.1 and (21) we obtain that a(p q)(f Q) = ang(fl + fo F
fa,p) = aﬁ%(fm ) which is a contradlctlon Hence p(pq (fi £ fo,p) =

Pg’q)(f ) = ,091 ( fa, ) . Similarly with the help of the first part of
Theorem 3.1, one can obtain the same conclusion under the hypothesis

_gz V) 47 O'gl P4) (£,). This proves the first part of the theorem.

Case I1. Let us consider that p®?(f1, ) = p&?(f1,¢) (0 < p2V(f1, ),

pPD(fp) < o00) and fi(z) is of regular (p,q)-¢ relative Gol'dberg
growth with respect to at least any one of g1(2) or go(z) and (g1(z)
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gg( )) Therefore in view of Theorem 2.4, it follows that pg’; iih( fi,0) >
Pg1 (fh @) = qu (f1,¢) and if possible let

(22) pgl:l:gQ(fla (;0) > p (fla ) = Pé‘g’q)(fl, 90) :
(p,9) (p,9)

Let us consider that o, (f1,¢) # 0, p(f1,¢). Then. in view
of the proof of the second part of Theorem 3.1 and (22) we obtain that

Jéf:%)(fl, Q) = gg]ﬂg%[)(fl, Q) = agqu)(fl ¢) which is a contradiction.

Hence p_E]I::qth(fh SO) - p‘glQO)(fh @) - ng Q)<f17 ) : Aga’inu in view of the
proof of second part of Theorem 3. 1 one can derive the same conclusion

for the condition a( p(f1,9) # 092 D( f1,¢) and therefore the second
part of the theorem 1s estabhshed O

THEOREM 3.4. Let f1(2), f2(2), g1 (2) and g2 (2) be any four en-
tire functions of n- complex variables and D be a bounded complete
n-circular domain with center at origin in C"and p, q are any two posi-
tive integers.

(A) The following conditions are assumed to be satisfied:
(1) fi1(z) £ fa(2) is of regular (p,q)-¢ relative Gol’dberg growth with
respect to at least any one of ¢ ( ) or ga (2);

(¢) Either Ugf%(flif%(ﬂ) # UQQD(flifz, ) or U (flj:f% ©) #
_g;qD(flifZ; )7
(iii) Either o5 (f1,0) # o (f2,) or T (f1,0) # ong<f2,so>
(p.q
92

() Either oD (fi,0) # 07D (fay0) or 309 (fi,0) # 50D (far );
then

pPD (fi £ forp) = PP (fi,0)
= pD (fo,0) = pV (f1,0) = pPD (fa,0) .

(B) The following conditions are assumed to be satisfied:
(i) f1(2) and fy (2) are of regular (p, q)-p relative Gol’dberg growth with
respect to at least any one ofg( ) or gs (z);

(ii) Either o0 1, (fi,0) # 000 L (farp)

Orag1ig2D<f1 ©) # ;lngD(f% ©);

(i) Ewberag’:mfl,go)#agw(fl,so) or o9 (fu, )#oﬁfi%(ﬁ, ©);
(iv) Either o9 (fo,0) # 029 (far0) 0 ;’:"Dm, ) # T (f2.0);
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then
pED (frt forp) = P29 (f1,0)
= P29 (fo,0) = P2V (f1,0) = D (f2,0) .

We omit the proof of Theorem 3.4 as it is a natural consequence
of Theorem 3.3.

THEOREM 3.5. Let fi(2), fa(2), g1 (2) and g (z) be any four en-
tire functions of n- complex variables and D be a bounded complete
n-circular domain with center at origin in C".

(A) The following conditions are assumed to be satisfied:

(1) At least any one of fi(z) or fo(z) is of regular (p,q)-¢ relative
Gol’dberg growth with respect to g; (z) where p and q are any two pos-
itive integers;

g‘zngftﬁer TPD (fr,0) # 7D (forp) or TED (frop) # 70D (far )
olds, then

/\gl)’q) (fl + f27 80) - )\5}117"]) (f17 80) - Agfq) (f27 90) :

(B) The following conditions are assumed to be satisfied:
(i) f1(2), g1 (2) and g2 (2) be any three entire functions such that

AP (f1,¢) and AP (f1, ) exists where p and q are any two positive
integers;

(i) Either 779 (fi,9) # %9 (fi0) or 78D (fi,0) # 709 (f1,0)
holds, then

APD (fro9) = APD (f1,0) = ABD (f1,) .

Proof. Case 1. Let A%? (fi,0) = AP (fay ) (0 < AR (f1,9)

9 (f2,) < o0) and at least fi(z) or fo(z) and (f1(2) % f2(2))
are of regular (p, q)-p relative Gol’dberg growth with respect to g; (2).

Now, in view of Theorem 2.1, it is easy to see that )\gf’q) (fi £ fa,0) <
9 (fi,¢) = Aﬁff’q) (f2,) . If possible let

(23) APD(fr £ forp) < ARV (fr,0) = MY (fa,0)

Let Téqu (f1,9) # T;f%) (f2,). Then in view of the proof of

the first part of Theorem 3 2 and (23) we obtain that T(p D (f1,0) =
;f%) (it foF fa,p) = 91 L (fg, ¢) which is a contradiction. Hence
(f1 + fo, ) = )\g’fq (fi,0) = gll”q) (f2,¢) . Similarly in view of
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the proof of the first part of Theorem 3.2 | one can establish the same
conclusion under the hypothesis T(p o 2 (f1 ) + Téﬁ' % (f2, %) . This proves
the first part of the theorem.

Case II. Let us consider that AZ? (f1,¢) = A2? (£, ¢)
(0 < AP (fy, ) APD (£ 0) < co. Therefore in view of Theorem 2.3,

it follows that )\gliQQ (fl, ©) > APD (1 o) = APD (£, ©) and if possible
let

(24) Aé’fﬁ?gQ (f L) > AP <f1, ©) = AP (f1,0) .

Suppose 7' (fl, p) # Tg2 z (fl, ¢) . Then in view of the second
part of Theorem 3 2 and (24), we obtain that

TPD (fro0) =10 o (f10) =TI (fi,0)

which is a contradiction. Hence )\;17%2 (fi,0) = AP (f1,0) = AP (f1,0) -
Analogously with the help of the second part of Theorem 3.2, the same

conclusion can also be derived under the condition

ng(fl’ )%TQQD(fl’ )
and therefore the second part of the theorem is established. O

THEOREM 3.6. Let f1(2), f2(2), g1 (2) and g2 (2) be any four en-
tire functions of n- complex variables and D be a bounded complete
n-circular domain with center at origin in C".

(A) The following conditions are assumed to be satisfied:

(1) At least any one of fi(z) or fy(z) is of regular (p,q)-p relative
Gol’dberg growth with respect to g, (z) and go (z) where p, q are any
two positive integers

(iti) Either "9 (fu, )#75?%)%, >orfg1D<f1,so>¢Tng<f2, ©);
() Either 778 (fio@) # 78 (farp) or 70D (fi,0) # T2 (far );
then

glﬂ:gg (it fo,p) = (p’Q) (f1,0)

_ pq) (fa, ) = pQ) (fi,p) = Aé’;g) (fasp) -

(B) The following condjtwns are assumed to be satisfied:

(1) At least any one of f1(z) or fo(z) are of regular (p,q)-¢ relative
Gol’dberg growth with respect to g1 (z) + g2 (2) where p and q are any
two positive integers;

(it) Either r"8 L (fi,90) #7705 (f200)
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or 780 (i, )%T;iii,w(fa, v) holds;

2@2’% Either 778 (f1,0) # 78 (f1.0) or 729 (f1,0) # 709 (f1,)
O S

(iv) Either 7 (fo,0) # 700 (for0) or 72D (forp) # 709 (far )
ho]ds then

glztgg (it fo,p) = Aé’j’q) (f1,9)
= APD(fy 0) = APD (f1,0) = APV (f3, ) .

We omit the proof of Theorem 3.6 as it is a natural consequence
of Theorem 3.5.

THEOREM 3.7. Let f1(2), f2(2), g1 (2) and g2 (z) be any four en-
tire functions of n- complex variables and D be a bounded comp]ete
n circu]ar domain with center at origin in C". Also let p ( f1,9),
i (f2,0), P (f1,0) and p™ (f, ) are all non zero.

(A) Assume the functions fi, fo and g, satisfy the following conditions:
(1) g1 satisfies the Property (G) and
(17) f1 and f, satisfy Property (X); then

oD (1 farp) = 0D (firp) and 70D (fi- farp) = 50D (fir ).

(B) (i) If pg, PP (f1, ¢) < pgjp’q (f1, ) with at least f is of regular (p, q)-
¢ relative Gol’dberg growth with respect to g; for i, j = 1,2 and i # j,

(17) f1 satisfies the Property (G),
(zu) 91 and go are satisfy Property (X) then

oD (f1:9) = 0" (i) and TED L(f1,0) =TT (f1, 0)-
(C) Assume the functions f1, fo, g1 and gy satisfy the following condi-
tions:
(1)1 - g2, f1 and fy are satisty the Property (G);
(11) f1 and fy satisfy Property (X);
(1i1) g1 and go satisfy Property (X);

() PV (fi,0) < PV (f1, ) with at least fi is of regular (p,q)-p
relative Gol’dberg growth with respect to g; fori =1, 2, j = 1,2 and

LF
() pFV(farp) < P (f2. ) with at least fy is of regular (p,q)-p rela-
tive Go]’dberg growth with respect to g; fori =1,2, j = 1,2 and i # j;

(i) o (fir ) < P2V (f, ) and pi? (fi, ) < pé’;'q (fj; #) holds simul-
taneously fori =1,2; j = 1,2 and 1 # j;
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(vii)p” (fr. ) = max{min{pit (1. 0). o2 (. )}
min{ p? (fg, 0), p2D (o, o) | I, m = 1,2; then we have

ng’.gl,D(fl'fmSO): (pq) p(fi; )andaglgzD(f f2: )_O (fl’ 2

Proof. Case 1. Let g; satisfies the Property (G) and f; and f5 satisfy
Property (X). We have using (1) for all sufficiently large values of R and
for any arbitrary € > 0 that

My,.;,,0 (R) < My, p (R) - My, p (R)
[p—1] (p,q) [a—1] PEJZ; ) (f1.)
< My, p(exp? (oD (f1,6) + ) [log" Y o(R)| )
3 P80 (f2,0)
My, p(exp (02D (f2,0) + ) [0 o (R)| )

Suppose that max {Pg @ (f1:0), /)g}; @ (fo, )} = Pg g (f1,¢), then

Mfl'fz,D (R)

pqpq)(fl )
< (M p(exoP (00D (f1.) +2) [log D p(m)| )2

Now in view of Theorem 2.8 and for 1 > 0,

i-e-Mf1~f2,D (R)

_ _ Pg Q)(fl “fa,p)+e1
< (M p(exoP (0D (f1.0) + ) [log" " o(R)| :

Since ¢, satisfies the Property (G), we have
(25)  My,.p,.p0 (R)

_ PP (F1-f20)+er
< My, p(exp (0D (f1,0) +e) [log ™ (R)|™ b,

where § > 1.

Since €,e1 > 0 is arbitrary, we obtain from (25) by letting § —
1+ that

(26) oD (i o) < 0PD (fry0)
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Again since f; and f5 are satisfy Property (X), then using (1) for
all sufficiently large values of R and for any arbitrary ¢ > 0,we have
Mf 1,D (R)
< Mf1~f2,D (R)

< My, plexp? H(oDD (fi- forp) + ) [log ™ o(R)
In view of Theorem 2.8,
My, p (R)

i|Pgl q)(fl -f2,0)

1,

PV (f1,0)
< My, p(expP (0D (fi - fo,0) + )[log[q’”sO(R)} 1

which implies

(27) oD (f1- farp) = 0D (fro )

Hence from from (26) and (27), we conclude that

ng(fl f2790) - Ung(fla )

Similarly, if we consider p®? (f1,¢) < p? (fs, ), then one can
verify that

g1D<f1 fu%p)_o-ng(f% )

Case II. Let p (fl, ) > pg1 (fg,gp) and ¢; satisfy the Property
(G). Now for any arbitrary € > 0, like Case I, we have from (1) and (4)
for a sequence of values of R,, tending to inﬁnity that

Mfrfz,D (Rn) < Mf1,D (Rn> ’ Mfz,D (Rn)

P& (f1,0)

< My, p(exp? @0 (f1.0) + ) [log ) o(R,)|

_ PV (f2,0)
My, p (e {0 (f2.0) + ) [log" ™ o(R,)| )

Now using the similar technique for a sequence of values of R,
tending to infinity as explored in the proof of Case I, one can easily

verify from above that a ( fifay0) = o 0 i ( f1, ) under the condi-
tlons specified in the theorem Similarly, if we consider p(p ) ( f ,p) <

pg1 (fg, ©) , then one can also verify that J(p 9 5 (f1- fa,p) = 0'91 D (fg, ©) .
Therefore the first part of theorem follows from Case I and Case II.
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Case III. Let f; satisfy the Property (G) and pgf’q) (fi,9) < pé’; ) (f1,9)
with f; is of regular (p, q)-¢ relative Gol’dberg growth with respect to

at least any one of ¢g; or gs.For a sequence of values of R, tending to
infinity that

M91'92,D (Rn) < Mg1,D (Rn) ' Mg2,D (Rn) )

: P (F1,9)
-0y My g0 p(expP {00 (f1,0) =€) [log ™" ¢<Rn>} Y
< My, p(exp? (00 (f1,0) — ) [10g" Y (R, )
p,q)
7 Pg (fl )
M p (exp? (02D (f1,0) = &) [log" Y p(R)| ™)),
Now o (f1,0) < pp® (f1,5) implies
p—1] 1 (,P:a) [g—1] P (f1.9)
My, p(expP {029 (f1,0) — &) [log ™ o(Ry)|
(p,q) <1’
(f1.¢)

Pgo
My, p(expP=H{(@ED (f1,9) ) [logh ™ o(Ry)] )
SO

(p,q) »
1.€. Mg1 ‘g2, D(eXp 1]{( (fla ) )[log[q 1] S0(}271)]/’91 (f 90)})

ﬂgﬁ D (f1,0)
< My, p(exp? (02D (f1,9) — ) 1087 (R,)] )

P& (f1,0)

My p (exp (@0 (f1.0) = 2) [log ™ o(Ra)| )

Now we have in view of (2) and (3) for a sequence of values of R,
tending to infinity that

(p,q)
. _ _ Py, (f1.9)
(28) v.e., Mgl-gz,D(eXp[p 1]{(0-5(711):(3 (fla 90) - 5) [log[q 1 @(Rn)]

< [My,p (R
Since f; satisfy the Property (G), we have from (28) for any § > 1,

(p,q)
_ Pg (fl»SO)
(29)  Myygop(exp? (oD (f1,60) =) [log" Y o(Ro)] ™

< M0 (R)]
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Since £ > 0 is arbitrary, it follows from (29) by taking § — 1+
and for a sequence of values R,, tending to infinity that

(30) o) o (f1,0) = oD (f1.).

Next since g; and g, are satisfy Property (X), then for all suffi-
ciently large values of R, we have from(1) and Theorem2.10

M917D <R> < Mgl'gz,D <R>

P& (f1.0)

i-e.s Mygnp(expP (00D (f1,0) + ) [log ™) o(R)| )
ngq)(flﬁo)
> My, plexp? (02D (f1,0) + &) [log (m)] ™ )
2 Mfl,D (R)
So
(31) oD (f1,0) = 0P (f1,9)

Hence from (30) and (31), we conclude that
9192D(f1’ ) = Ung(flu )

Similarly, if we consider pg, (p:q) (fi,0) > ,ogg ) (f1,¢), then one can verify

that 0% |, (f1, ) —Oé’j%)(f ).

Case IV. Suppose f; satisfy the Property (G). Also let PP (fi,0) <
pg2 (fl, ¢) with fi is of regular (p, q)-¢ relative Gol’dberg growth with
respect to at least any one of g; or go. Therefore like Case I and in view
of (2), we obtain for all sufficiently large values of R that

M, 1-92, D (R) < Mgl,D (R) ’ Mgz,D (R)

g

] P&V (f1,0)

= Mg p(exp? (@0 (f1,0) - ) [log" ™" o(R) )

_ Pg (fl ®)
< My plexpP @D (fig) — <) [log = o(m)] ™ 7y

o (fr.0)
My p (exp (@0 (f1,0) - ) [1og"™ p(R)|

Now using the similar technique for all sufficiently large values
of R as explored in the proof of Case III, one can easily verify that



844 T. Biswas and C. Biswas

—(p q)
91 -g2,D

rem. Likewise, if we consider ,0 ( fi,0) > pg ) (f1,¢) with at least f;
is of regular (p, q)-p relative Gol’ dberg growth with respect to g;, then

(fi,,¢) = 0'91 D (fl, ") under the conditions specified in the theo-

one can verify that aé g) p(fi,p) = o g ( f1,¢). Therefore the second
part of theorem follows from Case III and Case IV.
Proof of the third part of the Theorem is omitted as it can be

carried out in view of Theorem 2.11 and the above cases. O

THEOREM 3.8. Let fi(2), fa(2), ¢1(2) and g5 (z) be any four en-
tire functions of n- complex variables and D be a bounded complete

n-circular domain with center at origin in C". Also let )\éﬁ”q) (f1,%),

9 (fay ), AP (f1, ) and A&) (f2, ) are all non zero and finite.
(A) Assume the functions fi, fo and g, satisfy the following conditions:
(1) At least fy or fy is of regular (p, q)-p relative Gol’dberg growth with
respect to g1 and g, satisfy the Property (G) and
(7i) f1 and f, satisfy Property (X); then

TPD(fr- o) = 70D (i) and FLY(fy - fo,0) =729 (fi,0).

(B) Assume the functions g,, g> and f; satisfy the following conditions:
(1) fi satisty the Property (G) and
(17) g1 and gy satisfy Property (X); then

Tovmnp (Fri0) = 7,75 (fro) and 705 (fr,0) =705 (fro o).
(C) Assume the functions f1, fa, g1 and gy satisfy the following condi-
tions:
(1) g1 - g2, f1 and f5 are satisfy the Property (G);
(79) f1 and fy satisty Property (X);
(1ii) g1 and go satisty Property (X);
(1v) At least fy or f is of regular (p, q)-¢ relative Gol’dberg growth with
respect to g, fort1 =1,2, 7 =1,2 and i # j;
(v) At least f or fs is of regular (p, q)-¢ relative Gol’dberg growth with
respect to go fori1 =1,2, j = 1,2 and i # j;
(0i) A (frr ) = minfmax{ A" (f1,0) ALY (2, 0)}
max{\Z? (f1,0), ALY (fo, )Y | I, m = 1,2; then

D (o S 0) = 1Y (fro) and 78D (i farp) = TN, (i)

We omit the proof of Theorem 3.8 as it is a natural consequence
of Theorem 3.7 and Theorem.
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