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CONORMAL DERIVATIVE PROBLEM FOR ELLIPTIC

EQUATIONS IN DIVERGENCE FORM WITH PARTIAL

DINI MEAN OSCILLATION COEFFICIENTS

Jongkeun Choi

Abstract. We provide detailed proofs for local gradient estimates
for weak solutions to elliptic equations in divergence form with par-
tial Dini mean oscillation coefficients subject to conormal derivative
boundary conditions.

1. Introduction and main results

We are concerned with second-order elliptic equations in divergence
form

(1.1) div(ADu) = div f,

where the coefficient A = (aij)di,j=1 is a d × d matrix-valued function

in Rd satisfying the strong ellipticity condition, i.e., there is a constant
λ ∈ (0, 1] such that

aij(x)ξjξi ≥ λ|ξ|2, |aij(x)| ≤ λ−1

for any x ∈ Rd and ξ ∈ Rd.
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Recently, in [1] the authors proved both interior and boundary Lp-
estimates with p ∈ (1,∞] and weak type-(1, 1) estimates for deriva-
tives of weak solutions to the elliptic equation (1.1) with the coefficient
satisfying partial Dini mean oscillation condition. We shall say that a
function is of partial Dini mean oscillation if it is merely measurable in
x1-direction and its L1-mean oscillation with respect to x′ = (x2, . . . , xd)
satisfies the Dini condition; see Definition 1.1 for more a precise defini-
tion. As mentioned in [2], such type of coefficients with no regularity as-
sumption in one direction can be used to model the problems of linearly
elastic laminates and composite materials. We note that the bound-
ary estimates in [1] were established under the homogeneous Dirichlet
boundary condition, and as mentioned in [1, Remark 2.10], one can
obtain the corresponding results under conormal derivative boundary
condtions.

In this paper, we present the detailed proofs for the boundary Lp and
weak type-(1, 1) estimates for the weak solutions to the elliptic equation
(1.1) with the conormal derivative boundary conditions.

To state our main results more precisely, we first introduce some nota-
tion and definitions. We use x = (x1, x

′) to denote a point in Rd (d ≥ 2),
where x1 ∈ R and x′ = (x2, . . . , xd) ∈ Rd−1. We also write y = (y1, y

′)
and x0 = (x01, x

′
0), etc. For r > 0, we set

Br(x) = {y ∈ Rd : |x− y| < r}
B′r(x

′) = {y′ ∈ Rd−1 : |x′ − y′| < 1},
B+
r (x) = Br(x) ∩ Rd

+,

where Rd
+ = {x = (x1, x

′) : x1 > 0}. We warn the readers that B+
r (x)

is not necessarily a half ball. We use the abbreviations Br, B
′
r, and B+

r

when the center is the origin. We write Dx′u = (D2u, . . . , Ddu) so that
Du = (D1u,Dx′u) and

(u)Ω =
1

|Ω|

∫
Ω

u dx,

where |Ω| denotes the Lebesgue measure of a measurable set Ω ⊂ Rd.

Definition 1.1. (a) Let f ∈ L1(B6). We say that f is of partial Dini
mean oscillation with respect to x′ in B4 if the function ωf : (0, 1]→
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[0,∞) defined by

ωf (r) = sup
x∈B4

–

∫
Br(x)

∣∣∣∣f(y)− –

∫
B′

r(x′)

f(y1, z
′) dz′

∣∣∣∣ dy
satisfies the Dini condition∫ 1

0

ωf (r)

r
dr <∞.

(b) Let f ∈ L1(B+
6 ). We say that f is of partial Dini mean oscillation

with respect to x′ in B+
4 if the function ω+

f : (0, 1] → [0,∞) defined
by

ω+
f (r) = sup

x∈B+
4

–

∫
B+

r (x)

∣∣∣∣f(y)− –

∫
B′

r(x′)

f(y1, z
′) dz′

∣∣∣∣ dy
satisfies the Dini condition∫ 1

0

ω+
f (r)

r
dr <∞.

The main results of the paper read as follows. Throughout the paper,
u ∈ W 1,1(B+

6 ) is said to satisfy

(1.2)

{
div(ADu) = div f in B+

6 ,

ADu · n = f · n on B6 ∩ ∂Rd
+,

if ∫
B+

6

ADu ·Dφdx =

∫
B+

6

f ·Dφdx

holds for any φ ∈ C∞0 (B6). It is clear that, as a test function, one can

also use φ ∈ C∞(B+
6 ) such that φ = 0 on ∂B6 ∩ Rd

+.

Theorem 1.2. Let p ∈ (1,∞) and u ∈ W 1,1(B+
6 ) satisfy (1.2) with

f = (f1, . . . , fd) ∈ Lp(B+
6 )d.

(a) If A is of partial Dini mean oscillation with respect to x′ in B+
4 , then

u ∈ W 1,p(B+
1 ).

(b) If f1 ∈ L∞(B+
6 ), and A and f are of partial Dini mean oscillation

with respect to x′ in B+
4 , then

u ∈ W 1,∞(B+
1 ).

Moreover, Û = a1jDju− f1 and Dx′u are continuous in B+
1 .
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Upper bounds of the Lp-norm of Du and the modulus of continuity
of U = (Û ,Dx′u) can be found in Section 2.1.

There are many literature dealing with the elliptic equations with the
conormal derivative boundary conditions. In [1, Remark 2.10], theW 1,∞-
regularity result as in Theorem 1.2 was obtained for W 1,p-weak solutions
with p ∈ (1,∞). We mention recent papers [5, 6] for C1-estimates for
conormal derivative problem in divergence form and C2-estimates for
oblique derivative problem in nondivergence form with the coefficients
of Dini mean oscillation in all directions. This class of coefficients was
introduced by Dong-Kim in [4] for C1 and C2-regularity of solutions to
elliptic equations. See [3] for the corresponding regularity results up to
the boundary subject to Dirichlet boundary condition. We also refer the
reader to [7] for C1-regularity for quasilinear elliptic equations under the
uniform Dini continuity condition.

Remark 1.3. One can extend the results in Theorem 1.2 to functions
u satisfying {

div(ADu) = div f + g in B+
6 ,

ADu · n = f · n on B6 ∩ ∂Rd
+.

where, for instance, g ∈ Lq(B+
6 ) with q > d for the assertion (b). To see

this, we extend g to B+
7 so that (g)B+

7
= 0 and ‖g‖Lq(B+

7 ) is comparable to

‖g‖Lq(B+
6 ). Then by the existence of solutions to the divergence equation

in a half ball, there exists g̃ ∈ W 1,q
0 (B+

7 )d such that div g̃ = g in B+
7 ,

which implies that u satisfies{
div(ADu) = div(f + g̃) in B+

6 ,

ADu · n = (f + g̃) · n on B6 ∩ ∂Rd
+.

Moreover, by the Morrey inequality, we have that g̃ ∈ Cα(B+
7 )d with

α = 1− d/q, and thus g̃ is of (partial) Dini mean oscillation.

We also prove the following weak type-(1, 1) estimates in a ball and
a half ball. The corresponding estimates for W 1,2-weak solutions to
Dirichlet problems can be found in [3, 4].

Theorem 1.4. (a) Let T be a bounded linear operator on L2(B6)d

defined by

Tf = Du,
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where u ∈ W 1,2(B6) is a unique weak solution of

(1.3)

{
div(ADu) = div f in B6,

ADu · n = f · n on ∂B6

satisfying ∫
B6

u dx = 0.

If we assume

(1.4) ωA(r) ≤ C0

(
ln
r

4

)−2

for r ∈ (0, 1],

then T has an extension on the set

{f ∈ L1(B6)d : supp f ⊂ B1}
to the weak L1(B1)d space in such a way that for any t > 0, we have∣∣{x ∈ B1 : |Tf(x)| > t}

∣∣ ≤ N

t

∫
B1

|f | dx,

where N = N(d, λ, ωA, C0).
(b) The same result in the assertion (a) holds with B+

1 , B+
6 , and ω+

A in
place of B1, B6, and ωA, respectively.

We end this section with a remark that our results can be extended
to elliptic systems.

2. Proofs of main theorems

2.1. Proof of Theorem 1.2. The proof is based on odd/even exten-
sion technique and the following interior estimates.

Lemma 2.1 ( [1, Theorem 3.2 and Remark 1.4]). Let p ∈ (1,∞) and
u ∈ W 1,1(B6) satisfy

div(ADu) = div f in B6,

where f = (f1, . . . , fd) ∈ Lp(B6)d.

(a) If A is of partial Dini mean oscillation with respect to x′ in B4, then

u ∈ W 1,p(B1)

and
‖u‖W 1,p(B1) ≤ N‖u‖W 1,1(B6) +N‖f‖Lp(B6),

where N = N(d, λ, ωA, p).
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(b) If f1 ∈ L∞(B6), and A and f are of partial Dini mean oscillation
with respect to x′ in B4, then

u ∈ W 1,∞(B1).

Moreover, Û = a1jDju− f1 and Dx′u are continuous in B1.

Proof of Theorem 1.2. We only prove the first assertion of the theo-
rem, because the second is the same with obvious modifications.

Let ũ be the even extension of u with respect to x1-variable, i.e.,

ũ(x1, x
′) = u(|x1|, x′).

Then we see that ũ ∈ W 1,1(B6) satisfies

(2.1) div(ÃDũ) = div f̃ in B6,

where Ã and f̃ are given as follows:
(2.2)

ãij(x1, x
′) =

{
aij(|x1|, x′) for i = j = 1 or i, j ∈ {2, . . . , d},

sgn(x1)aij(|x1|, x′) otherwise,

f̃i(x1, x
′) =

{
sgn(x1)fi(|x1|, x′) for i = 1,

fi(|x1|, x′) otherwise.

Since Ã is of partial Dini mean oscillation with respect to x′ in B4 and
f̃ ∈ Lp(B6)d, we can apply Lemma 2.1 (a) to (2.1) to obtain that

u ∈ W 1,p(B+
1 )

and

‖u‖W 1,p(B+
1 ) ≤ N‖u‖W 1,1(B+

6 ) +N‖f‖Lp(B+
6 ),

where N = N(d, λ, ωÃ, p) = N(d, λ, ω+
A , p). The assertion (a) is proved.

We end this proof with a remark related to the second assertion that
the upper bounds of the L∞-norm of Du and the modulus of continuity
of Û and Dx′u can be derived from the corresponding interior estimates
in [1, Section 2.2]. Here, we present those upper bounds for future
researches:

‖Du‖L∞(B+
2 ) ≤ N

(
‖Du‖L1(B+

6 ) + ‖f1‖L∞(B+
6 ) +

∫ 1

0

ω̃+
f (t)

t
dt

)
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and

|U(x)− U(y)| ≤ N

∫ 2|x−y|

0

ω̃+
f (t)

t
dt

+N

(
‖Du‖L1(B+

6 ) + ‖f1‖L∞(B+
6 ) +

∫ 1

0

ω̃+
f (t)

t

)

×

(
|x− y|γ +

∫ 2|x−y|

0

ω̃+
A(t)

t
dt

)
,

for any x, y ∈ B
+

1 and γ ∈ (0, 1), where N = N(d, λ, γ, ω+
A), U =

(Û ,Dx′u), and ω̃+
• is a function derived from • as formulated in [1,

Section 2.3].

2.2. Proof of Theorem 1.4. We shall use the following lemma.

Lemma 2.2 ( [1, Lemma 2.3 (b)]). Let T be a bounded linear operator
on L2(B6)d. Suppose that there exist constants

µ ∈ (0, 1), c ∈ (1,∞), C ∈ (0,∞),

such that for any x0 ∈ B1, r ∈ (0, µ), and g ∈ L2(B6)d with

supp g ⊂ Br(x0) ∩B1,

∫
B1

g dx = 0,

we have ∫
B1\Bcr(x0)

|Tg| dx ≤ C

∫
Br(x0)∩B1

|g| dx.

Then there exists a linear operator S from L1(B1)d to L1(B1)d such that
for any f ∈ L2(B1)d,

Sf = T (fIB1)

and that for any t > 0 and f ∈ L1(B1)d,∣∣{x ∈ B1 : |Sf(x)| > t}
∣∣ ≤ N

t

∫
B1

|f | dx,

where N = N(d, µ, c, C). In other words, T has an extension on the set

{f ∈ L1(B6)d : supp f ⊂ B1}
to the weak L1(B1)d space in such a way that for any t > 0, we have∣∣{x ∈ B1 : |Tf(x)| > t}

∣∣ ≤ N

t

∫
B1

|f | dx.
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Proof of Theorem 1.4. The proof is an adaptation of that of [1, The-
orem 3.1]. We first prove the assertion (a). By (1.4) we see that A is of
partial Dini mean oscillation with respect to x′ in B4. The coefficients
A> = (aji)di,j=1 of the adjoint operator

L∗u = div(A>Du)

is also of partial Dini mean oscillation with respect to x′ in B4 satisfying
ωA> = ωA. Hence, by [4, Lemma 3.4] we have

(2.3)

∫ r

0

ω̃A>(t)

t
dt ≤ N

(
ln

4

r

)−1

for any r ∈ (0, 1],

where N = N(d, λ, C0) and ω̃• is a function derived from • as formulated
in [1, Remark 2.6].

Let x0 ∈ B1, r ∈ (0, 1/3), and f ∈ L2(B6)d such that

supp f ⊂ Br(x0) ∩B1,

∫
B1

f dx = 0.

By the Lax-Milgram theorem, for any R ∈ [3r, 2) such that B1\BR(x0) 6=
∅ and

g ∈ C∞0 ((B2R(x0) \BR(x0)) ∩B1)d,

there exists a unique v ∈ W 1,2(B6) satisfying∫
B6

v dx = 0

and

(2.4)

{
div(A>Dv) = div g in B6,

A>Dv · n = g · n on ∂B6.

Observe that
f ·Dv = f̂ · V,

where
f̂1 = (a11)−1f1, f̂i = fi − ai1f̂1, i ∈ {2, . . . , d},

and V = (aj1Djv,Dx′v). Thus, testing (1.3) with v and using the fact
that

supp f̂ ⊂ Br(x0) ∩B1,

∫
B1

f̂ dx = 0,

we have ∫
B6

ADu ·Dv dx =

∫
Br(x0)

f̂ ·
(
V − (V )Br(x0)

)
dx.
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From this and (2.4) with a test function u, we get

(2.5)

∫
(B2R(x0)\BR(x0))∩B1

g ·Dudx =

∫
Br(x0)

f̂ · (V − (V )Br(x0)) dx.

Since v satisfies div(A>Dv) = 0 in BR(x0), by a similar calculation that
lead to [1, Eq. (2.30)] with γ = 1/2, we obtain that

|V (x)−V (y)| ≤ NR−d/2‖Dv‖L2(BR(x0))

((
|x− y|
R

)1/2

+

∫ 2|x−y|

0

ω̃A>(t)

t
dt

)
for any x, y ∈ Br(x0) ⊂ BR/6(x0), which together with (2.3) yields

‖V−(V )Br(x0)‖L∞(Br(x0)) ≤ NR−d/2‖Dv‖L2(BR(x0))

((
r

R

)1/2

+

(
ln

1

r

)−1)
,

where N = N(d, λ, ωA, C0). Thus by Hölder’s inequality, (2.5), duality,
and the L2-estimate

‖Dv‖L2(B6) ≤ N‖g‖L2((B2R(x0)\BR(x0))∩B1),

we have
(2.6)∫

(B2R(x0)\BR(x0))∩B1

|Du| dx ≤ N

((
r

R

)1/2

+

(
ln

1

r

)−1)
‖f̂‖L1(Br(x0)∩B1).

Let n be the smallest positive integer such that B1 ⊂ B2n·3·r(x0), and
observe that

2n · 3 · r < 4.

For i ∈ {0, . . . , n−1}, by taking R = 2i ·3 · r ∈ [3r, 2) in (2.6), and using
the fact that n− 1 ≤ N ln(1/r), we get∫

B1\B3r(x0)

|Du| dx ≤ N
n−1∑
i=0

(
2−i/2 +

(
ln

1

r

)−1)
‖f̂‖L1(Br(x0)∩B1)

≤ N‖f‖L1(Br(x0)∩B1)

This implies that T satisfies the hypothesis of Lemma 2.2 with µ = 1/3,
c = 3, and C = C(d, λ, ωA, C0) > 0. The assertion (a) is proved.

Next, we prove the assertion (b). Let T1 be a bounded linear operator
on L2(B6)d given by

T1g = Dv,
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where v ∈ W 1,2(B6) is a unique weak solution of

(2.7)

{
div(ÃDv) = div g in B6,

ÃDv · n = g · n on ∂B6

satisfying ∫
B6

v dx = 0.

Then for any f ∈ L2(B+
6 )d, we have

(2.8) Tf = T1f̃ in B+
6 .

In the above, Ã and f̃ are as in (2.2). Indeed, one can check (2.8) as
follows. Let Tf = Du and φ ∈ C∞(B6), and set

φ̃(x1, x
′) = φ(−|x1|, x′).

Since u ∈ W 1,2(B+
6 ) satisfies{

div(ADu) = div f in B+
6 ,

ADu · n = f · n on ∂B+
6 ,

we see that

(2.9)

∫
B+

6

ADu ·Dφdx =

∫
B+

6

f ·Dφdx

and

(2.10)

∫
B+

6

ADu ·Dφ̃ dx =

∫
B+

6

f ·Dφ̃ dx.

Let ũ(x1, x
′) = u(|x1|, x′), and observe that∫

B6

ũ dx = 0, ũ ∈ W 1,2(B6).

By (2.10), we have∫
B6\B+

6

ÃDũ ·Dφdx =

∫
B6\B+

6

f̃ ·Dφdx,

which together with (2.9) implies∫
B6

ÃDũ ·Dφdx =

∫
B6

f̃ ·Dφdx.
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Since the above identity holds for any φ ∈ C∞(B6), ũ is a unique weak

solution of (2.7) with f̃ in place of g. Therefore,

Dũ = T1f̃ in B6,

which proves (2.8). Since Ã also satisfies (1.4), by applying the result in
(a) to the operator T1, we see that the assertion (b) holds. The theorem
is proved.
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