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SOME GENERALIZED GROWTH PROPERTIES OF COMPOSITE

ENTIRE AND MEROMORPHIC FUNCTIONS

Tanmay Biswas and Chinmay Biswas∗

Abstract. In this paper we wish to prove some results relating to the growth rates
of composite entire and meromorphic functions with their corresponding left and
right factors on the basis of their generalized order (α, β) and generalized lower order
(α, β), where α and β are continuous non-negative functions defined on (−∞,+∞).

1. Introduction, Definitions and Notations

Let us consider that the reader is familiar with the fundamental results and
the standard notations of the Nevanlinna’s theory of meromorphic functions which
are available in [8, 11, 17]. We also use the standard notations and definitions of the
theory of entire functions which are available in [16] and therefore we do not explain
those in details. Let f be an entire function and Mf (r) = max {|f(z)| : |z| = r}.
When f is meromorphic, the Nevanlinna’s characteristic function Tf (r) (see [8, p.4])
plays the same role as Mf (r). For x ∈ [0,+∞) and k ∈ N where N is the set of all
positive integers, we define iterations of the exponential and logarithmic functions as
exp[k] x = exp(exp[k−1] x) and log[k] x = log(log[k−1] x), with convention that log[0] x =

x, log[−1] x = expx, exp[0] x = x, and exp[−1] x = log x. Further we assume that p
and q always denote positive integers. Now considering this, let us recall that Juneja
et al. [10] defined the (p, q)-th order and (p, q)-th lower order of an entire function,
respectively, as follows:

Definition 1.1. [10] Let p ≥ q. The (p, q)-th order ρ(p,q)(f) and (p, q)-th lower
order λ(p,q)(f) of an entire function f are defined as:

ρ(p,q)(f) = lim sup
r→+∞

log[p]Mf (r)

log[q] r
and λ(p,q)(f) = lim inf

r→+∞

log[p]Mf (r)

log[q] r
.

If f is a meromorphic function, then

ρ(p,q)(f) = lim sup
r→+∞

log[p−1] Tf (r)

log[q] r
and λ(p,q)(f) = lim inf

r→+∞

log[p−1] Tf (r)

log[q] r
.
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For any entire function f , using the inequality Tf (r) ≤ logMf (r) ≤ 3Tf (2r)
{cf. [8]}, one can easily verify that

ρ(p,q)(f) = lim sup
r→+∞

log[p]Mf (r)

log[q] r
= lim sup

r→+∞

log[p−1] Tf (r)

log[q] r

and λ(p,q)(f) = lim inf
r→+∞

log[p]Mf (r)

log[q] r
= lim inf

r→+∞

log[p−1] Tf (r)

log[q] r
,

when p ≥ 2.

Extending the notion (p, q)-th order, recently Shen et al. [9] introduced the
new concept of [p, q]-ϕ order of entire and meromorphic function where p ≥ q. Later
on, combining the definition of (p, q)-order and [p, q]-ϕ order, Biswas (see, e.g., [5])
redefined the (p, q)-order of an entire and meromorphic function without restriction
p ≥ q.

However the above definition is very useful for measuring the growth of entire
and meromorphic functions. If p = l and q = 1 then we write ρ(l,1)(f) = ρ(l)(f) and
λ(l,1)(f) = λ(l)(f) where ρ(l)(f) and λ(l)(f) are respectively known as generalized order
and generalized lower order of entire or meromorphic function f . For details about
generalized order one may see [15]. Also for p = 2 and q = 1, we respectively denote
ρ(2,1)(f) and λ(2,1)(f) by ρ(f) and λ(f) which are classical growth indicators such as
order and lower order of entire or meromorphic function f .

Now let L be a class of continuous non-negative on (−∞,+∞) functions α
such that α(x) = α(x0) ≥ 0 for x ≤ x0 with α(x) ↑ +∞ as x→ +∞. For any α ∈ L,
we say that α ∈ L0

1, if α((1 + o(1))x) = (1 + o(1))α(x) as x → +∞ and α ∈ L0
2, if

α(exp((1+o(1))x)) = (1+o(1))α(exp(x)) as x→ +∞. Finally for any α ∈ L, we also
say that α ∈ L1, if α(cx) = (1 + o(1))α(x) as x0 ≤ x→ +∞ for each c ∈ (0,+∞) and
α ∈ L2, if α(exp(cx)) = (1 + o(1))α(exp(x)) as x0 ≤ x → +∞ for each c ∈ (0,+∞).
Clearly, L1 ⊂ L0

1, L2 ⊂ L0
2 and L2 ⊂ L1.Further we assume that throughout the

present paper α2, α4, β, β1, β2, β3 and β4 denote the functions belonging to L1 and
α1, α3 ∈ L2 unless otherwise specifically stated.

The value

ρ(α,β)[f ] = lim sup
r→+∞

α(logMf (r))

β(log r)
(α ∈ L, β ∈ L)

introduced by Sheremeta [14], is called generalized order (α, β) of an entire function f .
During the past decades, several authors made close investigations on the properties
of entire functions related to generalized order (α, β) in some different direction. For
the purpose of further applications, Biswas et al. [2, 3] rewrite the definition of the
generalized order (α, β) of entire function in the following way after giving a minor
modification to the original definition (e.g. see, [14]) which considerably extend the
definition of ϕ-order of entire function introduced by Chyzhykov et al. [6]:

Definition 1.2. [2, 3] The generalized order (α, β) denoted by ρ(α,β) [f ] and gen-
eralized lower order (α, β) denoted by λ(α,β) [f ] of an entire function f are defined
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as:

ρ(α,β) [f ] = lim sup
r→+∞

α(Mf (r))

β(r)
and

λ(α,β) [f ] = lim inf
r→+∞

α(Mf (r))

β(r)
where α ∈ L1.

If f is a meromorphic function, then

ρ(α,β) [f ] = lim sup
r→+∞

α(exp(Tf (r)))

β(r)
and

λ(α,β) [f ] = lim inf
r→+∞

α(exp(Tf (r)))

β(r)
, where α ∈ L2.

Using the inequality Tf (r) ≤ logMf (r) ≤ 3Tf (2r) {cf. [8]}, for an entire
function f , one may easily verify that

ρ(α,β) [f ] = lim sup
r→+∞

α(Mf (r))

β(r)
= lim sup

r→+∞

α(exp(Tf (r)))

β(r)

and λ(α,β) [f ] = lim inf
r→+∞

α(Mf (r))

β(r)
= lim inf

r→+∞

α(exp(Tf (r)))

β(r)
,

when α ∈ L2.
In particular, the following definition is needed in the sequel.

Definition 1.3. Let “a” be a complex number, finite or infinite. The Nevanlinna’s
deficiency of “a” with respect to a meromorphic function f are defined as

δ(a; f) = 1− lim sup
r→+∞

Nf (r, a)

Tf (r)
= lim inf

r→+∞

mf (r, a)

Tf (r)
.

In this paper, we intend to establish some results relating to the growth prop-
erties of composite entire and meromorphic functions on the basis of generalized order
(α, β) and generalized lower order (α, β). In fact some works in this direction have
already been explored in [2–4].

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. [1] If f is a meromorphic function and g is an entire function then for
all sufficiently large values of r,

Tf◦g(r) 6 {1 + o(1)} Tg(r)

logMg(r)
Tf (Mg(r)).

Lemma 2.2. [7] Let f and g are any two entire functions with g(0) = 0. Also let b

satisfy 0 < b < 1 and c(b) = (1−b)2
4b

. Then for all sufficiently large values of r,

Mf (c(b)Mg(br)) ≤Mf◦g(r).

In addition if b = 1
2
, then for all sufficiently large values of r,

Mf◦g(r) ≥Mf

(1

8
Mg

(r
2

))
.
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Lemma 2.3. [12] Let g be an entire function with λg < +∞ and assume that ai(i =

1, 2, ....n;n ≤ +∞) are entire functions satisfying Tai(r) = ◦{Tg(r)}. If
n∑
i=1

δ(ai, g) = 1,

then

lim
r→+∞

Tg(r)

logMg(r)
=

1

π
.

Lemma 2.4. Let g be an entire function with λg < +∞ and assume that ai(i =

1, 2, ....n;n ≤ +∞) are entire functions satisfying Tai(r) = ◦{Tg(r)}. If
n∑
i=1

δ(ai, g) = 1,

then for any α ∈ L2

lim
r→+∞

α(exp(Tg(r)))

α(Mg(r))
= 1.

Proof. In view of Lemma 2.3 we get for all sufficiently large positive numbers of r
that

1

π
− ε ≤ Tg(r)

logMg(r)
≤ 1

π
+ ε

i.e., Mg(r) ≤ exp
( 1

( 1
π
− ε)

(Tg(r))
)
≤Mg(r)

i, e., α(Mg(r)) ≤ (1 + o(1))α(exp(Tg(r))) ≤ α(Mg(r))

Therefore we get

1 ≤ lim inf
r→+∞

α(exp(Tg(r)))

α(Mg(r))
≤ lim sup

r→+∞

α(exp(Tg(r)))

α(Mg(r))
≤ 1

i.e., lim
r→+∞

α(exp(Tg(r)))

α(Mg(r))
= 1.

This proves the lemma.

3. Main Results

In this section we present the main results of the paper.

Theorem 3.1. Let f be a meromorphic function and g be an entire function such
that 0 < λ(α1,β1) [f ] ≤ ρ(α1,β1) [f ] < +∞. and ρ(α2,β2) [g] < +∞. Also let γ be a
positive continuous on [0,+∞) function increasing to +∞ and A ≥ 0 be any number.

(i) If β1(α
−1
2 (log r)) ≤ r and lim

r→+∞
log γ(r)
log r

= +∞, then

lim
r→+∞

{
α1(exp(Tf◦g(β

−1
2 (log r))))

}1+A
α1(exp(Tf (β

−1
1 (γ(r)))))

= 0 and

(ii) If either β1(r) = Bα2(r) where B is any positive constant and lim
r→+∞

log γ(r)
log r

= +∞

or β1(α
−1
2 (r)) ∈ L0 and lim

r→+∞
log γ(r)

β1(α
−1
2 (log r))

= +∞, then

lim
r→+∞

{
exp(α1(exp(Tf◦g(β

−1
2 (log r)))))

}1+A
α1(exp(Tf (β

−1
1 (γ(r)))))

= 0.
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Proof. From the definition of λ(α1,β1) [f ], we get for all sufficiently large values of r
that

(1) α1(exp(Tf (β
−1
1 (γ(r))))) ≥ (λ(α1,β1) [f ]− ε)γ(r) .

In view of Lemma 2.1 and the inequality Tf (r) ≤ log+Mf (r) we get for all suffi-
ciently large values of r that

(2) α1(exp(Tf◦g(β
−1
2 (log r)))) 6

(1 + o(1))(ρ(α1,β1) [f ] + ε)β1(Mg(β
−1
2 (log r))).

Now the following cases may arise :
Case I. Let β1(α

−1
2 (log r)) ≤ r. Now we get from (2) for all sufficiently large values

of r that

(3) α1(exp(Tf◦g(β
−1
2 (log r)))) 6

(1 + o(1))(ρ(α1,β1) [f ] + ε)β1(α
−1
2 (α2(Mg(β

−1
2 (log r)))))

(4) i.e., α1(exp(Tf◦g(β
−1
2 (log r)))) 6

(1 + o(1))(ρ(α1,β1) [f ] + ε)β1(α
−1
2 (log r(ρ(α2,β2)[g]+ε))).

Case II. Let β1(r) = Bα2(r) where B is any positive constant. Then we have from
(2) for all sufficiently large values of r that

α1(exp(Tf◦g(β
−1
2 (log r)))) 6 (1 + o(1))B(ρ(α1,β1) [f ] + ε)α2(Mg(β

−1
2 (log r)))

i.e., α1(exp(Tf◦g(β
−1
2 (log r)))) 6

(1 + o(1))B(ρ(α1,β1) [f ] + ε)(ρ(α2,β2) [g] + ε) log r

(5) i.e., exp(α1(exp(Tf◦g(β
−1
2 (log r))))) 6

r(1+o(1))B(ρ(α1,β1)[f ]+ε)(ρ(α2,β2)[g]+ε).

Case III. Let β1(α
−1
2 (r)) ∈ L1 and lim

r→+∞
log γ(r)

β1(α
−1
2 (log r))

= +∞. Then we have from

(3) for all sufficiently large values of r that

α1(exp(Tf◦g(β
−1
2 (log r)))) 6 (1 + o(1))(ρ(α1,β1) [f ] + ε)β1(α

−1
2 (log r))

(6) i.e., exp(α1(exp(Tf◦g(β
−1
2 (log r))))) 6

exp((1 + o(1))(ρ(α1,β1) [f ] + ε)β1(α
−1
2 (log r))).

Now when β1(α
−1
2 (log r)) ≤ r and lim

r→+∞
log γ(r)
log r

= +∞, we obtain from (1) and

(4) of Case I for all sufficiently large values of r that{
α1(exp(Tf◦g(β

−1
2 (log r))))

}1+A
α1(exp(Tf (β

−1
1 (γ(r)))))

6

(1 + o(1))(ρ(α1,β1) [f ] + ε)1+A[β1(α
−1
2 (log r(ρ(α2,β2)[g]+ε)))]1+A

(λ(α1,β1) [f ]− ε)γ(r)

i.e., lim sup
r→+∞

{
α1(exp(Tf◦g(β

−1
2 (log r))))

}1+A
α1(exp(Tf (β

−1
1 (γ(r)))))

= 0,

This proves the first part of the theorem.
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Again combining (1) and (5) of Case II, we get for all sufficiently large values
of r that {

exp(α1(exp(Tf◦g(β
−1
2 (log r)))))

}1+A
α1(exp(Tf (β

−1
1 (γ(r)))))

6

r(1+o(1))B(ρ(α1,β1)[f ]+ε)(ρ(α2,β2)[g]+ε)(1+A)

(λ(α1,β1) [f ]− ε)γ(r)

As lim
r→+∞

log γ(r)
log r

= +∞, so

r(1+o(1))B(ρ(α1,β1)[f ]+ε)(ρ(α2,β2)[g]+ε)(1+A)

γ(r)
→ 0

as r → +∞. Thus it follows from above that

(7) lim
r→+∞

{
exp(α1(exp(Tf◦g(β

−1
2 (log r)))))

}1+A
α1(exp(Tf (β

−1
1 (γ(r)))))

= 0.

Further combining (1) and (6) of Case III it follows for all sufficiently large
values of r that{

exp(α1(exp(Tf◦g(β
−1
2 (log r)))))

}1+A
α1(exp(Tf (β

−1
1 (γ(r)))))

6[
exp((1 + o(1))(ρ(α1,β1) [f ] + ε)β1(α

−1
2 (log r)))

]1+A
(λ(α1,β1) [f ]− ε)γ(r)

.

Since lim
r→+∞

log γ(r)

β1(α
−1
2 (log r))

= +∞, so[
exp((1 + o(1))(ρ(α1,β1) [f ] + ε)β1(α

−1
2 (log r)))

]1+A
γ(r)

→ 0

as r → +∞. Thus from above we obtain that

(8) lim
r→+∞

{
exp(α1(exp(Tf◦g(β

−1
2 (log r)))))

}1+A
α1(exp(Tf (β

−1
1 (γ(r)))))

= 0

Hence the second part of the theorem follows from (7) and (8).
Thus the theorem follows.

Remark 3.2. Theorem 3.1 improves and extends Theorem 3 of [13].

Remark 3.3. In Theorem 3.1 if we take the condition ρ(α1,β1) [f ] > 0 instead
of 0 < λ(α1,β1) [f ] ≤ ρ(α1,β1) [f ] < +∞, the theorem remains true with “ limit inferior”
in place of “limit”.

Theorem 3.4. Let f be a meromorphic function and g be an entire function such
that 0 < λ(α2,β2) [g] ≤ ρ(α2,β2) [g] < +∞ and ρ(α1,β1) [f ] < +∞ where α2 ∈ L2. Also let
γ be a positive continuous on [0,+∞) function increasing to +∞ and A ≥ 0 be any
number.
(i) If β1(α

−1
2 (log r)) ≤ r and lim

r→+∞
log γ(r)
log r

= +∞, then

lim
r→+∞

{
α1(exp(Tf◦g(β

−1
2 (log r))))

}1+A
α2(exp(Tg(β

−1
2 (γ(r)))))

= 0 and
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(ii) If either β1(r) = Bα2(r) where B is any positive constant and

lim
r→+∞

log γ(r)

log r
= +∞

or β1(α
−1
2 (r)) ∈ L0 and lim

r→+∞
log γ(r)

β1(α
−1
2 (log r))

= +∞, then

lim
r→+∞

{
exp(α1(exp(Tf◦g(β

−1
2 (log r)))))

}1+A
α2(exp(Tg(β

−1
2 (γ(r)))))

= 0.

The proof of Theorem 3.4 would run parallel to that of Theorem 3.1. We omit
the details.

Remark 3.5. In Theorem 3.4, if we take the condition ρ(α2,β2) [g] > 0 instead of
0 < λ(α2,β2) [g] ≤ ρ(α2,β2) [g] < +∞, the theorem remains true with “limit” replaced
by “limit inferior”.

Theorem 3.6. Let f be a meromorphic function and g, h, k be three entire func-
tions such that λ(α3,β3) [h] > 0, λ(α4,β4) [k] > 0 and ρ(α2,β2) [g] < λ(α4,β4) [k]. Also let C
and D be any two positive constants.
(i) Any one of the following four conditions are assumed to be satisfied:
(a) β1(r) = C(exp(α2(r))) and β3(r) = D exp(α4(r));
(b) β1(r) = C(exp(α2(r))) and β3(r) > exp(α4(r));
(c) exp(α2(r)) > β1(r) and β3(r) = D exp(α4(r));
(d) exp(α2(r)) > β1(r) and β3(r) > exp(α4(r)); then

lim
r→+∞

α3(exp(Th◦k(β
−1
4 (log r))))

α1(exp(Tf◦g(β
−1
2 (log r))))

= +∞.

(ii) Any one of the following two conditions are assumed to be satisfied:
(a) β1(r) = C(exp(α2(r))) and α4(β

−1
3 (r)) ∈ L1;

(b) β3(r) > exp(α4(r)) and α4(β
−1
3 (r)) ∈ L1; then

lim
r→+∞

exp(α4(β
−1
3 (α3(exp(Th◦k(β

−1
4 (log r)))))))

α1(exp(Tf◦g(β
−1
2 (log r))))

= +∞.

(iii) Any one of the following two conditions are assumed to be satisfied:
(a) β3(r) = D exp(α4(r)) and α2(β

−1
1 (r)) ∈ L1;

(b) β3(r) > exp(α4(r)) and α2(β
−1
1 (r)) ∈ L1; then

lim
r→+∞

α3(exp(Th◦k(β
−1
4 (log r))))

exp(α2(β
−1
1 (α1(exp(Tf◦g(β

−1
2 (log r)))))))

= +∞.

(iv) If α2(β
−1
1 (r)) ∈ L1 and α4(β

−1
3 (r)) ∈ L1, then

lim
r→+∞

exp(α4(β
−1
3 (α3(exp(Th◦k(β

−1
4 (log r)))))))

exp(α2(β
−1
1 (α1(exp(Tf◦g(β

−1
2 (log r)))))))

= +∞.

Proof. Case I. Let β1(r) = C(exp(α2(r))). Then we have from (2) for all suffi-
ciently large values of r that

(9) α1(exp(Tf◦g(β
−1
2 (log r)))) 6

C(1 + o(1))(ρ(α1,β1) [f ] + ε)r(ρ(α2,β2)[g]+ε).
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Case II. Let exp(α2(r)) > β1(r). Then we have from (2) for all sufficiently large
values of r that

(10) α1(exp(Tf◦g(β
−1
2 (log r)))) <

(1 + o(1))(ρ(α1,β1) [f ] + ε)r(ρ(α2,β2)[g]+ε).

Case III. Let α2(β
−1
1 (r)) ∈ L1. Then we get from(2) for all sufficiently large values

of r that

(11) exp(α2(β
−1
1 (α1(exp(Tf◦g(β

−1
2 (log r))))))) 6

r(1+o(1))(ρ(α2,β2)[g]+ε).

Further using the inequality Tf (r) ≤ logMf (r) ≤ 3Tf (2r) {cf. [8]} for an
entire function f , it follows from Lemma 2.2 and for all sufficiently large values r that

α3(exp(Th◦k(β
−1
4 (log r)))) ≥ α3(exp(

1

3
Th(

1

8
Mk(

β−14 (log r)

4
))))

i.e., α3(exp(Th◦k(β
−1
4 (log r)))) ≥

(1 + o(1))(α3(exp(Th(
1

8
Mk(

β−14 (log r)

4
)))))

(12) i.e., α3(exp(Th◦k(β
−1
4 (log r)))) ≥

(1 + o(1))(λ(α3,β3) [h]− ε)β3(Mk(
β−14 (log r)

4
)).

Case IV. Let β3(r) = D exp(α4(r)) Then from (12) it follows for all sufficiently large
values of r that

(13) α3(exp(Th◦k(β
−1
4 (log r)))) ≥

D(1 + o(1))(λ(α3,β3) [h]− ε)r(1+o(1))(λ(α4,β4)[k]−ε).
Case V. Let β3(r) > exp(α4(r)). Now from (12) it follows for all sufficiently large
values of r that

α3(exp(Th◦k(β
−1
4 (log r)))) >(14)

(1 + o(1))(λ(α3,β3) [h]− ε)r(1+o(1))(λ(α4,β4)[k]−ε).

Case VI. Let α4(β
−1
3 (r)) ∈ L1. Then from (12) we obtain for all sufficiently large

values of r that

(15) exp(α4(β
−1
3 (α3(exp(Th◦k(β

−1
4 (log r))))))) > r(1+o(1))(λ(α4,β4)[k]−ε).

Since ρ(α2,β2) [g] < λ(α4,β4) [k] we can choose ε(> 0) in such a way that

(16) ρ(α2,β2) [g] + ε < λ(α4,β4) [k]− ε.
Now combining (9) of Case I and (13) of Case IV it follows for all sufficiently large

values of r that

α3(exp(Th◦k(β
−1
4 (log r))))

α1(exp(Tf◦g(β
−1
2 (log r))))

≥
D(1 + o(1))(λ(α3,β3) [h]− ε)r(1+o(1))(λ(α4,β4)[k]−ε)

C(1 + o(1))(ρ(α1,β1) [f ] + ε)r(ρ(α2,β2)[g]+ε)
.

So from (16) and above we obtain that

(17) lim inf
r→+∞

α3(exp(Th◦k(β
−1
4 (log r))))

α1(exp(Tf◦g(β
−1
2 (log r))))

= +∞.
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Further combining (9) of Case I and (14) of Case V it follows for all sufficiently
large values of r that

α3(exp(Th◦k(β
−1
4 (log r))))

α1(exp(Tf◦g(β
−1
2 (log r))))

>
(1 + o(1))(λ(α3,β3) [h]− ε)r(1+o(1))(λ(α4,β4)[k]−ε)

C(1 + o(1))(ρ(α1,β1) [f ] + ε)r(ρ(α2,β2)[g]+ε)
.

Hence from (16) and above we get that

(18) lim inf
r→+∞

α3(exp(Th◦k(β
−1
4 (log r))))

α1(exp(Tf◦g(β
−1
2 (log r))))

= +∞.

Similarly combining (10) of Case II and (13) of Case IV, we obtain that

(19) lim inf
r→+∞

α3(exp(Th◦k(β
−1
4 (log r))))

α1(exp(Tf◦g(β
−1
2 (log r))))

= +∞.

Likewise combining (10) of Case II and (14) of Case V it follows that

(20) lim inf
r→+∞

α3(exp(Th◦k(β
−1
4 (log r))))

α1(exp(Tf◦g(β
−1
2 (log r))))

= +∞.

Hence the first part of the theorem follows from (17), (18), (19) and (20).
Again combining (9) of Case I and (15) of Case VI we obtain for all sufficiently

large values of r that

exp(α4(β
−1
3 (α3(exp(Th◦k(β

−1
4 (log r)))))))

α1(exp(Tf◦g(β
−1
2 (log r))))

≥ .

r(1+o(1))(λ(α4,β4)[k]−ε)

C(1 + o(1))(ρ(α1,β1) [f ] + ε)r(ρ(α2,β2)[g]+ε)
.

So from (16) and above we obtain that

(21) lim
r→+∞

exp(α4(β
−1
3 (α3(exp(Th◦k(β

−1
4 (log r)))))))

α1(exp(Tf◦g(β
−1
2 (log r))))

= +∞.

Now in view of (10) of Case II and (15) of Case VI we get for all sufficiently large
values of r that

exp(α4(β
−1
3 (α3(exp(Th◦k(β

−1
4 (log r)))))))

α1(exp(Tf◦g(β
−1
2 (log r))))

> .

r(1+o(1))(λ(α4,β4)[k]−ε)

(1 + o(1))(ρ(α1,β1) [f ] + ε)r(ρ(α2,β2)[g]+ε)
.

So from (16) and above we obtain that

(22) lim inf
r→+∞

exp(α4(β
−1
3 (α3(exp(Th◦k(β

−1
4 (log r)))))))

α1(exp(Tf◦g(β
−1
2 (log r))))

= +∞,

Therefore the second part of the theorem follows from (21) and (22).
Further combining (11) of Case III and (13) of Case IV it follows for all sufficiently

large values of r that

(23)
α3(exp(Th◦k(β

−1
4 (log r))))

exp(α2(β
−1
1 (α1(exp(Tf◦g(β

−1
2 (log r)))))))

≥

D(1 + o(1))(λ(α3,β3) [h]− ε)r(1+o(1))(λ(α4,β4)[k]−ε)

r(1+o(1))(ρ(α2,β2)[g]+ε)
.
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Now in view of (16) we obtain from (23) that

(24) lim
r→+∞

α3(exp(Th◦k(β
−1
4 (log r))))

exp(α2(β
−1
1 (α1(exp(Tf◦g(β

−1
2 (log r)))))))

= +∞.

Similarly combining (11) of Case III and (14) of Case V we get that

(25) lim
r→+∞

α3(exp(Th◦k(β
−1
4 (log r))))

exp(α2(β
−1
1 (α1(exp(Tf◦g(β

−1
2 (log r)))))))

= +∞.

Hence the third part of the theorem follows from (24) and (25).
Again combining (11) of Case III and (15) of Case VI we obtain for all sufficiently

large values of r that

exp(α4(β
−1
3 (α3(exp(Th◦k(β

−1
4 (log r)))))))

exp(α2(β
−1
1 (α1(exp(Tf◦g(β

−1
2 (log r)))))))

≥ r(1+o(1))(λ(α4,β4)[k]−ε)

r(1+o(1))(ρ(α2,β2)[g]+ε)
.

Now in view of (16) we obtain from above that

lim
r→+∞

exp(α4(β
−1
3 (α3(exp(Th◦k(β

−1
4 (log r)))))))

exp(α2(β
−1
1 (α1(exp(Tf◦g(β

−1
2 (log r)))))))

= +∞.

This proves the fourth part of the theorem.
Thus the theorem follows.

Theorem 3.7. Let f be a meromorphic function and g be an entire function such
that 0 < λ(α1,β1) [f ] ≤ ρ(α1,β1) [f ] < +∞. and ρ(α2,β2) [g] < +∞. If α2(β

−1
1 (r)) ∈ L1,

then

lim sup
r→+∞

α2(β
−1
1 (α1(exp(Tf◦g(r)))))

α1(exp(Tf (β
−1
1 (β2(r)))))

≤
ρ(α2,β2) [g]

λ(α1,β1) [f ]
.

Proof. In view of (1) it follows for all sufficiently large values of r that

(26) α1(exp(Tf (β
−1
1 (β2(r))))) ≥ (λ(α1,β1) [f ]− ε)β2(r).

Again in view of (2), we get for all sufficiently large values of r that

α1(exp(Tf◦g(r))) 6 (1 + o(1))(ρ(α1,β1) [f ] + ε)β1(Mg(r)).

Since α2(β
−1
1 (r)) ∈ L1, we obtain from above for all sufficiently large values of r that

α2(β
−1
1 (α1(exp(Tf◦g(r))))) ≤ (1 + o(1))α2(Mg(r))

i.e., α2(β
−1
1 (α1(exp(Tf◦g(r))))) ≤ (1 + o(1))(ρ(α2,β2) [g] + ε)β2(r).

Now combining (26) and above we get that

lim sup
r→+∞

α2(β
−1
1 (α1(exp(Tf◦g(r)))))

α1(exp(Tf (β
−1
1 (β2(r)))))

≤
ρ(α2,β2) [g]

λ(α1,β1) [f ]
.

Hence the theorem follows.

Theorem 3.8. Let f be a meromorphic function and g be an entire function such
that 0 < λ(α1,β1) [f ] ≤ ρ(α1,β1) [f ] < +∞. and λ(α2,β2) [g] < +∞. If α2(β

−1
1 (r)) ∈ L1,

then

lim inf
r→+∞

α2(β
−1
1 (α1(exp(Tf◦g(r)))))

α1(exp(Tf (β
−1
1 (β2(r)))))

≤
λ(α2,β2) [g]

λ(α1,β1) [f ]
.

The proof of Theorem 3.8 would run parallel to that of Theorem 3.7. We omit
the details.
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Theorem 3.9. Let f be a meromorphic function and g be an entire function such
that λ(α1,β1) [f ] and λg are both finite where β1 ∈ L2. Also suppose that there exist
entire functions ai(i = 1, 2, ....n;n ≤ +∞) satisfying
(A) Tai(r) = ◦{Tg(r)} as r → +∞ and

(B)
n∑
i=1

δ(ai, g) = 1. Then

lim inf
r→+∞

α1(exp(Tf◦g(r)))

β1(exp(Tg(r)))
≤ λ(α1,β1) [f ] .

Proof. In view of Lemma 2.1 and the inequality Tf (r) ≤ log+Mf (r) we get for a
sequence of values of r tending to infinity that

α1(exp(Tf◦g(r)))

β1(exp(Tg(r)))
6

(1 + o(1))(λ(α1,β1) [f ] + ε)β1(Mg(r))

β1(exp(Tg(r)))
.

In view of Lemma 2.4 and as ε(> 0) is arbitrary we obtain from above that

lim inf
r→+∞

α1(exp(Tf◦g(r)))

β1(exp(Tg(r)))
≤ λ(α1,β1) [f ] .

Thus the theorem follows.

The following theorem can be proved in the line of Theorem 3.9 and so its
proof is omitted.

Theorem 3.10. Let f be a meromorphic function and g be an entire function such
that ρ(α1,β1) [f ] and λg are both finite where β1 ∈ L2 .Also suppose that there exist
entire functions ai(i = 1, 2, ....n;n ≤ +∞) satisfying
(A) Tai(r) = ◦{Tg(r)} as r → +∞ and

(B)
n∑
i=1

δ(ai, g) = 1. Then

lim sup
r→+∞

α1(exp(Tf◦g(r)))

β1(exp(Tg(r)))
≤ ρ(α1,β1) [f ] .

Theorem 3.11. Let f be meromorphic and g be entire such that ρ(α1,β1) [f ◦ g] <
+∞ and λ(α3,β3) [g] > 0. Then

lim
r→+∞

{
α1(exp(Tf◦g(β

−1
1 (log r))))

}2
α3(exp(Tg(β

−1
3 (log r)))) · α3(exp(Tg(β

−1
3 (r))))

= 0.

Proof. For arbitrary positive ε we have for all sufficiently large values of r that

(27) α1(exp(Tf◦g(β
−1
1 (log r)))) ≤ (ρ(α1,β1) [f ◦ g] + ε) log r.

Again for all sufficiently large values of r we get

(28) α3(exp(Tg(β
−1
3 (log r)))) ≥ (λ(α3,β3) [g]− ε) log r.

Similarly for all sufficiently large values of r we have

(29) α3(exp(Tg(β
−1
3 (r)))) ≥ (λ(α3,β3) [g]− ε)r.

From (27) and (28) we have for all sufficiently large values of r that

α1(exp(Tf◦g(β
−1
1 (log r))))

α3(exp(Tg(β
−1
3 (log r))))

≤
(ρ(α1,β1) [f ◦ g] + ε) log r

(λ(α3,β3) [g]− ε) log r
.
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As ε(> 0) is arbitrary we obtain from above that

(30) lim sup
r→+∞

α1(exp(Tf◦g(β
−1
1 (log r))))

α3(exp(Tg(β
−1
3 (log r))))

≤
ρ(α1,β1) [f ◦ g]

λ(α3,β3) [g]
.

Again from (27) and (29) we get for all sufficiently large values of r that

α1(exp(Tf◦g(β
−1
1 (log r))))

α3(exp(Tg(β
−1
3 (r))))

≤
(ρ(α1,β1) [f ◦ g] + ε) log r

(λ(α3,β3) [g]− ε)r
.

Since ε(> 0) is arbitrary it follows from above that

(31) lim
r→+∞

α1(exp(Tf◦g(β
−1
1 (log r))))

α3(exp(Tg(β
−1
3 (r))))

= 0.

Thus the theorem follows from (30) and (31).

Theorem 3.12. Let f be meromorphic and g be entire such that ρ(α2,β2) [g] <
λ(α1,β1) [f ] ≤ ρ(α1,β1) [f ]. Also let C be any positive constant and β1 ∈ L2.
(i) Any one of the following two conditions are assumed to be satisfied:
(a) β1(r) = C(exp(α2(r)));
(b) exp(α2(r)) > β1(r); then

lim sup
r→+∞

{
α1(exp(Tf◦g(β

−1
2 (log r))))

}2
exp(α1(exp(Tf (β

−1
1 (log r))))) · β1(exp(Tg(2(β−12 (log r)))))

= 0.

(ii) If α2(β
−1
1 (r)) ∈ L1, then

lim
r→+∞

exp(α2(β
−1
1 (α1(exp(Tf◦g(β

−1
2 (log r))))))) · α1(exp(Tf◦g(β

−1
2 (log r))))

exp(α1(exp(Tf (β
−1
1 (log r))))) · β1(exp(Tg(2(β−12 (log r)))))

= 0.

Proof. From the definition of generalized lower order (α1, β1) of f we have for
arbitrary positive ε and for all sufficiently large values of r that

(32) exp(α1(exp(Tf (β
−1
1 (log r))))) ≥ r(λ(α1,β1)[f ]−ε).

As ρ(α2,β2) [g] < λ(α1,β1) [f ] we can choose ε(> 0) in such a way that

(33) ρ(α2,β2) [g] + ε < λ(α1,β1) [f ]− ε.
Now combining (9) of Case I and (32) we have for all large positive numbers of r,

α1(exp(Tf◦g(β
−1
2 (log r))))

exp(α1(exp(Tf (β
−1
1 (log r)))))

≤
C(1 + o(1))(ρ(α1,β1) [f ] + ε)r(ρ(α2,β2)[g]+ε)

r(λ(α1,β1)[f ]−ε)
.

In view of (33) we get from above that

(34) lim
r→+∞

α1(exp(Tf◦g(β
−1
2 (log r))))

exp(α1(exp(Tf (β
−1
1 (log r)))))

= 0.

Again combining (10) of Case II and (32) it follows for all sufficiently large positive
numbers of r that

α1(exp(Tf◦g(β
−1
2 (log r))))

exp(α1(exp(Tf (β
−1
1 (log r)))))

≤
(1 + o(1))(ρ(α1,β1) [f ] + ε)r(ρ(α2,β2)[g]+ε)

r(λ(α1,β1)[f ]−ε)
.

Now in view of (33) we obtain from above that

(35) lim
r→+∞

α1(exp(Tf◦g(β
−1
2 (log r))))

exp(α1(exp(Tf (β
−1
1 (log r)))))

= 0.
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Further combining (11) of Case III and (32) it follows for all sufficiently large
positive numbers of r that

exp(α2(β
−1
1 (α1(exp(Tf◦g(β

−1
2 (log r)))))))

exp(α1(exp(Tf (β
−1
1 (log r)))))

≤ r(1+o(1))(ρ(α2,β2)[g]+ε)

r(λ(α1,β1)[f ]−ε)
.

So in view of (33) we obtain from above that

(36) lim
r→+∞

exp(α2(β
−1
1 (α1(exp(Tf◦g(β

−1
2 (log r)))))))

exp(α1(exp(Tf (β
−1
1 (log r)))))

= 0.

Now from(2)we have for all sufficiently large values of r that

α1(exp(Tf◦g(β
−1
2 (log r))))

β1(exp(Tg(2(β−12 (log r)))))
≤

(1 + o(1))(ρ(α1,β1) [f ] + ε)β1(Mg(β
−1
2 (log r)))

β1(exp(Tg(2(β−12 (log r)))))
.

Since ε(> 0) is arbitrary, in view of log+Mf (r) ≤ 3Tf (2r) {cf. [8]}, we get from
above that

(37) lim sup
r→+∞

α1(exp(Tf◦g(β
−1
2 (log r))))

β1(exp(Tg(2(β−12 (log r)))))
≤ ρ(α1,β1) [f ] .

From (34) and (37) we obtain for all sufficiently large values of r that

lim sup
r→+∞

{
α1(exp(Tf◦g(β

−1
2 (log r))))

}2
exp(α1(exp(Tf (β

−1
1 (log r))))) · β1(exp(Tg(2(β−12 (log r)))))

= lim
r→+∞

α1(exp(Tf◦g(β
−1
2 (log r))))

exp(α1(exp(Tf (β
−1
1 (log r)))))

· lim sup
r→+∞

α1(exp(Tf◦g(β
−1
2 (log r)))

β1(exp(Tg(2(β−12 (log r)))))

≤ 0.ρ(α1,β1) [f ]

(38) i.e., lim sup
r→+∞

{
α1(exp(Tf◦g(β

−1
2 (log r))))

}2
exp(α1(exp(Tf (β

−1
1 (log r))))) · β1(exp(Tg(2(β−12 (log r)))))

≤ 0.

Similarly from (35) and (37) we obtain that

lim sup
r→+∞

{
α1(exp(Tf◦g(β

−1
2 (log r))))

}2
exp(α1(exp(Tf (β

−1
1 (log r))))) · β1(exp(Tg(2(β−12 (log r)))))

= 0.

Therefore the first part of the theorem follows from (38) and above.
Again from (36) and (37) we get for all large values of r that

lim sup
r→+∞

exp(α2(β
−1
1 (α1(exp(Tf◦g(β

−1
2 (log r))))))) · α1(exp(Tf◦g(β

−1
2 (log r))))

exp(α1(exp(Tf (β
−1
1 (log r))))) · β1(exp(Tg(2(β−12 (log r)))))

= lim
r→+∞

exp(α2(β
−1
1 (α1(exp(Tf◦g(β

−1
2 (log r)))))))

exp(α1(exp(Tf (β
−1
1 (log r)))))

·lim sup
r→+∞

α1(exp(Tf◦g(β
−1
2 (log r))))

β1(exp(Tg(2(β−12 (log r)))))

≤ 0 · ρ(α1,β1) [f ] = 0.

i.e., lim
r→+∞

exp(α2(β
−1
1 (α1(exp(Tf◦g(β

−1
2 (log r))))))) · α1(exp(Tf◦g(β

−1
2 (log r))))

exp(α1(exp(Tf (β
−1
1 (log r))))) · β1(exp(Tg(2(β−12 (log r)))))

= 0.

Thus the second part of the theorem is established.
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Theorem 3.13. Let f be meromorphic and g be entire such that λ(α1,β1) [f ] < +∞
and ρ(α3,β3) [f ◦ g] < +∞ where α2, β1 ∈ L2. Then

lim sup
r→+∞

α1(exp(Tf◦g(β
−1
2 (log r)))) · α3(exp(Tf◦g(β

−1
3 (r))))

β1(exp(Tg(2(β−12 (log r))))) · α2(exp(Tg(β
−1
2 (r))))

≤
ρ(α3,β3) [f ◦ g] · ρ(α1,β1) [f ]

λ(α2,β2) [g]
.

Proof. For all sufficiently large values of r we have

(39) α3(exp(Tf◦g(β
−1
3 (r)))) ≤ (ρ(α3,β3) [f ◦ g] + ε)r.

Again for all sufficiently large values of r it follows that

(40) α2(exp(Tg(β
−1
2 (r)))) ≥ (λ(α2,β2) [g]− ε)r.

Now combining (39) and (40) we have for all sufficiently large values of r that

α3(exp(Tf◦g(β
−1
3 (r))))

α2(exp(Tg(β
−1
2 (r))))

≤
ρ(α3,β3) [f ◦ g] + ε

λ(α2,β2) [g]− ε
.

As ε(> 0) is arbitrary we get from above that

(41) lim sup
r→+∞

α3(exp(Tf◦g(β
−1
3 (r))))

α2(exp(Tg(β
−1
2 (r))))

≤
ρ(α3,β3) [f ◦ g]

λ(α2,β2) [g]
.

Now from (37) and (41) we obtain that

lim sup
r→+∞

α1(exp(Tf◦g(β
−1
2 (log r)))) · α3(exp(Tf◦g(β

−1
3 (r))))

β1(exp(Tg(2(β−12 (log r))))) · α2(exp(Tg(β
−1
2 (r))))

≤ lim sup
r→+∞

α1(exp(Tf◦g(β
−1
2 (log r))))

β1(exp(Tg(2(β−12 (log r)))))
· lim sup
r→+∞

α3(exp(Tf◦g(β
−1
3 (r))))

α2(exp(Tg(β
−1
2 (r))))

≤
ρ(α3,β3) [f ◦ g] · ρ(α1,β1) [f ]

λ(α2,β2) [g]
.

Hence the theorem follows.

Theorem 3.14. Let f be meromorphic and g be entire such that ρ(α1,β1) [f ] < +∞
and λ(α3,β3) [f ◦ g] = +∞. Then

lim
r→+∞

α3(exp(Tf◦g(r)))

α1(exp(Tf (β
−1
1 (β3(r)))))

= +∞.

Proof. Let us suppose that the conclusion of the theorem do not hold. Then we
can find a constant ∆ > 0 such that for a sequence of values of r tending to infinity

(42) α3(exp(Tf◦g(r))) ≤ ∆ · α1(exp(Tf (β
−1
1 (β3(r))))).

Again from the definition of ρ(α1,β1) [f ] , it follows for all sufficiently large values of r
that

(43) α1(exp(Tf (β
−1
1 (β3(r))))) ≤ (ρ(α1,β1) [f ] + ε)β3(r).

Thus from (42) and (43), we have for a sequence of values of r tending to infinity that

α3(exp(Tf◦g(r))) ≤ ∆(ρ(α1,β1) [f ] + ε)β3(r)
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i.e.,
α3(exp(Tf◦g(r)))

β3(r)
≤

∆(ρ(α1,β1) [f ] + ε)β3(r)

β3(r)

i.e., lim inf
r+∞

α3(exp(Tf◦g(r)))

β3(r)
= λ(α3,β3) [f ◦ g] < +∞.

This is a contradiction.
Thus the theorem follows.

Remark 3.15. Theorem 3.14 is also valid with “limit superior” instead of “limit”
if λ(α3,β3) [f ◦ g] = +∞ is replaced by ρ(α3,β3) [f ◦ g] = +∞ and the other conditions
remain the same.

Analogously one may also state the following theorem without its proof as it
may be carried out in the line of Theorem 3.14.

Theorem 3.16. Let f be meromorphic and g be entire such that ρ(α1,β1) [g] < +∞
and ρ(α3,β3) [f ◦ g] = +∞. Then

lim sup
r→+∞

α3(exp(Tf◦g(r)))

α1(exp(Tg(β
−1
1 (β3(r)))))

= +∞.

Remark 3.17. Theorem 3.16 is also valid with “limit” instead of “limit superior”
if ρ(α3,β3) [f ◦ g] = +∞ is replaced by λ(α3,β3) [f ◦ g] = +∞ and the other conditions
remain the same.
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