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ON DEFERRED CESÀRO MEAN IN PARANORMED SPACES

Sinan Ercan

Abstract. The aim of the present study is to introduce the concepts of deferred
statistical convergence, deferred statistical Cauchy sequence and deferred Cesàro
summability in paranormed spaces. We investigate some properties of these concepts
and some inclusion relations with examples.

1. Introduction

Zygmund [26] introduced the idea of statistical convergence in 1935. Fast [8] and
Steinhaus [18] introduced statistical convergence to assign a limit to sequences which
are not convergent in the usual sense independently in the same year.

We begin by recalling the notion of asymptotic (or natural) density of a set A ⊂ N
such that

δ (A) = lim
n→∞

1

n
|{k ≤ n : k ∈ A}| ,

whenever the limit exists. |{.}| indicate the cardinality of the enclosed set. A sequence
(xk) of numbers is called statistically convergent to a number L provided that for
ε > 0,

lim
n→∞

1

n
|{k ≤ n : |xk − L| ≥ ε}| = 0.

In this case, it is written by S − lim
k→∞

xk = L. We note that throughout the paper

N := {1, 2, ...}. The notion of statistical convergence is used an effective tool to
resolve many problems in Ergodic theory, Fuzzy set theory, Trigonometric series and
Banach spaces in the past years. Also various researchers studied applications and
generalizations of this notion (see [17]- [9]).

Agnew [1] defined the deferred Cesàro mean of real (or complex) valued sequences
by

(Dp,qx)n =
1

q (n)− p (n)

q(n)∑
k=p(n)+1

xk,

Received November 12, 2020. Accepted February 16, 2021. Published online March 30, 2021.
2010 Mathematics Subject Classification: 40A05, 40A30, 41A25.
Key words and phrases: statistical convergence, deferred statistical convergence, paranormed

space.
© The Kangwon-Kyungki Mathematical Society, 2021.
This is an Open Access article distributed under the terms of the Creative commons Attribution

Non-Commercial License (http://creativecommons.org/licenses/by
-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any
medium, provided the original work is properly cited.



170 Sinan Ercan

where p = {p (n) : n ∈ N} and q = {q (n) : n ∈ N} are the sequences of nonnegative
integers satisfying

(1.1) p (n) < q (n) and lim
n→∞

q (n) =∞.

Recently, Küçükaslan and Yılmaztürk [13] introduced deferred statistical conver-
gence. For some more relevant study, we refer to ( [4]- [24]).

A paranorm g : X → R is defined on a linear space X provided that for all x, y, z
∈ X

(i) g (x) = 0 if x = θ,
(ii) g (−x) = g (x) ,
(iii) g (x+ y) ≤ g (x) + g (y) ,
(iv) if (αn) is a sequence of scalars with αn → α0 (n→∞) and xn, a ∈ X with

xn → a (n→∞) in the sense that g (xn − a) → 0 (n→∞), then αnxn → α0a
(n→∞), in the sense that g (αnxn − α0a)→ 0 (n→∞).

A paranorm g for which g (x) = 0 implies that x = θ is said to be a total paranorm
on X. (X, g) is said to be a total paranormed space. We recall that each seminorm
(norm) g on X is a paranorm (total). However, the converse is not true.

Definition 1.1 A sequence (xk) in a paranormed space (X, g) is said to be
convergent (or g-convergent) to a number L in (X, g) if for every ε > 0 there exists
a positive integer k0 such that g (xk − L) < ε whenever k > k0. In this case we write
g − lim

k→∞
xk = L and L is called the g-limit of (xk) [2].

Recently, Alotaibi and Alroqi [2] studied strongly Cesàro summability, statistical
convergence, statistical Cauchy in paranormed spaces. Then Alghamdi and Mursaleen
[15] introduced λ-statistical convergence in paranormed spaces.

2. Main Results

In this section, we introduce the concepts of deferred statistical convergence, de-
ferred statistical Cauchy and deferred Cesàro summability in paranormed space. Fur-
thermore, we establish certain interesting results related to these concepts.

The deferred density of K ⊂ N is given by

δp,q (K) = lim
n→∞

1

q (n)− p (n)
|{p (n) < k ≤ q (n) , k ∈ K}|

whenver the limit exists. We note that the deferred density coincides with the natural
density whenever q (n) = n and p (n) = 0.

Now, we begin with the following definitions.

Definition 2.1 A sequence (xk) is said to be deferred statistically convergent (or
g (DS[p, q])-convergent) to L in (X, g) if for every ε > 0,

lim
n→∞

1

q (n)− p (n)
|{p (n) < k ≤ q (n) : g (xk − L) ≥ ε}| = 0.
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It is denoted by g (DS[p, q]) − lim
k→∞

xk = L. The set of all such sequences is denoted

by g (DS[p, q]).
(i) If we choose q (n) = n and p (n) = 0, then Definition 2.1 is reduced to statistical

convergence in paranormed spaces (cf. [2]).

(ii) If we choose q (n) = λn and p (n) = 0, then Definition 2.1 is reduced to λ-
statistical convergence in paranormed spaces (cf. [15]).

Definition 2.2 A sequence (xk) is said to be deferred statistically Cauchy se-
quence in (X, g) (or g (DS[p, q])-Cauchy) if for every ε > 0 there exists a number
N = N (ε) such that

lim
n→∞

1

q (n)− p (n)
|{p (n) < k ≤ q (n) : g (xk − xN) ≥ ε}| = 0.

Definition 2.3 A sequence (xk) is said to be deferred strongly Dp,q-convergent
to L in (X, g) if

lim
n→∞

1

q (n)− p (n)

q(n)∑
k=p(n)+1

|g (xk − L)| = 0

and we write it as g (D[p, q])− lim
k→∞

xk = L.

Theorem 2.4 If a sequence (xk) is deferred statistically convergent in (X, g) then
g (DS[p, q])− lim is unique.

Proof. Assume that g (DS[p, q]) − limx = L1 and g (DS[p, q]) − limx = L2. For
given ε > 0, define the sets K1 (ε) and K2 (ε) by

K1 (ε) = {p (n) < k ≤ q (n) : g (xk − L1) ≥ ε/2} ,
K2 (ε) = {p (n) < k ≤ q (n) : g (xk − L2) ≥ ε/2} .

Since g (D[p, q])− limx = L1, we have δ (K1 (ε)) = 0. Similarly, g (DS[p, q])− limx =
L2 implies that δ (K2 (ε)) = 0. Now, let K (ε) = K1 (ε) ∪K2 (ε). Then δ (K (ε)) = 0
and δ (Kc (ε)) = 1. Now, if k ∈ N\K (ε), then we have g (L1 − L2) ≤ g (xk − L1) +
g (xk − L2) <

ε
2

+ ε
2

= ε. Since ε > 0 is arbitrary, we get g (L1 − L2) = 0 and hence
L1 = L2.

Theorem 2.5 If g − limx = L. Then g (DS[p, q]) − limx = L but the converse
is not true.

Proof. Assume that g−limx = L. Then there existsN ∈ N+ such that g (xn − L) <
ε for all n ≥ N and ε > 0. Since A (ε) = {k ∈ N : g (xk − L) ≥ ε} ⊂ {1, 2, 3, ...},
δ (A (ε)) = 0. Hence g[DS[p, q])− limx = L.

The following example shows that the converse need not be true.
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Example 2.6 Let X = ` (1/k) =

{
x = (xk) :

∞∑
k=1

|xk|1/k <∞
}

with the paranorm

g (x) =

(
∞∑
k=1

|xk|1/k
)

. Define the sequence

xk =

{
k, if k = n2, n ∈ N;
0, otherwise;

and write
K (ε) = {k ≤ n : g (xk) ≥ ε} , 0 < ε < 1.

We see that

g (xk) =

{
k1/k, if k = n2, n ∈ N;

0, otherwise;

and hence

lim
k→∞

g (xk) =

{
1, if k = n2, n ∈ N;
0, otherwise;

Therefore g − lim
k→∞

xk does not exist. On the other hand δp,q (K (ε)) = 0, that is,

g (DS[p, q])− lim
k→∞

xk = 0.

Theorem 2.7 Let g (DS[p, q])− limx = L1 and g (DS[p, q])− lim y = L2. Then
(i) g (DS[p, q])− lim (x± y) = L1 ± L2.
(ii) g (DS[p, q])− limαx = αL, α ∈ R.

Theorem 2.8 A sequence (xk) in (X, g) is statistically convergent to L if and
only if there exists a set K = {k1 < k2 < k3 < ... < kn < ...} ⊆ N with δp,q (K) = 1
such that g (xkn − L)→ 0 (n→∞).

Proof. Assume that (xk) is deferred statistically convergent to L, that is, g (DS[p, q])
− lim

k→∞
xk = L. Now, writeKr =

{
n ∈ N : g (xkn − L) ≥ 1

r

}
, Mr = {n ∈ N : g (xkn − L)

< 1
r

}
for r = 1, 2, .... Then δp,q (Kr) = 0,

(2.1) M1 ⊃M2 ⊃ ... ⊃Mi ⊃Mi+1 ⊃ ...,

(2.2) δp,q (Mr) = 1, r = 1, 2, ... .

We have to show that, for n ∈ Mr, (xkn) is g-convergent to L. On contrary suppose
that (xkn) is not g-convergent to L. Therefore, there is ε > 0 such that g (xkn − L) ≥ ε
for infinitely many terms. Let Mε = {n ∈ N : g (xkn − L) < ε} and ε > 1/r, r ∈ N.
Then δp,q (Mε) = 0 and by (2.1), Mr ⊂ Mε. Hence, δp,q (Mr) = 0. This contradicts
(2.2) and hence (xkn) is g-convergent to L.

Now, consider the set K = {k1 < k2 < k3 < ...} ⊂ N with δp,q (K) = 1 and
g (xkn − L)→ 0 (n→∞). So we can find a positive integer n0 such that g (xk − L) <
ε for n ≥ n0. Kε = {k : g (xk − L) ≥ ε} ⊆ N − {kn0+1, kn0+2, kn0+3, ...} and therefore
δp,q (Kε) = 0. This shows that (xk) is deferred statistically convergent to L in (X, g).

Theorem 2.9 A sequence (xk) in a complete paranormed space (X, g) is deferred
statistically Cauchy if and only if it is deferred statistically convergent.
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Proof. Assume that (xk) is g (DS[p, q])-Cauchy but not g (DS[p, q])-convergent.
Then, we havem ∈ N such that δp,q (G (ε)) = 0, whereG (ε) = {n ∈ N : g (xn − xm) ≥ ε}
and δp,q (D (ε)) = 0, where D (ε) = {n ∈ N : g (xn − L) < ε/2}, i.e., δp,q

(
DC (ε)

)
= 1.

If g (xn − L) < ε
2
, then g (xn − xm) ≤ 2g (xn − L) < ε. Moreover, δp,q

(
GC (ε)

)
= 0,

i.e., δ (G (ε)) = 1, which leads to a contradiction, since (xk) is g (DS[p, q])-Cauchy.
Hence (xk) must be g (DS[p, q])-convergent.

Conversely, let us assume that g (DS[p, q])− lim
k→∞

xk = L. Then, we have δ (K (ε)) =

0 where

K (ε) =
{
n ∈ N : g (xn − L) ≥ ε

2

}
.

This implies that

δ (N\K (ε)) = δ
({
n ∈ N : g (xn − L) <

ε

2

})
= 1.

Let m,n /∈ K (ε), then g(xm − xn) < ε. Let

M (ε) = {n ∈ N : g (xm − xn) < ε}

for a fix m /∈ K (ε). Then N\K (ε) ⊂M (ε). Hence

1 = δ (N\K (ε)) ≤ δ (M (ε)) ≤ 1.

This implies δ (N\M (ε)) = 0, where N\M (ε) = {n ∈ N : g (xm − xn) ≥ ε}. This
implies that (xn) is deferred statistically Cauchy in (X, g).

Theorem 2.10 A sequence (xk) in (X, g) is strongly Dp,q-convergent to L, then
(xk) is deferred statistically convergent to L.

Proof. Assume that (xk) is strongly Dp,q-convergent to L. For an arbitrary ε > 0,
following equality

1

q (n)− p (n)

q(n)∑
k=p(n)+1

g (xk − L) =
1

q (n)− p (n)


q(n)∑

k=p(n)+1

g(xk−L)≥ε

+

q(n)∑
k=p(n)+1

g(xk−L)<ε

 g (xk − L)

≥ 1

q (n)− p (n)

q(n)∑
k=p(n)+1

g(xk−L)≥ε

g (xk − L)

≥ ε
1

q (n)− p (n)
|p (n) < k ≤ q (n) , g (xk − L) ≥ ε|

holds. As n→∞

lim
n→∞

1

q (n)− p (n)
|p (n) < k ≤ q (n) , g (xk − L) ≥ ε| = 0.

Therefore, desired result is obtained.

Theorem 2.11 If (xk) ∈ (X, g) is deferred statistically convergent to L and
(xk) ∈ `∞, then (xk) is strongly Dp,q-convergent to L.
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Proof. Suppose that (xk) ∈ `∞ and (xk) is deferred statistically convergent to L in
(X, g). For arbitrary ε > 0, we have δp,q (Kε) = 0. Since x ∈ `∞, there exists M > 0
such that g (xk − L) ≤M (k = 1, 2, 3, ...). We have

1

q (n)− p (n)

q(n)∑
k=p(n)+1

g (xk − L) =
1

q (n)− p (n)

q(n)∑
k=p(n)+1

k/∈Kε

g (xk − L)

+
1

q (n)− p (n)

q(n)∑
k=p(n)+1

k∈Kε

g (xk − L)

= s1 (n) + s2 (n)

where

s1 (n) =
1

q (n)− p (n)

q(n)∑
k=p(n)+1

k/∈Kε

g (xk − L) and s2 (n) =
1

q (n)− p (n)

q(n)∑
k=p(n)+1

k∈Kε

g (xk − L) .

Now if k /∈ Kε, then s1 (n) < ε. For k ∈ Kε, since δp,q (Kε) = 0 we have

s2 (n) ≤ (sup g (xk − L))

(
|Kε|

q (n)− p (n)

)
≤M

|Kε|
q (n)− p (n)

→ 0,

as n→∞. This inequality completes the proof.

Theorem 2.12 If (xk) in (X, g) is statistically convergent to L and
(

p(n)
q(n)−p(n)

)
∈

`∞, then it is deferred statistically convergent to L.

Proof. Assume that (xk) is statistically convergent to L in (X, g). Hence we have

lim
n→∞

1

n
|{k ≤ n : g (xk − L) ≥ ε}| = 0

for every ε > 0. From (1.1), we obtain

(2.3) lim
n→∞

|{k ≤ q (n) : g (xk − L) ≥ ε}|
q (n)

= 0.

Moreover,we have

{p (n) < k ≤ q (n) : g (xk − L) ≥ ε} ⊂ {k ≤ q (n) : g (xk − L) ≥ ε}
and

|{p (n) < k ≤ q (n) : g (xk − L) ≥ ε}| ≤ |{k ≤ q (n) : g (xk − L) ≥ ε}| .
Consequently

1

q (n)− p (n)
|p (n) < k ≤ q (n) : g (xk − L) ≥ ε|

5 ≤
(

1 +
p (n)

q (n)− p (n)

)
.

1

q (n)
|k ≤ q (n) : g (xk − L) ≥ ε| .

Thus using (2.3), we conclude that (xk) is deferred statistically convergent to L in
(X, g).
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Corollary 2.13 Let q (n) be an arbitrary sequence with q (n) < n for all n ∈
N and

(
n

q(n)−p(n)

)
∈ `∞. Then, statistical convergence implies deferred statistical

convergence in (X, g).

Theorem 2.14 Let ṕ = (ṕ (n)) and q́ = (q́ (n)) be sequences of positive natural
numbers satisfiying

(2.4) p (n) ≤ ṕ (n) < q́ (n) ≤ q (n)

and {k : p (n) < k ≤ ṕ (n)}, {k : q́ (n) < k ≤ q (n)} are finite sets for all n ∈ N. Then,
g (DS[ṕ, q́])-convergence implies g (DS[p, q])-convergence in (X, g).

Proof. Let us consider (xk) is g (DS[ṕ, q́])-convergent to L. For an arbitrary ε > 0,
the inequality

{k : p (n) < k ≤ q (n) , g (xk − L) ≥ ε} = {k : p (n) < k ≤ ṕ (n) , g (xk − L) ≥ ε}
∪ {k : ṕ (n) < k ≤ q́ (n) , g (xk − L) ≥ ε}
∪ {k : q́ (n) < k ≤ q (n) , g (xk − L) ≥ ε}

and

1

q (n)− p (n)
|{k : p (n) < k ≤ q (n) , g (xk − L) ≥ ε}|

≤ 1

q́ (n)− ṕ (n)
|{k : p (n) < k ≤ ṕ (n) , g (xk − L) ≥ ε}|

+
1

q́ (n)− ṕ (n)
|{k : ṕ (n) < k ≤ q́ (n) , g (xk − L) ≥ ε}|

+
1

q́ (n)− ṕ (n)
|{k : q́ (n) < k ≤ q (n) , g (xk − L) ≥ ε}|

hold. As n→∞, we have

lim
n→∞

1

q (n)− p (n)
|{k : p (n) < k ≤ q (n) , g (xk − L) ≥ ε}| = 0.

This completes the proof.

Theorem 2.15 Let ṕ = (ṕ (n)) and q́ = (q́ (n)) be sequences of positive natural
numbers satisfiying (2.4) and

lim
n→∞

q (n)− p (n)

q́ (n)− ṕ (n)
> 0.

Then, g (DS[p, q])-statistical convergence implies g (DS[ṕ, q́])-statistical convergence
in (X, g).

Proof. The inclusion

{k : ṕ (n) < k ≤ q́ (n) : g (xk − L) ≥ ε} ⊂ {k : p (n) + 1 ≤ k ≤ q (n) : g (xk − L) ≥ ε}

holds. Then we have the inequality

|{k : ṕ (n) < k ≤ q́ (n) : g (xk − L) ≥ ε}| ≤ |{k : p (n) + 1 ≤ k ≤ q (n) : g (xk − L) ≥ ε}| .
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Hence , we have

1

q́ (n)− ṕ (n)
|{k : ṕ (n) < k ≤ q́ (n) : g (xk − L) ≥ ε}|

≤ q (n)− p (n)

q́ (n)− ṕ (n)
.

1

q (n)− p (n)
|{k : p (n) + 1 < k ≤ q (n) : g (xk − L) ≥ ε}| .

As n→∞, the desired result is obtained.
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[11] M. İlkhan, E. E. Kara, On statistical convergence in quasi-metric spaces, Demonstr. Math. 52
(1) (2019), 225–236.
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