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THE INCLUSION THEOREMS FOR GENERALIZED VARIABLE

EXPONENT GRAND LEBESGUE SPACES

Ismail Aydin and Cihan Unal∗

Abstract. In this paper, we discuss and investigate the existence of the inclusion
Lp(.),θ (µ) ⊆ Lq(.),θ (ν), where µ and ν are two finite measures on (X,Σ) . Moreover,
we show that the generalized variable exponent grand Lebesgue space Lp(.),θ (Ω) has
a potential-type approximate identity, where Ω is a bounded open subset of Rd.

1. Introduction

Let (X,Σ, µ) and (X,Σ, ν) be two finite measure spaces. It is known that lp (X) ⊆
lq (X) for 0 < p ≤ q ≤ ∞. Subramanian [25] characterized all positive measures µ
on (X,Σ) for which Lp (µ) ⊆ Lq (µ) whenever 0 < p ≤ q ≤ ∞. Also, Romero [23]
investigated and developed several results of [25]. Moreover, Miamee [21] obtained the
more general result as Lp (µ) ⊆ Lq (ν) with respect to µ and ν. Aydin and Gurkanli [3]
proved some inclusion results for which Lp(.) (µ) ⊆ Lq(.) (ν). Moreover, these results
was generalized by Gurkanli [14] and Kulak [20] to the classical and variable exponent
Lorentz spaces.

In 1992, Iwaniec and Sbordone [17] introduced grand Lebesgue spaces Lp) (Ω), 1 <
p <∞, on bounded sets Ω ⊂ Rd. Also, Greco et al. [16] obtained a generalized version
Lp),θ (Ω). Recently, these spaces have intensively studied for various applications,
see [4], [12], [13], [18], [22]. The variable exponent Lebesgue spaces Lp(.)(Rd) was
considered by Kováčik and Rákosńık [19]. They presented some basic properties
of Lp(.)(Rd) including reflexivity, Holder inequalities etc. These spaces have many
applications such as elastic mechanics, electrorheological fluids, image restoration and
nonlinear degenerated partial differential equations. For more information, we refer
to [7], [10] and [11]. Gurkanli [15] studied the inclusion Lp),θ (µ) ⊆ Lq),θ (ν) under some
conditions for two different measures µ and ν on (X,Σ), and proved that Lp),θ (µ) has
no an approximate identities. The generalized variable exponent grand Lebesgue space
Lp(.),θ (Ω) was introduced and studied by Kokilashvili and Meskhi [18]. The authors
established the boundedness of maximal and Calderon operators in these spaces. It
is note that, the space Lp(.),θ (Ω) is not reflexive, separable, rearrangement invariant
and translation invariant.
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In this paper, we investigate the inclusion Lp(.),θ (µ) ⊆ Lq(.),θ (ν) for two different
finite measures µ and ν on (X,Σ). Also, we consider the problem of the conver-
gence of approximate identities in the generalized variable exponent grand Lebesgue
space Lp(.),θ (µ). Moreover, we will show the existence of a potential-type approximate
identity for the space Lp(.),θ (µ) . These problems were considered several authors such
as Cruz-Uribe and Fiorenza [6], Diening [9], Gurkanli [15]. Finally, we obtain more
general results than [6] and [15].

2. Notations and Preliminaries

In this section, we give some essential definitions, theorems and remarks in gener-
alized variable exponent grand Lebesgue space Lp(.),θ (µ).

Definition 2.1. (see [1]) Let (X, ‖.‖X) and (Y, ‖.‖Y ) be two normed spaces. We
say that the space X is continuously embedded in Y, briefly X ↪→ Y, if X ⊂ Y and
there exists c > 0 such that ‖f‖Y ≤ c ‖f‖X for every f ∈ X.

Definition 2.2. Assume that (X,Σ, µ) is a finite measure space. Also, let p (.) :
X −→ [1,∞) be a measurable function (variable exponent) such that

1 < p− = essinf
x∈X

p(x) ≤ p+ = esssup
x∈X

p(x) <∞.

The variable exponent Lebesgue space Lp(.)(µ) is defined as the set of all measur-
able functions f on X such that %p(.)(λf) < ∞ for some λ > 0 equipped with the
Luxemburg norm

‖f‖p(.) = inf

{
λ > 0 : %p(.)

(
f

λ

)
≤ 1

}
,

where %p(.)(f) =
∫
X

|f(x)|p(x) dµ(x). It is known that the space Lp(.)(µ) is a Banach

space in sense to the norm ‖.‖p(.). Moreover, the norm ‖.‖p(.) coincides with the usual

Lebesgue norm ‖.‖p whenever p(.) = p is a constant function. Also, it is known that

f ∈ Lp(.)(µ) if and only if %p(.)(f) <∞, see [7, 10,11].

Remark 2.3. (see [11]) If f ∈ Lp(.)(µ), then we have

(i) ‖f‖p
−

p(.) ≤ ρp(.) (f) ≤ ‖f‖p
+

p(.) for ‖f‖p(.) ≥ 1.

(ii) ‖f‖p
+

p(.) ≤ ρp(.) (f) ≤ ‖f‖p
−

p(.) for ‖f‖p(.) ≤ 1.

Definition 2.4. Let θ > 0. The generalized variable exponent grand Lebesgue
space Lp(.),θ (µ) is the class of all measurable functions such that

‖f‖p(.),θ,µ = sup
0<ε<p−−1

ε
θ

p−−ε ‖f‖p(.)−ε,µ <∞.

It is note that these spaces coincide with the grand Lebesgue spaces Lp),θ (µ) whenever
p(.) = p is a constant function. Moreover, it is easy to see that the following continuous
embeddings hold;

(1) Lp(.) ↪→ Lp(.),θ ↪→ Lp(.)−ε ↪→ L1, 0 < ε < p− − 1

due to µ (X) <∞, see [8, 18,22].

The following proposition is called Nesting Property, see [8, 18].
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Proposition 2.5. Assume that θ1 < θ2. Then we have

Lp(.) ↪→ Lp(.),θ1 ↪→ Lp(.),θ2 ↪→ Lp(.)−ε ↪→ L1, 0 < ε < p− − 1

due to µ (X) <∞.

Remark 2.6. There are several differences between Lp(.) (µ) and Lp(.),θ (µ). For
instance, the set of bounded functions is not dense in Lp(.),θ (µ), and the closure of
L∞ in the norm of Lp(.),θ (µ) can be characterized by the functions f such that

lim
ε−→0

sup ε
θ

p−−ε ‖f‖p(.)−ε,µ = 0,

see [2]. Moreover, the space Lp(.),θ (µ) is not reflexive, separable and rearrangement
invariant, see [8, 18].

Throughout this paper assume that p+, q+ <∞.

3. Inclusions of The Space Lp(.),θ (µ)

Throughout this section, we assume that (X,Σ, µ) is a finite measure space. We say
that µ is absolutely continuous with respect to ν (denoted by µ� ν) if µ (E) = 0 for
every E ∈ Σ such that ν (E) = 0. If two measures µ and ν are absolutely continuous
with respect to each other, that is µ� ν and ν � µ, then we denote it by the symbol
µ ≈ ν.

The notation Lp(.),θ (µ) ⊆ Lq(.),θ (ν) means that every equivalence class of func-
tions (i.e. the class of all µ-measurable functions on X equal to each other µ-almost
everywhere) of Lp(.),θ (µ) belongs to Lq(.),θ (ν) as a equivalence class. There is, how-
ever, another possible interpretation for Lp(.),θ (µ) ⊆ Lq(.),θ (ν), namely any individual
function f with ‖f‖p(.),θ,µ <∞ has the property ‖f‖q(.),θ,ν <∞.

Lemma 3.1. Let (X,Σ, µ) and (X,Σ, ν) be two finite measure spaces. Then we
have Lp(.),θ (µ) ⊆ Lq(.),θ (ν) in the sense of equivalence classes if and only if µ ≈ ν and
Lp(.),θ (µ) ⊆ Lq(.),θ (ν) in the sense of individual functions.

Proof. Suppose that Lp(.),θ (µ) ⊆ Lq(.),θ (ν) holds in the sense of equivalence classes.
Let f ∈ Lp(.),θ (µ) be any individual function. This implies that ‖f‖p(.),θ,µ < ∞ and

f ∈ Lp(.),θ (µ) in the sense of equivalence classes. Hence, we have f ∈ Lq(.),θ (ν) in
the sense of equivalent classes by the assumption. This implies ‖f‖q(.),θ,ν < ∞ and

f ∈ Lq(.),θ (ν) in the sense of individual functions. Therefore, we get

Lp(.),θ (µ) ⊆ Lq(.),θ (ν)

in the sense of individual functions. Now, let E ∈ Σ such that µ (E) = 0. If χE is
the characteristic function of E, then we have χE = 0 µ-almost everywhere. Hence
we have

%p(.)−ε,µ(χE) =

∫
X

|χE (x)|p(x)−ε dµ = µ (E) = 0.

Since p+ < ∞, we get ‖χE‖p(.)−ε,µ = 0 and χE ∈ Lp(.)−ε(µ) for all ε ∈ (0, p− − 1).

Therefore χE is in the equivalence class 0 ∈ Lp(.)−ε(µ) for any ε ∈ (0, p− − 1). By
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definition of ‖.‖p(.),θ,µ, we obtain

‖χE‖p(.),θ,µ = sup
0<ε<p−−1

ε
θ

p−−ε ‖χE‖p(.)−ε,µ = 0

and 0 ∈ Lp(.),θ (µ) in the sense of equivalence classes. Since the equivalence class of 0
(with respect to µ) is also an element of Lq(.),θ (ν), then χE is in the equivalent classes
of 0 ∈ Lq(.),θ (ν) with respect to ν. That means ‖χE‖q(.),θ,ν = 0. Moreover, by (1), we

have Lq(.),θ ↪→ Lq(.)−ε for all ε ∈ (0, q− − 1). This yields ‖χE‖q(.)−ε,ν = 0 and then

ν(E) = %q(.)−ε,ν(χE) =

∫
X

|χE|q(x)−ε dν = 0.

This yields ν � µ. In similar way, one can prove that µ� ν. The proof of sufficiency
is easy to see.

Theorem 3.2. Lp(.),θ (µ) ⊆ Lq(.),θ (ν) in the sense of equivalence classes if and only
if µ ≈ ν and there exists a C > 0 such that

(2) ‖f‖q(.),θ,ν ≤ C ‖f‖p(.),θ,µ

for all f ∈ Lp(.),θ (µ).

Proof. Let Lp(.),θ (µ) ⊆ Lq(.),θ (ν) in the sense of equivalence classes. Now, we
denote the sum norm on Lp(.),θ (µ) by

‖.‖ = ‖.‖p(.),θ,µ + ‖.‖q(.),θ,ν .

The space Lp(.),θ (µ) is a Banach space with respect to ‖.‖. To prove this, we assume
that (fn)n∈N is a Cauchy sequence in Lp(.),θ (µ). Then for all η > 0 there exists
N (η) > 0 whenever n,m > N (η) such that

‖fn − fm‖p(.),θ,µ = sup
0<ε<p−−1

ε
θ

p−−ε ‖fn − fm‖p(.)−ε,µ < η

and

‖fn − fm‖q(.),θ,ν = sup
0<ε<q−−1

ε
θ

p−−ε ‖fn − fm‖q(.)−ε,ν < η.

This yields that (fn)n∈N is also a Cauchy sequence in Lp(.),θ (µ) and Lq(.),θ (ν), and

(fn)n∈N converges to functions f ∈ Lp(.),θ (µ) and g ∈ Lq(.),θ (ν) , respectively. If we

use the embedding Lp(.),θ (µ) ↪→ Lp(.)−ε (µ) for ε ∈ (0, p− − 1), then we obtain that
there is a subsequence (fni)i∈N of (fn)n∈N such that fni −→ f (µ-almost everywhere).

Also since (fn)n∈N converges to g in Lq(.),θ (ν) , then it is easy to prove that (fni)n∈N
converges to g in Lq(.),θ (ν) and fni −→ g (ν-almost everywhere) due to Lq(.),θ (ν) ↪→
Lq(.)−ε (ν) for ε ∈ (0, q− − 1). Therefore, one can find a subsequence

(
fnik

)
of (fni)

such that fnik −→ g (ν-almost everywhere). If we consider the space Lp(.),θ (µ) is

a subspace of Lq(.),θ (ν) in the sense of equivalence classes, then we have µ ≈ ν by
Lemma 3.1. This follows the inequality

|f(x)− g(x)| ≤
∣∣∣f(x)− fnik (x)

∣∣∣+
∣∣∣fnik (x)− g(x)

∣∣∣ ,



The inclusion theorems for grand Lebesgue spaces 585

that we have f = g (µ-almost everywhere). Since µ ≈ ν, we obtain f = g (ν-almost everywhere),
and fn −→ f in Lp(.),θ (µ) with respect to the norm ‖.‖ . Now, we define the identity

operator I from
(
Lp(.),θ (µ) , ‖.‖

)
into

(
Lp(.),θ (µ) , ‖.‖p(.),θ,µ

)
. Since

‖I (f)‖p(.),θ,µ = ‖f‖p(.),θ,µ ≤ ‖f‖ ,
then I is continuous. If we consider the Banach’s theorem, then I is a homeomorphism,
see [5]. This yields the norms ‖.‖ and ‖.‖p(.),θ,µ are equivalent. Thus there exists a
C > 0 such that

‖f‖ ≤ C ‖f‖p(.),θ,µ
for all f ∈ Lp(.),θ (µ). Finally, we have

‖f‖q(.),θ,ν ≤ ‖f‖ ≤ C ‖f‖p(.),θ,µ .
This completes the necessity part of the proof. Now, we suppose that µ ≈ ν and the
inequality (2) holds for Lp(.),θ (µ). Then, we have Lp(.),θ (µ) ⊆ Lq(.),θ (ν) in the sense
of individual functions. By Lemma 3.1, the space Lp(.),θ (µ) is a subspace of Lq(.),θ (ν)
in the sense of equivalence classes. That is the desired result.

Proposition 3.3. Assume that the space L1(µ) is continuously embedded in
L1(ν). Then we have Lp(.) (µ) ⊆ Lp(.),θ (ν) .

Proof. By the assumption, there exists a C1 > 0 such that

(3) ‖h‖1,ν ≤ C1 ‖h‖1,µ

for all h ∈ L1(µ). Now, let f ∈ Lp(.) (µ) be given. Since the space Lp(.) (µ) is
continuously embedded in Lp(.)−ε (µ) for all ε ∈ (0, p− − 1) and p+ <∞, we have

%p(.)−ε,µ (f) =

∫
X

|f |p(x)−ε dµ <∞,

that is |f |p(.)−ε ∈ L1 (µ) for any ε ∈ (0, p− − 1). By (3), we get |f |p(.)−ε ∈ L1(ν) and

%p(.)−ε,ν(f) ≤ C1

∫
X

|f |p(x)−ε dµ = C1%p(.)−ε,µ(f).

This follows by Remark 2.3 that

‖f‖p(.),θ,ν

≤ sup
0<ε<p−−1

ε
θ

p−−ε

[
max

{(
%p(.)−ε,ν(f)

) 1
p−−ε ,

(
%p(.)−ε,ν(f)

) 1
p+−ε

}]
≤ C1 sup

0<ε<p−−1

ε
θ

p−−ε

[
max

{
‖f‖

p+−ε
p−−ε
p(.)−ε,µ , 1

}]
≤ C1 sup

0<ε<p−−1

ε
θ

p−−ε

[
max

{
‖f‖p

+

p(.)−ε,µ , 1
}]

Again, by Lp(.) (µ) ↪→ Lp(.)−ε (µ) for all ε ∈ (0, p− − 1), we get

‖f‖p(.),θ,ν ≤ (µ (X) + 1)C1 sup
0<ε<p−−1

ε
θ

p−−ε

[
max

{
‖f‖p

+

p(.),µ , 1
}]

= (µ (X) + 1)C1

(
p− − 1

)θ
max

{
‖f‖p

+

p(.),µ , 1
}
<∞.
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This yields Lp(.) (µ) ⊆ Lp(.),θ (ν) .

Proposition 3.4. Assume that Lp(.),θ (µ) ⊆ Lp(.),θ (ν) . Then µ ≈ ν and there
exists a C > 0 such that

ν (E) ≤ C (µ (E) + 1)

for all E ∈ Σ.

Proof. Let E ∈ Σ. By Theorem 3.2, we have µ ≈ ν and there exists a C > 0 such
that

‖f‖p(.),θ,ν ≤ C ‖f‖p(.),θ,µ
for all f ∈ Lp(.),θ (µ). By [7, Lemma 2.39], we get that χE ∈ Lp(.)−ε,µ, χE ∈ Lp(.)−ε,ν ,
‖χE‖p(.)−ε,µ ≤ µ (E) + 1, ‖χE‖p(.)−ε,ν ≤ ν (E) + 1 and χE ∈ Lp(.),θ (µ) ⊆ Lp(.),θ (ν) for

all ε ∈ (0, p− − 1). If we consider the fact that Lp(.),θ (ν) ↪→ L1 (ν) , then we obtain

ν (E) ≤ C ‖χE‖p(.),θ,ν ≤ C∗ ‖χE‖p(.),θ,µ
≤ C∗

(
p− − 1

)θ
(µ (E) + 1) .

This completes the proof.

Proposition 3.5. Let θ1 < θ2 and 1 < q(.) < p(.). Then we have

Lp(.),θ1 (µ) ↪→ Lq(.),θ2 (µ) ,

or equivalently there exists a C > 0 such that

‖f‖q(.),θ2,µ ≤ C(p, q) ‖f‖p(.),θ1,µ
for all f ∈ Lp(.),θ1 (µ) .

Proof. Let f ∈ Lp(.),θ1 (µ) be given. If we consider the Proposition 2.5, then we have
f ∈ Lp(.),θ2 (µ). Since µ(X) <∞ and q(.)−ε < p(.)−ε, we get Lp(.)−ε (µ) ↪→ Lq(.)−ε (µ),
i.e. there exists a C (ε) > 0 such that

‖f‖q(.)−ε,µ ≤ C (ε) ‖f‖p(.)−ε,µ
for f ∈ Lp(.)−ε (µ) and ε ∈ (0, p− − 1). It is note that identity operator does not
exceed µ (X) + 1, see [19]. Thus, for all ε ∈ (0, p− − 1) we have C (ε) ≤ µ (X) + 1.
This yields

‖f‖q(.),θ2,µ ≤ (µ (X) + 1) sup
0<ε<q−−1

ε
θ2

q−−ε ‖f‖p(.)−ε,µ

= (µ (X) + 1) sup
0<ε<q−−1

ε
θ2

q−−ε ε
θ2

p−−ε ε
−θ2
p−−ε ‖f‖p(.)−ε,µ

≤ (µ (X) + 1)C∗ sup
0<ε<p−−1

ε
θ2

p−−ε ‖f‖p(.)−ε,µ

= (µ (X) + 1)C∗ ‖f‖p(.),θ2,µ <∞

where C∗ = sup0<ε<q−−1 ε
θ2(p−−q−)

(q−−ε)(p−−ε) . This completes the proof.

Proposition 3.6. Let 1 < p (.) ≤ p+ < q− ≤ q(.). If Lp(.),θ (µ) ⊆ Lq(.),θ (µ), then
there exists a constant m > 0 such that µ (E) ≥ m for every µ-non null set E ∈ Σ.
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Proof. By Theorem 3.2, there is a C > 0 such that

(4) ‖f‖q(.),θ,µ ≤ C ‖f‖p(.),θ,µ
for all f ∈ Lp(.),θ (µ). Let E ∈ Σ be a µ-non null set and µ (E) < ∞. Therefore, we
get

‖χE‖p(.),θ,µ = sup
0<ε<p−−1

ε
θ

p−−ε ‖χE‖p(.)−ε,µ

≤ (µ (E) + 1)
(
p− − 1

)θ
<∞

and
‖χE‖q(.),θ,µ ≤ C (µ (E) + 1)

(
p− − 1

)θ
<∞.

This implies χE ∈ Lq(.),θ (µ). If we assume that µ (E) ≥ 1, then there is nothing to

prove. Now, let µ (E) ≤ 1. Since 1
µ(E)
≥ 1 and p(.)−ε

p+
≤ 1, we get

%p(.)−ε,µ

(
χE

µ (E)
1
p+

)
=

∫
X

|χE (x)|p(x)−ε

µ (E)
p(x)−ε
p+

dµ

≤ 1

µ (E)

∫
X

|χE (x)|p(x)−ε dµ = 1.

Thus we obtain

(5) ‖χE‖p(.)−ε,µ ≤ µ (E)
1
p+

by definition of ‖.‖p(.)−ε for all ε ∈ (0, p− − 1) . By Remark 2.3, we have

µ (E)
1

q−−ε ≤ ‖χE‖q(.)−ε,µ
for any ε ∈ (0, q− − 1) . This yields

sup
0<ε<q−−1

ε
θ

q−−εµ (E)
1

q−−ε ≤ sup
0<ε<q−−1

ε
θ

q−−ε ‖χE‖q(.)−ε,µ .

Thus, we have (
q− − 1

)θ
µ (E)

1
q− ≤ ‖χE‖q(.),θ,µ .

By (4), there exist a C > 0 such that

(6)
(
q− − 1

)θ
µ (E)

1
q− ≤ C ‖χE‖p(.),θ,µ .

Moreover, by (5) and (6), we have(
q− − 1

)θ
µ (E)

1
q− ≤ C

(
p− − 1

)θ
µ (E)

1
p+

or equivalently

1

C

(
q− − 1

p− − 1

)θ
≤ µ (E)

1
p+
− 1
q− .

Since p+ < q−, we get 1
p+
− 1

q−
> 0. Therefore, we obtain

µ (E) ≥ m

where m =

(
1
C

(
q−−1
p−−1

)θ) p+q−

q−−p+

. That is the desired result.
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4. Approximate Identities in Lp(.),θ (Ω)

Let Ω ⊂ Rd be bounded and open set. It is well known that the classical Lebesgue
space Lp(Ω) has a bounded approximate identity in L1(Ω). Gurkanli considered
Lp),θ (Ω) does not admit a bounded approximate identity in L1(Ω) in [15, Theorem 4],
and also [Lp (Ω)]p),θ, the closure of C∞0 (Ω) in Lp),θ (Ω), admits a bounded approximate

identity in L1(Ω) in [15, Theorem 6]. Moreover, Cruz-Uribe and Fiorenza proved the
convergence of a potential-type approximate identities, both pointwise and in norm,
in variable exponent Lebesgue space Lp(.) (Ω) where Ω ⊂ Rd is unbounded and open
set (see Theorem 2.2 and Theorem 2.3 in [6]). Also, a weaker version of Theorem
2.2 in [6] was considered by Diening [9]. In this section, we will discuss that the
convergence of potential-type approximate identity is valid for Lp(.),θ (Ω).

Definition 4.1. Let P log
loc (Ω) be the class of exponents p (.) satisfying the local

logarithmic condition that there is a positive constant c0 such that for all x, y ∈ Ω
with d (x, y) < 1

2
,

|p (x)− p (y)| ≤ c0

− ln (d (x, y))
.

Moreover, let P̃ log
loc (Ω) be the class of exponents satisfying the condition, i.e. there

exists positive constants a and b such that if d (x, y) < b, then

|p (x)− p (y)| ≤ a

− ln (µ (B (x, y)))

where B (x, y) is an open ball with center x ∈ Ω and radius y > 0. Also, if µ is a

finite measure, then it is obvious that P log
loc (Ω) ⊂ P̃ log

loc (Ω), see [18].

For f ∈ L1
loc (Ω) , we denote the (centered) Hardy-Littlewood maximal operator

Mf of f by

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)| dy,

where the supremum is taken over all balls B(x, r). It is well known that the Hardy-

Littlewood maximal operator is bounded in Lp(.),θ (Ω) if p (.) ∈ P̃ log
loc (Ω) and θ > 0,

see [18, Theorem 3.1].

Definition 4.2. Assume that ϕ is an integrable function defined on Rd such that∫
Rd
ϕ(x)dx = 1. For each t > 0, define the function ϕt (x) = t−dϕ

(
x
t

)
. The sequence

{ϕt} is referred to as an approximate identity. It is known that for 1 < p < ∞, the
sequence {ϕt ∗ f} converges to f in Lp (Ω), i.e.

lim
t−→∞

‖ϕt ∗ f − f‖p,Ω = 0,

see [24]. If we impose additional conditions on ϕ, then the entire sequence converges
almost everywhere to f. Define the radial majorant of ϕ to be the function

ϕ̃(x) = sup
|y|≥|x|

|ϕ(y)| .

If the function ϕ̃ is integrable, then {ϕt} is called a potential-type approximate iden-
tity, see [6].
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Theorem 4.3. (see [24, Theorem 2]) Let {ϕt} be a potential-type approximate
identity. Then

(i) sup
t>0
|ϕt ∗ f(x)| ≤ AMf(x) for f ∈ Lp(Rd), 1 ≤ p ≤ ∞ where A =

∫
Rd
ϕ̃(x)dx.

(ii) lim
t−→0

(ϕt ∗ f) (x) = f(x) almost everywhere.

(iii) If p <∞, then we get ‖ϕt ∗ f − f‖p −→∞ as t −→ 0+ for f ∈ Lp(Rd).

The following theorem is proved by Diening for f ∈ Lp(.)(Ω) where Ω is a bounded
and open subset of Rd, see [9, Corollary 3.6].

Theorem 4.4. Let {ϕt} be a potential-type approximate identity. Then

(i) sup
t>0
|ϕt ∗ f(x)| ≤ 2AMf(x) for f ∈ Lp(.)(Ω).

(ii) lim
t−→0

(ϕt ∗ f) (x) = f(x) almost everywhere.

(iii) If p+ < ∞, then we have ‖ϕt ∗ f − f‖p(.) −→ ∞ as t −→ 0+ for f ∈ Lp(.)(Ω).
Furthermore, we obtain

‖ϕt ∗ f‖p(.) ≤ C (A, p) ‖Mf‖p(.) ≤ C (A, p) ‖f‖p(.) .

Now, we are ready to present the main theorem of this section for the space
Lp(.),θ (Ω) .

Theorem 4.5. Let {ϕt} be a potential-type approximate identity. Then

(i) sup
t>0
|ϕt ∗ f(x)| ≤ 2AMf(x) for f ∈ Lp(.),θ(Ω).

(ii) lim
t−→0

(ϕt ∗ f) (x) = f(x) almost everywhere.

(iii) If p+ <∞, then we have ‖ϕt ∗ f − f‖p(.),θ,µ −→∞ as t −→ 0+ for f ∈ Lp(.),θ(Ω).
Moreover, we get

‖ϕt ∗ f‖p(.),θ,µ ≤ C (A, p) ‖Mf‖p(.),θ,µ ≤ C (A, p) ‖f‖p(.),θ,µ .

Proof. By (1), we have

Lp(.),θ ↪→ Lp(.)−ε ↪→ L1, 0 < ε < p− − 1

due to µ (Ω) < ∞. This yields (i) and (ii) by Theorem 4.3. To prove (iii), let
f ∈ Lp(.),θ(Ω) be given. If we consider [18, Theorem 3.1], then we have

‖ϕt ∗ f‖p(.),θ,µ ≤ 2A ‖Mf‖p(.),θ,µ ≤ 2AC ‖f‖p(.),θ,µ <∞.

This yields ϕt ∗ f ∈ Lp(.),θ(Ω) and ϕt ∗ f ∈ Lp(.)−ε(Ω) for all t > 0, ε ∈ (0, p− − 1).
Since (i) holds, we obtain

|ϕt ∗ f(x)− f(x)|p(x)−ε ≤ (|ϕt ∗ f(x)|+ |f(x)|)p(x)−ε

≤ C(p) (|Mf(x)|+ |f(x)|)p(x)−ε ∈ L1(Ω)

due to f ∈ Lp(.)−ε(Ω) and the boundedness of maximal operator in Lp(.)−ε(Ω) for all
ε ∈ (0, p− − 1). Since p+ <∞, we get

%p(.)−ε,µ(ϕt ∗ f − f) −→ 0

if and only if

‖ϕt ∗ f − f‖p(.)−ε,µ −→ 0
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as t −→ 0+ for any ε ∈ (0, p− − 1) by the Lebesgue dominated convergence theorem.
Therefore, for every η > 0 there exists an h > 0 such that

‖ϕt ∗ f − f‖p(.)−ε,µ < η

for all t satisfying t < h and

‖ϕt ∗ f − f‖p(.),θ,µ < η sup
0<ε<p−−1

ε
θ

p−−ε =
(
p− − 1

)θ
η.

This completes the proof.
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