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EXISTENCE OF GENERALISED LOGARITHMIC PROXIMATE

ORDER AND GENERALISED LOGARITHMIC PROXIMATE TYPE

OF AN ENTIRE FUNCTION

Chinmay Ghosh∗, Sutapa Mondal, and Subhadip Khan

Abstract. In this paper we introduce generalised logarithmic proximate order,
generalised logarithmic proximate type of an entire function and prove the corre-
sponding existence theorems. Also we investigate some theorems on the application
of generalised logarithmic proximate order.

1. Introduction

Let f(z) be an entire function defined in the finite complex plane C. The maxi-
mum modulus function corresponding to entire function f(z) is defined as Mf (r) =
sup
|z|=r
|f(z)| . In 1963, Sato [4] introduced the definition of generalised order and lower

order of f(z) as

ρk = lim sup
r→∞

logkMf (r)

log r
= lim sup

r→∞

logk−1 Tf (r)

log r
,

λk = lim inf
r→∞

logkMf (r)

log r
= lim inf

r→∞

logk−1 Tf (r)

log r

respectively where Tf (r) is the Nevanlinna characteristic function of f(z). There are
two other indicators of growth of an entire function f(z),the generalised type Tk and
the generalised lower type tk. They are defined for all ρk, 0 < ρk <∞ as

lim sup
r→∞

logk−1Mf (r)

rρk
= Tk,

lim inf
r→∞

logk−1Mf (r)

rρk
= tk.
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Now the logarithmic order of f(z) be defined by [1]

ρlog = lim sup
r→∞

log+ log+Mf (r)

log log r
.

Since [2]

(1) Tf (r) ≤ log+Mf (r) ≤
(
R + r

R− r

)
Tf (R)

for 0 < r < R, Tf (r) and log+Mf (r) are of the same logarithmic order. Hence

ρlog = lim sup
r→∞

log+ Tf (r)

log log r
.

Throughout this paper we use the following notations [7]

log[0] x = x, logk x = log
(
logk−1 x

)
; k = 1, 2, 3, ...

and
exp[0] x = x, expk x = exp

(
expk−1 x

)
; k = 1, 2, 3, ... .

One can write the following definitions as:

Definition 1.1. If f(z) is an entire function, the generalised logarithmic order
and the generalised logarithmic lower order of f(z) are defined by

ρklog = lim sup
r→∞

logkMf (r)

log log r

λklog = lim inf
r→∞

logkMf (r)

log log r

respectively, where k ≥ 2 is an integer.
If f(z) is a meromorphic function, the generalised logarithmic order and the gen-

eralised logarithmic lower order of f(z) are defined by

ρklog = lim sup
r→∞

logk−1 Tf (r)

log log r
,

λklog = lim inf
r→∞

logk−1 Tf (r)

log log r

respectively, where k ≥ 2 is an integer.

Definition 1.2. The generalised logarithmic type and the generalised logarithmic
lower type of an entire function f(z) are defined as,

T klog = lim sup
r→∞

logk−1Mf (r)

(log r)ρ
k
log

,

tklog = lim inf
r→∞

logk−1Mf (r)

(log r)ρ
k
log

respectively, where k ≥ 2 is an integer and 0 < ρklog <∞.
The generalised logarithmic type and the generalised logarithmic lower type of a

meromorphic function f(z) are defined as,

T klog
(
tklog
)

= lim sup
r→∞

(
lim inf
r→∞

) logk−2 Tf (r)

(log r)ρ
k
log
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where k ≥ 2 is an integer and 0 < ρklog.

If f(z) is an entire function of finite order ρ, it is proved (Valiron [7] ) that there
exists a positive continuous function ρ(r) with the following properties:

(i) ρ(r) is differentiable for sufficiently large values of r except at isolated points
where ρ′(r − 0), ρ′(r + 0) exist;

(ii) lim
r→∞

ρ(r) = ρ;

(iii) lim
r→∞

ρ′(r)r log r = 0;

(iv) lim sup
r→∞

logMf (r)

rρ(r)
= 1.

Such a function is called a proximate order for the entire function f(z). Shah [5]
gave a simple proof of the existence of proximate order of an entire function. Lahiri [3]
generalised the idea for a meromorphic function.

After that Srivastava and Juneja [6] gave the proof of the existence of proximate
type of an entire function as:

Definition 1.3. [6] A function T (r) is said to be a proximate type of an entire
function f(z) of order ρ(0 < ρ < ∞) and finite type T if it satisfies the following
properties:

(i) T (r) is real valued, continuous and piecewise differentiable for sufficiently large
values of r;

(ii) lim
r→∞

T (r) = T ;

(iii) lim
r→∞

rT ′(r) = 0, where T ′(r) is either the right or the left hand derivative at

points where they are different;

(iv) lim sup
r→∞

Mf (r)

exp{rρT (r)} = 1.

In this paper we want to prove the existence of generalised logarithmic proximate or-
der. Also the existence of generalised logarithmic proximate type of an entire function.
We will also prove a result on the bounds of zeros and poles of a meromorphic function
and further investigate on the comparative growth properties of logk−1Mf (exp r) and

logk−2 Tf (exp r) for an entire function f(z).

2. Main Results

In this section we first introduce the definitions of generalised logarithmic proximate
order and generalised logarithmic proximate type of an entire function. Then we prove
their existence.

Definition 2.1. If f(z) is an entire function of generalised logarithmic order ρklog.

A function ρklog(r) is said to be finite generalised logarithmic proximate order of f(z)
if the following properties hold:

(i) ρklog(r) is differentiable for sufficiently large values of r except at isolated points

where
(
ρklog
)′

(r − 0),
(
ρklog
)′

(r + 0) exist;

(ii) lim
r→∞

ρklog(r) = ρklog;

(iii) lim
r→∞

(
ρklog
)′

(r)
k−1∏
i=0

logi(r) = 0;
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(iv) lim sup
r→∞

logk−1Mf (r)

(log r)
ρk
log

(r)
= 1.

Definition 2.2. If f(z) is an entire function of generalised logarithmic order
ρklog.Then the function T klog(r) is said to be generalised logarithmic proximate type

of f(z) of order ρklog(0 < ρklog <∞) if it satisfies the following properties:

(i) T klog(r) is differentiable for sufficiently large values of r except at isolated points

where
(
T klog
)′

(r − 0),
(
T klog
)′

(r + 0) exist;

(ii) lim
r→∞

T klog(r) = T klog;

(iii) lim
r→∞

(
T klog
)′

(r)
k−2∏
i=0

logi(r) = 0;

(iv) lim sup
r→∞

Mf (r)

expk−1

{
(log r)

ρk
logTklog(r)

} = 1.

Theorem 2.3. For every entire function f(z) of generalised logarithmic order ρklog,

there exists a generalised logarithmic proximate order ρklog(r).

Proof. Let us suppose,

σklog(r) =
logkMf (r)

log log r
then we have

lim sup
r→∞

σklog(r) = ρklog.

There may arise two cases:
Case I: Let σklog(r) > ρklog for atleast a sequence of values of r tending to infinity.
Define

φklog(r) = max
x≥r

{
σklog(x)

}
.

Therefore φklog(r) exists and is nonincreasing.

Let R1 > expk+1(1) be such that R1 > R and σklog(R) > ρklog.
Then we get for r ≥ R1 > R,

σklog(r) ≤ σklog(R).

As σklog(r) is continuous, there exists r1 ∈ [R,R1] such that

σklog(r1) = max
R≤x≤R1

{
σklog(x)

}
.

Clearly r1 > expk+1(1) and φklog(r1) = σklog(r1).
Such values r1 will exist for a sequence of values of r tending to infinity.
Let ρklog (r1) = φklog(r1) and t1 be the smallest integer not less than 1 + r1 such that

φklog(r1) > φklog(t1).

We define ρklog (r) = ρklog (r1) for r1 < r ≤ t1.

Obviously φklog(r) and ρklog (r1) − logk+1 r + logk+1 t1 are continuous functions of r
and we have

lim
r→∞

ρklog (r1)− logk+1 r + logk+1 t1 = −∞.

Also, ρklog (r1)− logk+1 r+ logk+1 t1 > φklog(t1) for r (> t1) sufficiently close to t1 and

φklog(r) is nonincreasing.
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Therefore one can define u1 as

u1 > t1

ρklog (r) = ρklog (r1)− logk+1 r + logk+1 t1, for t1 ≤ r ≤ u1

ρklog (r) = φklog(r), for r = u1.

Also, we see that
ρklog (r) > φklog(r), for t1 ≤ r < u1.

Again let r2 be the smallest value of r for which r2 ≥ u1 and φklog(r2) = σklog(r2). If

r2 > u1 then let ρklog (r) = φklog(r) for u1 ≤ r ≤ r2.

Note that φklog(r) is constant in u1 ≤ r ≤ r2. Then ρklog (r) is constant in u1 ≤ r ≤ r2.

Continuing this process infinitely and we obtain that ρklog (r) is differentiable in
adjacent intervals.

Also,
(
ρklog
)′

(r) = 0 or −1
k∏
i=0

logi(r)

and ρklog (r) ≥ φklog (r) ≥ σklog (r) for all r ≥ r1.

Further, ρklog (r) = σklog (r) for a sequence of values of r tending to infinity, ρklog (r)
is nonincreasing for r ≥ r1 and

ρklog = lim sup
r→∞

σklog (r)

= lim
r→∞

φklog (r) .

So

lim sup
r→∞

ρklog (r) = lim inf
r→∞

ρklog (r)

= lim
r→∞

ρklog (r)

= ρklog

and

lim
r→∞

(
ρklog
)′

(r)
k−1∏
i=0

logi(r) = 0.

Further we have

logk−1Mf (r) = (log r)σ
k
log(r)

= (log r)ρ
k
log(r)

for a sequence of values of r tending to ∞ and

logk−1Mf (r) < (log r)ρ
k
log(r)

for remaining r’s. Therefore

lim sup
r→∞

logk−1Mf (r)

(log r)ρ
k
log(r)

= 1.

Finally we have ρklog (r) is continuous for r ≥ r1. It proves Case I.

Case II: Let us suppose σklog(r) ≤ ρklog for all sufficiently large values of r.
In case II we have two Subcases:
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Subcase A: Let σklog(r) = ρklog for atleast a sequence of values of r tending to
infinity.

We take ρklog(r) = ρklog for all values of r.

Subcase B: Let σklog(r) < ρklog for all sufficiently large values of r.
Let

ξklog (r) = max
R2≤x≤r

σklog (x)

where R2 > expk+1(1) is such that σklog(x) < ρklog whenever x ≥ R2.

Therefore ξklog (r) is increasing and for all sufficiently large x ≥ R2,the roots of

ξklog(x) = ρklog + logk+1 x− logk+1 r are less than x.
For a suitable large value u2 > R2, we define

ρklog (u2) = ρklog,

ρklog (r) = ρklog + logk+1 r − logk+1 u2,

for t2 ≤ r ≤ u2 where t2 < u2 is such that ξklog (t2) = ρklog (t2) .

In fact t2 is given by the largest positive root of ξklog(x) = ρklog +logk+1 x− logk+1 u2.

If ξklog (t2) 6= σklog (t2) , let v1 be the upper bound of points v (< t2) at which ξklog (v) =

σklog (v) .

Note that ξklog (v1) = σklog (v1) .
We define

ρklog (r) = ξklog(r)

for v1 ≤ r ≤ t2.
One can check that ξklog(r) is constant in v1 ≤ r ≤ t2. Thus ρklog(r) is constant in

[v1, t2] .
If ξklog (t2) = σklog (t2), we take v1 = t2.
We choose u3 > u2 suitably large and let

ρklog (u2) = ρklog,

ρklog (r) = ρklog + logk+1 r − logk+1 u3,

for t3 ≤ r ≤ u3 where t3 < u3 is such that ξklog (t3) = ρklog (t3) .

If ξklog (t3) 6= ρklog (t3) , let ρklog (r) = ξklog(r) for v2 ≤ r ≤ t3, where v2 has a similar
property as that of v1.

Similarly as before ρklog (r) is constant in [v2, t3] .

If ξklog (t3) = σklog (t3), we take v2 = t3.
Let

ρklog (r) = ρklog (v2) + logk+1 v2 − logk+1 r

for t4 ≤ r ≤ v2 where t4 (< v2) is the point of intersection of y = ρklog and y =

ρklog (v2) + logk+1 v2 − logk+1 x.
We can choose u3 so large that u2 < t4.
Let ρklog (r) = ρklog for u2 ≤ r ≤ t4.
We repeat this process.
Now we have for all r ≥ u2, ρ

k
log ≥ ρklog (r) ≥ ξklog (r) ≥ σklog (r) and ρklog (r) = σklog (r)

for r = v1, v2, ....



Existence of generalised logarithmic proximate order... 185

So we get

lim sup
r→∞

ρklog (r) = lim inf
r→∞

ρklog (r)

= lim
r→∞

ρklog (r)

= ρklog.

Since

logk−1Mf (r) = (log r)σ
k
log(r)

= (log r)ρ
k
log(r)

for a sequence of values of r tending to infinity and

logk−1Mf (r) < (log r)ρ
k
log(r)

for remaining r’s.
Therefore

lim sup
r→∞

logk−1Mf (r)

(log r)ρ
k
log(r)

= 1.

Also ρklog (r) is differentiable in adjacent intervals.

Also
(
ρklog
)′

(r) = 0 or −1
k∏
i=0

logi(r)

and then

lim
r→∞

(
ρklog
)′

(r)
k−1∏
i=0

logi(r) = 0.

Finally we obtain ρklog (r) is continuous. Hence it proves Case II.

Example 2.4. If f(z) = ez then its maximum modulus Mf (r) = sup
|z|=r
|f(z)| = er.

Define φ (r) = logkMf (r) > 0 for sufficiently large values of r.

Clearly ρklog = lim sup
r→∞

log φ(r)
log log r

<∞.

Then it can be found (lengthy process) generalised logarithmic proximate order
ρklog (r) such that

φ (r) ≤ rρ
k
log(r)

for sufficiently large values of r, and

φ (rn) ≥ rρ
k
log(rn)

for a sequence of values of {rn} , rn →∞.

Corollary 2.5. If α > ρklog then (r)α−ρ
k
log(r) is an increasing function of r for all

large values of r.

Proof. For ρklog (r) is continuous and the

derivative of (r)α−ρ
k
log(r) = (r)α−1−ρ

k
log(r)

[
α− ρklog (r) + r. log r.

(
ρklog
)′

(r)
]
,

which will be positive for all large values of r, since ρklog (r)→ ρklog and r. log r.
(
ρklog
)′

(r)→
0 as r →∞.
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Theorem 2.6. For every entire function f(z) of generalised logarithmic order ρklog
and generalised logarithmic type T klog, there exists a generalised logarithmic proximate

type T klog(r).

Proof.

ρklog = lim sup
r→∞

logkMf (r)

log log r
,

T klog = lim sup
r→∞

logk−1Mf (r)

(log r)ρ
k
log

.

Let

Sklog(r) =
logk−1Mf (r)

(log r)ρ
k
log

.

Then there may be two cases arise.
Case I: Sklog(r) > T klog for a sequence of values of r tending to infinity.
Set

Qk
log(r) = max

x≥r1

{
Sklog(x)

}
.

As Sklog(x) is continuous, lim sup
x→∞

Sklog(x) = T klog and Sklog(x) > T klog for a sequence of

values of x tending to infinity, Qk
log(r) exists and is a nonincreasing function of r.

Let r1 be a number such that r1 > expk(1) and Qk
log(r1) = maxx≥r1

{
Sklog(x)

}
=

Sklog(r1). Such values exists for a sequence of values of r tending to infinity.

Next, suppose that T klog(r1) = Qk
log(r1) and choose t1 be the smallest integer not

less than 1 + r1 such that Qk
log(r1) > Qk

log(t1).

We define, T klog(r) = T klog(r1) = Qk
log(r1) for r1 < r ≤ t1.

Set u1 as

u1 > t1

T klog(r) = T klog(r1)− logk r + logk t1 for t1 ≤ r ≤ u1,

T klog(r) = Qk
log(r) for r = u1,

but

T klog(r) > Qk
log(r) for t1 ≤ r ≤ u1.

Let r2 be the smallest value of r for which r2 ≥ u1 and Qk
log(r2) = Sklog(r2).

If r2 > u1 then let T klog(r) = Qk
log(r) for u1 ≤ r ≤ r2. One can be easily verified that

T klog(r) is constant in u1 ≤ r ≤ r2.

Repeating the argument we obtain that T klog(r) is differentiable in adjacent intervals.

Further
(
T klog
)′

(r) = 0 or −

(
k−1∏
i=0

logi(r)

)
and T klog(r) ≥ Qk

log(r) ≥ Sklog(r) for all

r ≥ r1.
Again T klog(r) = Sklog(r) for an infinite number of values of r, also T klog(r) is nonin-

creasing and T klog = lim sup
r→∞

Sklog(r) = lim
r→∞

Qk
log(r).

So,

lim sup
r→∞

T klog(r) = lim inf
r→∞

T klog(r) = lim
r→∞

T klog(r) = T klog
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and

lim
r→∞

(
T klog
)′

(r)
k−2∏
i=0

logi(r) = 0.

Further we have,

Mf (r) = expk−1
{

(log r)ρ
k
log Sklog(r)

}
= expk−1

{
(log r)ρ

k
log T klog(r)

}
for sufficiently large values of r,

Mf (r) < expk−1
{

(log r)ρ
k
log T klog(r)

}
for the remaining r′s.

Therefore

lim sup
r→∞

Mf (r)

expk−1
{

(log r)ρ
k
log T klog(r)

} = 1.

Case II: Let Sklog(r) ≤ T klog for sufficiently large values of r. There are two Subcases.
Subcase A:

Sklog(r) = T klog
for atleast a sequence of values of r tending to infinity.

We take T klog(r) = T klog for all values of r.
Subcase B:

Sklog(r) < T klog
for sufficiently large values of r.

Let Lklog(r) = maxX≤x≤r
{
Sklog(x)

}
, where X > expk(1) is such that Sklog(x) < T klog

whenever x ≥ X.
Note that Lklog(r) is nondecreasing. Take a suitably large value of r1 ≥ X and let

T klog(r1) = T klog,

T klog(r) = T klog + logk r − logk r1, for s1 ≤ r ≤ r1,

where s1 < r1 is such that Lklog(s1) = T klog(s1). If Lklog(s1) 6= Sklog(s1) then we take

T klog(r) = Lklog(r) upto the nearest point t1 < s1 at which Lklog(t1) = Sklog(t1).

T klog(r) is then constant for t1 ≤ r ≤ s1. If Lklog(s1) = Sklog(s1), then let t1 = s1.
Choose r2 > r1 suitably large and let

T klog(r2) = T klog,

T klog(r) = T klog + logk r − logk r2, for s2 ≤ r ≤ r2

where s2 (< r2) is such that Lklog(s2) = T klog(s2).

If Lklog(s2) 6= Sklog(s2) then Lklog(r) = T klog(r) for t2 ≤ r ≤ s2 where t2 (< s2) is the

nearest point to s2 at which Lklog(t2) = Sklog(t2).

If Lklog(s2) = Sklog(s2), then let t2 = s2.
For r < t2, let

T klog(r) = T klog(t2) + logk(t2)− logk r , for u1 ≤ r ≤ t2

where u1(< t2) is the point of intersection of y = T klog with

y = T klog(t2) + logk (t2)− logk r.
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Let T klog(r) = T klog for r1 ≤ r ≤ u1. It is always possible to choose r2 so large that
r1 < u1.

Repeating the procedure and note that

T klog(r) ≥ Lklog(r) ≥ Sklog(r)

and T klog(r) = Sklog(r) for r = t1, t2, t3, ....
Hence

lim
r→∞

T klog(r) = T klog

and

lim sup
r→∞

Mf (r)

expk−1
{

(log r)ρ
k
log T klog(r)

} = 1.

It is well known that the estimation of the number of zeros of an entire function
of finite order in terms of its order [7]. The same result is true for the poles of a
meromorphic function of finite generalised order [3]. Here we prove the following
theorem in terms of finite generalised logarithmic order.

Theorem 2.7. If f(z) be a nonconstant meromorphic function of finite generalised
logarithmic order ρklog with f(0) 6= 0,∞ and a be any complex number, finite or

infinite. Then for a generalised logarithmic proximate order ρklog (r) of f(z) and for
all large r,

logk−2 n (r, a) ≤ A (r)ρ
k
log(r)

where A is a suitable constant independent of a.

Proof. From Nevalinna’s first fundamental theorem we get

m (r, a) +N (r, a) = Tf (r) +O(1),

which implies,
N (r, a) ≤ Tf (r) +O(1).

Replacing r by λr (λ > 1) ,

N (λr, a) ≤ Tf (λr) +O(1).

Therefore,

n (r, a) log λ ≤
∫ λr

0

n (t, a)

t
dt ≤ Tf (λr) +O(1).

Taking repeated logarithms we get,

(2) logk−2 n (r, a) ≤ logk−2 Tf (λr) +O(1).

Also

ρklog (r) =
logk−1 Tf (r)

log log r

then for a sequence of values of r tending to infinity we have

logk−2 Tf (exp r) = (r)ρ
k
log(r) .

For the remaining r’s

logk−2 Tf (exp r) ≤ (r)ρ
k
log(r) .



Existence of generalised logarithmic proximate order... 189

Therefore we have,

lim sup
r→∞

logk−2 Tf (exp r)

(r)ρ
k
log(r)

= 1

for given any ε > 0 and for all large values of r we have

logk−2 Tf (exp r) < (1 + ε) (r)ρ
k
log(r) .

Then we get,

(3) logk−2 Tf (expλr) < (1 + ε) (λr)ρ
k
log(λr) .

From (2) we have using (3) ,

logk−2 n (r, a) ≤ logk−2 Tf (λr) +O(1)

< logk−2 Tf (exp(λr)) +O(1)

< (1 + ε) (λr)ρ
k
log(λr) +O(1)

=
(1 + ε) (λr)ρ

k
log+1

(λr)ρ
k
log+1−ρklog(λr)

+O(1).

Using Corollary 2.5, (r)ρ
k
log+1−ρklog(λr) is increasing for all large r, Then for large r we

have from the above relation,

logk−2 n (r, a) ≤ A (r)ρ
k
log(r) ,

where A is defined before. This proves the theorem.

Also we know that Tf (r) and logMf (r) are mutually replaceable in the formula for
the order of an entire function f(z). In this section we prove two theorems on compar-
ative growths of Tf (r) and logMf (r) in terms of generalised logarithmic proximate
order.

Theorem 2.8. If f(z) be a nonconstant entire function of finite generalised loga-
rithmic order ρklog and generalised logarithmic proximate order ρklog (r), for k > 2

lim inf
r→∞

logk−1Mf (exp r)

logk−2 Tf (exp r)
= 1.

Proof. We have from (1) putting R by λr,

Tf (r) ≤ logMf (r) ≤
λ+ 1

λ− 1
Tf (λr)

Taking repeated logarithms for all large values of r and replacing r by exp r we have

(4) logk−2 Tf (exp r) ≤ logk−1Mf (exp r) ≤ logk−2 Tf (expλr) +O(1).

Using the first part of (4) we have

(5) 1 ≤ lim inf
r→∞

logk−1Mf (exp r)

logk−2 Tf (exp r)
.

From last two inequality of (4) we have,

(6) logk−1Mf (exp r) ≤ logk−2 Tf (expλr) +O(1).
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Now by (3) we have,

(7) logk−2 Tf (expλr) < (1 + ε) (λr)ρ
k
log(λr)

Then we have for all large values of r and using (7) in (6) ,

logk−1Mf (exp r) < logk−2 Tf (expλr) +O(1)

< (1 + ε) (λr)ρ
k
log(λr) +O(1)

=
(1 + ε) (λr)ρ

k
log+1

(λr)ρ
k
log+1−ρklog(λr)

+O(1).(8)

By Corollary 2.5, (r)ρ
k
log+1−ρklog(λr) is increasing for all large r, then from (8) we get

(9) logk−1Mf (exp r) ≤ (1 + ε)λρ
k
log+1 (r)ρ

k
log(r) +O(1).

Again since

lim sup
r→∞

logk−2 Tf (exp r)

(r)ρ
k
log(r)

= 1,

then we get for a sequence of values of r tending to infinity and for arbitrary ε,

(1− ε) (r)ρ
k
log(r) < logk−2 Tf (exp r).

We get from (9) for a sequence of values of r tending to infinity,

logk−1Mf (exp r) ≤ 1 + ε

1− ε
λρ

k
log+1 logk−2 Tf (exp r) +O(1).

Therefore,

lim inf
r→∞

logk−1Mf (exp r)

logk−2 Tf (exp r)
≤ 1 + ε

1− ε
λρ

k
log+1.

Since ε (0 < ε < 1) and λ (> 1) is arbitrary, we have

(10) lim inf
r→∞

logk−1Mf (exp r)

logk−2 Tf (exp r)
≤ 1.

Combining (5) and (10) we have the theorem.

Theorem 2.9. If P > 0, then for k ≥ 2

lim inf
r→∞

logk−1Mf (exp r)

logk−2 Tf (exp r)
(
logk−1 Tf (exp r)

)P = 0.

Proof. From the above note and Theorem 2.8, we have

lim inf
r→∞

logk−1Mf (exp r)

logk−2 Tf (exp r)
<∞.

Also
lim
r→∞

(
logk−1 Tf (exp r)

)P
=∞.

Hence the theorem proved.
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