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ON f-KENMOTSU MANIFOLDS ADMITTING SCHOUTEN-VAN

KAMPEN CONNECTION

Ashis Mondal

Abstract. In the present paper, we study three-dimensional f -Kenmotsu man-
ifolds admitting the Schouten-Van Kampen connection. We study the concircu-
lar curvature tensor of a three-dimensional f -Kenmotsu manifold with respect to
the Schouten-Van Kampen connection. Finally, we have cited an example of a
three-dimensional f -Kenmotsu manifold admitting Schouten-Van Kampen connec-
tion which verify our results.

1. Introduction

In 1978, Solov’ev investigated hyperdistributions in Riemannian manifolds using
the Schouten-Van Kampen connection [15]. In 2006, Bejancu studied Schouten-Van
Kampen connection on Foliated manifolds [2]. In 2014, Olszak studied the Schouten-
van Kampen connection to adapt it to an almost contact metric structure [13]. He
characterized some classes of an almost contact metric manifolds with the Schouten-
Van Kampen connection. Recently, G. Ghosh [4], Yildiz [19], Nagaraj [10] and D.
L. Kiran Kumar [7] have studied the Schouten-Van Kampen connection in Sasakian
manifolds, f -Kenmotsu manifolds and Kenmotsu manifolds respectively. Also Y. S.
Perktas and A. Yildiz [14] have studied on f -Kenmotsu 3-manifolds with respect to
the Schouten-van Kampen connection.

A transformation of an n-dimensional differential manifold M , which transforms
every geodesic circle of M into a geodesic circle, is called a concircular transforma-
tion [6], [16]. A concircular transformation is always a conformal transformation [6].
Here geodesic circle means a curve in M whose first curvature is constant and whose
second curvature is identically zero. Thus the geometry of concircular transforma-
tions, i.e., the concircular geometry, is a generalization of inversive geometry in the
sense that the change of metric is more general than that induced by a circle preserv-
ing diffeomorphism. An interesting inverient of a concircular transformation is the
concircular curvature tensor W with respect to Levi-Civita connection. It is defined
by [16], [17]
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(1) W(X, Y )Z = R(X, Y )Z − r

n(n− 1)
[g(Y, Z)X − g(X,Z)Y ],

where X, Y, Z ∈ χ(M), R and r are the curvature tensor and the scalar curvature with
respect to the Levi-Civita connection.

The concircular curvature tensor W̃ with respect to the Schouten-Van Kampen
connection is defined by

(2) W̃(X, Y )Z = R̃(X, Y )Z − r̃

n(n− 1)
[g(Y, Z)X − g(X,Z)Y ],

where R̃ and r̃ are the curvature tensor and the scalar curvature with respect to the
Schouten-Van Kampen connection. Riemannian manifolds with vanishing concircular
curvature tensor are of constant curvature. Thus the concircular curvature tensor is
a measure of the failure of a Riemannian manifold to be of constant curvature. In
the present paper we have studied f -Kenmotsu manifolds admitting Schouten-Van
Kampen connection.

The present paper is organized as follows:
After the introduction, we give some required preliminaries in Section 2. In Sec-

tion 3, we study the curvature tensor, the Ricci tensor, scalar curvature of a three-
dimensional f -Kenmotsu manifold with respect to the Schouten-Van Kampen con-
nection. Section 4 is devoted to obtain ξ-concircularly flat f -Kenmotsu manifolds
with respect to the Schouten-Van Kampen connection. In this section we also prove
that a f -Kenmotsu manifold admitting the Schouten-Van Kampen connection is ξ-
concircularly flat if and only if the scalar curvature of the manifold vanishes. Section
5, we study f -Kenmotsu manifold admitting Schouten-Van Kampen connection sat-
isfying W̃.S̃ = 0, where S̃ denotes the Ricci tensor with respect to the Schouten-Van
Kampen connection. In the next section we study locally φ-Ricci symmetric three-
dimensional f -Kenmotsu manifolds with respect to Schouten-Van Kampen connec-
tion. In the last section, we have cited an example of a three-dimensional f -Kenmotsu
manifold admitting the Schouten-Van Kampen connection to support the results ob-
tained in Section 3 and Section 4.

2. Preliminaries

Let M be a connected almost contact metric manifold with an almost contact
metric structure (φ, ξ, η, g), that is, φ is an (1, 1) tensor field, ξ is a vector field, η is
an 1-form and g is compatible Riemannian metric such that

(3) φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, ηφ = 0,

(4) g(φX, φY ) = g(X, Y )− η(X)η(Y ),

(5) g(X,φY ) = −g(φX, Y ), g(X, ξ) = η(X),

for all X, Y ∈ T (M).
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The fundamental 2-form Φ of the manifold is defined by

(6) Φ(X, Y ) = g(X,φY ),

for X, Y ∈ T (M).

An almost contact metric manifold is normal if [φ, φ](X, Y ) + 2dη(X, Y )ξ = 0. An
almost contact metric structure (φ, ξ, η, g) on a manifold M is called f -Kenmotsu
manifold if this may be expressed by the condition [11]

(7) (∇Xφ)Y = f{g(φX, Y )ξ − η(Y )φX},
where f ∈ C∞(M) such that df ∧ η = 0 and ∇ is Levi-Civita connection on M. If

f = α=constant6= 0, then the manifold is an α-Kenmotsu manifold [5]. 1-Kenmotsu
manifold is a Kenmotsu [8]. If f=0, then the manifold is cosymplectic [5]. An f -
Kenmotsu manifold is said to be to be regular if f 2 + f ′ 6= 0, where f ′ = ξ(f).

For an f -Kenmotsu manifold it follows that

(8) ∇Xξ = f{X − η(X)ξ}.
Then using (8), we have

(9) (∇Xη)Y = f(g(X, Y )− η(X)η(Y )).

The condition df ∧ η = 0 holds if dim M> 5. This does not hold in general if dim
M=3 [12]. In a 3-dimensional f -Kenmotsu manifold M , we have [12]

R(X, Y )Z = (
r

2
+ 2f 2 + 2f ′){g(Y, Z)X − g(X,Z)Y }

− (
r

2
+ 3f 2 + 3f ′){g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(Y )η(Z)X − η(X)η(Z)Y },(10)

(11) S(X, Y ) = (
r

2
+ f 2 + f ′)g(X, Y )− (

r

2
+ 3f 2 + 3f ′)η(X)η(Y ),

(12) QX = (
r

2
+ f 2 + f ′)X − (

r

2
+ 3f 2 + 3f ′)η(X)ξ,

where R denotes the curvature tensor, S is the Ricci tensor of type (0, 2), Q is the
Ricci operator and r is the scalar curvature of the manifold M .

From (10) and (11), we have

(13) R(X, Y )ξ = −(f 2 + f ′){η(Y )X − η(X)Y },

(14) R(ξ,X)Y = −(f 2 + f ′){g(X, Y )ξ − η(Y )X},

(15) S(X, ξ) = −2(f 2 + f ′)η(X),

(16) η(R(ξ,X)Y ) = −(f 2 + f ′){g(X, Y )− η(Y )η(X)},
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3. Curvature tensor of a three-dimensional f-Kenmotsu manifold with
respect to the Schouten-Van Kampen connection

The Schouten-Van Kampen connections [9], [13] ∇̃ and the Levi-Civita connection
∇ are related by

(17) ∇̃XY = ∇XY − η(Y )∇Xξ + (∇Xη)(Y )ξ,

for all vector fields X, Y on M.

With the help of (8) and (9), the above equation takes the form

(18) ∇̃XY = ∇XY + f{g(X, Y )ξ − η(Y )X},
for a f -Kenmotsu manifold.

We define the curvature tensor of a three-dimensional f -Kenmotsu manifold with
respect to the Schouten-Van Kampen connection ∇̃ by

(19) R̃(X, Y )Z = ∇̃X∇̃YZ − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z.

In view of (18) we obtain

R̃(X, Y )Z = R(X, Y )Z + f 2{g(Y, Z)X − g(X,Z)Y }
+ f ′{g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(Y )η(Z)X − η(X)η(Z)Y }.(20)

Taking inner product of (19) with W we have

R̃(X, Y, Z,W ) = R(X, Y, Z,W ) + f 2{g(Y, Z)g(X,W )− g(X,Z)g(Y,W )}
+ f ′{g(Y, Z)η(X)η(W )− g(X,Z)η(Y )η(W )

+ g(X,W )η(Y )η(Z)− g(Y,W )η(X)η(Z)}.(21)

where R̃(X, Y, Z,W ) = g(R̃(X, Y )Z,W ).

From (20) we have

(22) R̃(X, Y )Z + R̃(Y,X)Z = 0,

and

(23) R̃(X, Y )Z + R̃(Y, Z)X + R̃(Z,X)Y = 0.

Putting Z = ξ in (19) and using (13) we get
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(24) R̃(X, Y )ξ = 0.

Again putting W = ξ in (21) we have

η(R̃(X, Y )Z) = R(X, Y, Z, ξ) + (f 2 + f ′){g(Y, Z)η(X)− g(X,Z)η(Y )},(25)

Putting X = W = ei, {i = 1, 2, 3}, in (21), we get

(26) S̃(Y, Z) = S(Y, Z) + (2f 2 + f ′)g(Y, Z) + f ′η(Y )η(Z),

From (26), implies that

(27) S̃(Y, Z) = S̃(Z, Y ),

(28) Q̃X = QX + (2f 2 + f ′)X + f ′η(X)ξ.

(29) r̃ = r + 6f 2 + 4f ′,

where r̃ and r are the scalar curvatures of the connection ∇̃ and ∇ respectively.

Putting Z = ξ in (26) and using (15) we get

(30) S̃(Y, ξ) = −2f ′η(Y ),

Hence we can state the following :

Proposition 3.1. For a three-dimensional f -Kenmotsu manifold M with respect
to the Schouten-Van Kampen connection ∇̃

(a) the curvature tensor R̃ is given by (20),

(b) the Ricci tensor S̃ is given by (26),

(c) R̃(X, Y )Z + R̃(Y, Z)X + R̃(Z,X)Y = 0,

(d) R̃(X, Y )Z + R̃(Y,X)Z = 0,
(e) the scalar curvature r̃ is given by r̃ = r + 6f 2 + 4f ′,

(f) the Ricci tensor S̃ is symmetric.
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4. ξ-Concircularly flat and φ-Concircularly flat f-Kenmotsu manifolds
with respect to the Schouten-Van Kampen connection

Definition 4.1. A f -Kenmotsu manifold M with respect to the Schouten-Van
Kampen connection is said to be ξ-concircularly flat if

(31) W̃(X, Y )ξ = 0,

for all vector fields X, Y ∈ χ(M), χ(M) is the set of all differentiable vector fields
on M .

Theorem 4.1. A three-dimensional f -Kenmotsu manifold with respect to the
Schouten-Van Kampen connection is ξ-concircularly flat if and only if the manifold
M with respect to the Levi-Civita connection is also ξ-concircular flat provided f is a
constant.

Proof. Combining (1), (2), (20) and (29), we get

W̃(X, Y )Z = W(X, Y )Z − 2

3
f ′{g(Y, Z)X − g(X,Z)Y }

+ f ′{g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(Y )η(Z)X − η(X)η(Z)Y }.(32)

Putting Z = ξ in (32) we get

(33) W̃(X, Y )ξ = W(X, Y )ξ +
f ′

3
{η(Y )X − η(X)Y }.

Hence the proof of theorem is completed.

Theorem 4.2. A three-dimensional f -Kenmotsu manifold is ξ-concircularly flat
with respect to the Schouten-Van Kampen connection if and only if the scalar curvature
with respect to the Schouten-Van Kampen connection vanishes.

Proof. Putting Z = ξ in (2) and using (4) and (24), we have

(34) W̃(X, Y )ξ = − r̃
6
{η(Y )X − η(X)Y }.

Thus the theorem is proved.

Theorem 4.3. A f -Kenmotsu manifold admitting Schouten-Van Kampen connec-
tion is φ-concircular flat if and only if the manifold is an η-Einstein manifold with
respect to the Levi-Civita connection.

Proof. From (2) it follows that



On f -Kenmotsu manifolds admitting Schouten-Van Kampen connection 339

g(W̃(φX, φY )φZ, φU) = g(R̃(φX, φY )φZ, φU)

− r̃

6
{g(φY, φZ)g(φX, φU)

− g(φX, φZ)g(φY, φW )}.(35)

Suppose

(36) g(W̃(φX, φY )φZ, φU) = 0.

Then from (35) we get

0 = g(R̃(φX, φY )φZ, φU)

− r̃

6
{g(φY, φZ)g(φX, φU)

− g(φX, φZ)g(φY, φW )}.(37)

Let {e1, e2, ξ} be a local orthonormal basis of the vector fields in M and using the
fact that {φe1, φe2, ξ} is also a local orthonormal basis, putting X = U = ei in (37)
and summing up with respect to i, we have

0 =
2∑

i=1

g(R̃(φX, φY )φZ, φU)

− r̃

6

2∑
i=1

{g(φY, φZ)g(φX, φU)

− g(φX, φZ)g(φY, φW )}.(38)

From the above equation it follows that

(39) S̃(φY, φZ) =
r̃

6
g(φY, φZ).

Putting X = φX, Y = φY in (39) and using (3), (15) and (26) we get

(40) S(Y, Z) = [
r − 6f 2 − 2f ′

6
]g(Y, Z)− [

r + 6f 2 + 10f ′

6
]η(Y )η(Z).

Conversely, let S be of the form (40), then obviously

g(W̃(φX, φY )φZ, φU) = 0.

Thus the theorem is proved.
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5. Almost η-Ricci soliton on f-Kenmotsu manifold admitting Schouten-
Van Kampen connection ∇̃ satisfying W̃.S̃=0

In this section we consider f -Kenmotsu manifold admitting Schouten-Van Kampen
connection ∇̃ satisfying W̃.S̃ = 0.

Theorem 5.1. A three-dimensional f -Kenmotsu manifold with respect to the
Schouten-Van Kampen connection satisfies W̃.S̃=0, then the manifold M is an Ein-
stein manifold with respect to the Schouten-Van Kampen connection provided f is not
a constant and r̃ 6= 0.

Proof. We suppose that the manifold under consideration is the Schouten-Van
Kampen connection M , that is

(W̃(X, Y ).S̃)(U, V ) = 0,

where X, Y, U, V ∈ χ(M), χ(M) is the set of all differentiable vector fields on M .

Then we have

(41) S̃(W̃(X, Y )U, V ) + S̃(U, W̃(X, Y )V ) = 0.

Putting U = ξ in (41) and using (2) we have

0 =
r̃

6
[η(Y )S̃(X, V )− η(X)S̃(Y, V )]

+ 2f ′[g(R̃(X, Y )V, ξ)− r̃

6
{g(Y, V )η(X)− g(X, V )η(Y )}].(42)

Again putting X = ξ in (42) and using (25), (26), (29) and (30) we have

(43)
r̃

6
{S̃(Y, V )− 2f ′g(Y, V )} = 0.

Then above equation implies that

(44) S̃(Y, V ) = −2f ′g(Y, V ),

provided r̃ 6= 0.

Hence the theorem is proved.
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6. Locally φ-Ricci symmetry on f-Kenmotsu Manifold with respect to
the Schouten-Van Kampen connection

Definition 6.1. A f -Kenmotsu manifold is said to be φ-Ricci symmetric if the
Ricci operator satisfies

(45) φ2((∇XQ)Y ) = 0,

for all vector fields X, Y in M and S(X, Y ) = g(QX, Y ). If X, Y are orthogonal to
ξ, then the manifold is manifold is said to be locally φ-Ricci symmetric. The notion
of φ-symmetry was introduced by E. Boeckx, P. Buecken and L. Vanhecke [1]. In [3],
De and Sarkar studied φ-Ricci symmetric sasakian manifolds.

Theorem 6.1. A three-dimensional f -Kenmotsu manifold locally φ-Ricci symme-
try with respect to the Schouten-Van Kampen connection and the Levi-Civita connec-
tion are equivalent.

Proof. We have

(46) (∇̃XQ̃)Y = ∇̃Q̃Y − Q̃(∇̃XY ).

Using (18) and (28) in (46)

(47) (∇̃XQ̃)Y = ∇̃Q̃Y + f ′(∇̃Xη)(Y )ξ + f ′η(Y )∇̃Xξ −Q(∇̃XY )− f ′η(∇̃XY )ξ.

Again using (12), (18) and (28) in (47) we have

(∇̃XQ̃)Y = (∇XQ)Y + f{g(X,QY )ξ − η(QY )X}+ f ′(∇̃Xη)(Y )ξ

− f{g(X, Y )Qξ − η(Y )QX} − f ′η(∇̃XY )ξ.(48)

Considering X, Y orthogonal to ξ and using (3), (12) from (48) it follows that

(49) φ2(∇̃XQ̃)Y = φ2(∇XQ)Y.

Thus the theorem is proved.
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7. Example

We consider an example of a three-dimensional manifold M = {(x, y, z) ∈ R3, z 6=
0}, where (x, y, z) are the standard coordinates in R3 [14]. The vector fields

e1 = z2
∂

∂x
, e2 = z2

∂

∂y
, e3 =

∂

∂z
,

are linearly independent at each point ofM. Let g be the Riemannian metric defined
by

g(e1, e3) = g(e2, e3) = g(e1, e2) = 0, g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M). Let φ be the
(1,1) tensor field defined by φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0. Then using the
linearity of φ and g we have

η(e3) = 1, φ2Z = −Z + η(Z)e3, g(φZ, φW ) = g(Z,W )− η(Z)η(W ),

for any Z,W ∈ χ(M). Thus for e3 = ξ, (φ, ξ, η, g) defines an almost contact metric
structure on M. Now, by direct computations we obtain

[e1, e2] = 0, [e2, e3] = −2

z
e2, [e1, e3] = −2

z
e1.

By Koszul formula we have

∇e1e3 = −2
z
e1, ∇e1e2 = 0, ∇e1e1 = 2

z
e3,

∇e2e3 = −2
z
e2, ∇e2e2 = 2

z
e3, ∇e2e1 = 0,

∇e3e3 = 0, ∇e3e2 = 0, ∇e3e1 = 0.

From above we see that the manifold satisfies ∇Xξ = f(X − η(X)ξ) for ξ = e3,
where f = −2

z
. Hence the manifold is a f -Kenmotsu manifold. Also f 2 + f ′ 6= 0.

Hence M is a regular f -Kenmotsu manifold [18].

In [18] the authors obtained the expression of the curvature tensor as follows:

R(e1, e2)e3 = 0, R(e2, e3)e3 = − 6
z2
e2, R(e1, e3)e3 = − 6

z2
e1,

R(e1, e2)e2 = − 4
z2
e1, R(e2, e3)e2 = 6

z2
e3, R(e1, e3)e2 = 0,

R(e1, e2)e1 = 4
z2
e2, R(e2, e3)e1 = 0, R(e1, e3)e1 = 6

z2
e3.

Now using above relations we get from ( [19]) as follows:

∇̃e1e3 = (−2
z
− f)e1, ∇̃e1e2 = 0, ∇̃e1e1 = 2

z
(e3 − ξ),

∇̃e2e3 = (−2
z
− f)e2, ∇̃e2e2 = 2

z
(e3 − ξ), ∇̃e2e1 = 0,

∇̃e3e3 = −f(e3 − ξ), ∇̃e3e2 = 0, ∇̃e3e1 = 0.

From above we see that ∇̃eiej = 0, (0 ≤ i, j ≤ 3) for ξ = e3 and f = −2
z
. Hence the

manifold is f -Kenmotsu manifold with respect to Schouten-Van Kampen connection.
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From the above expressions of the curvature tensor we obtain the Ricci tensor as
follows:

S(e1, e1) =
3∑

i=1

g(R(ei, e1)e1, ei) = −10

z2
.

Similarly, we have

S(e2, e2) = −10

z2
and S(e3, e3) = −12

z2
.

Therefore, the scalar curvature tensors r =
∑3

i=1 S(ei, ei) = −32
z2

and r̃ =
∑3

i=1 S̃(ei, ei) =
0 with respect to Levi-Civita connection and Schouten-Van Kampen connection re-
spectively. Hence for f = −2

z
, Proposition 3.1. is verified. Also the Theorem

4.2. is verified.
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