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ON f-KENMOTSU MANIFOLDS ADMITTING SCHOUTEN-VAN
KAMPEN CONNECTION

AsHIS MONDAL

ABSTRACT. In the present paper, we study three-dimensional f-Kenmotsu man-
ifolds admitting the Schouten-Van Kampen connection. We study the concircu-
lar curvature tensor of a three-dimensional f-Kenmotsu manifold with respect to
the Schouten-Van Kampen connection. Finally, we have cited an example of a
three-dimensional f-Kenmotsu manifold admitting Schouten-Van Kampen connec-
tion which verify our results.

1. Introduction

In 1978, Solov’ev investigated hyperdistributions in Riemannian manifolds using
the Schouten-Van Kampen connection [15]. In 2006, Bejancu studied Schouten-Van
Kampen connection on Foliated manifolds [2]. In 2014, Olszak studied the Schouten-
van Kampen connection to adapt it to an almost contact metric structure [13]. He
characterized some classes of an almost contact metric manifolds with the Schouten-
Van Kampen connection. Recently, G. Ghosh [4], Yildiz [19], Nagaraj [10] and D.
L. Kiran Kumar [7] have studied the Schouten-Van Kampen connection in Sasakian
manifolds, f-Kenmotsu manifolds and Kenmotsu manifolds respectively. Also Y. S.
Perktas and A. Yildiz [14] have studied on f-Kenmotsu 3-manifolds with respect to
the Schouten-van Kampen connection.

A transformation of an n-dimensional differential manifold M, which transforms
every geodesic circle of M into a geodesic circle, is called a concircular transforma-
tion [6], [16]. A concircular transformation is always a conformal transformation [6].
Here geodesic circle means a curve in M whose first curvature is constant and whose
second curvature is identically zero. Thus the geometry of concircular transforma-
tions, i.e., the concircular geometry, is a generalization of inversive geometry in the
sense that the change of metric is more general than that induced by a circle preserv-
ing diffeomorphism. An interesting inverient of a concircular transformation is the
concircular curvature tensor W with respect to Levi-Civita connection. It is defined
by [16], [17]
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n(n—1)

where XY, Z € x(M), R and r are the curvature tensor and the scalar curvature with
respect to the Levi-Civita connection.

1) W(X,Y)Z = R(X,Y)Z - 90, 2)X — g(X, Z)Y),

The concircular curvature tensor W with respect to the Schouten-Van Kampen
connection is defined by

7

(2) W(X,Y)Z = R(X,Y)Z — P

[9(Y,2)X — g(X, Z)Y],

where R and 7 are the curvature tensor and the scalar curvature with respect to the
Schouten-Van Kampen connection. Riemannian manifolds with vanishing concircular
curvature tensor are of constant curvature. Thus the concircular curvature tensor is
a measure of the failure of a Riemannian manifold to be of constant curvature. In
the present paper we have studied f-Kenmotsu manifolds admitting Schouten-Van
Kampen connection.

The present paper is organized as follows:

After the introduction, we give some required preliminaries in Section 2. In Sec-
tion 3, we study the curvature tensor, the Ricci tensor, scalar curvature of a three-
dimensional f-Kenmotsu manifold with respect to the Schouten-Van Kampen con-
nection. Section 4 is devoted to obtain &-concircularly flat f-Kenmotsu manifolds
with respect to the Schouten-Van Kampen connection. In this section we also prove
that a f-Kenmotsu manifold admitting the Schouten-Van Kampen connection is &-
concircularly flat if and only if the scalar curvature of the manifold vanishes. Section
5, we study f-Kenmotsu manifold admitting Schouten-Van Kampen connection sat-
1sfy1ng W.S = 0, where S denotes the Ricci tensor with respect to the Schouten-Van
Kampen connection. In the next section we study locally ¢-Ricci symmetric three-
dimensional f-Kenmotsu manifolds with respect to Schouten-Van Kampen connec-
tion. In the last section, we have cited an example of a three-dimensional f-Kenmotsu
manifold admitting the Schouten-Van Kampen connection to support the results ob-
tained in Section 3 and Section 4.

2. Preliminaries

Let M be a connected almost contact metric manifold with an almost contact
metric structure (¢, &, 7, g), that is, ¢ is an (1, 1) tensor field, £ is a vector field, 7 is
an 1-form and g is compatible Riemannian metric such that

(3) @X =-X+n(X)§, n€)=1 ¢=0, np=0,
(4) 9(0X,9Y) = g(X,Y) = n(X)n(Y),

for all X|Y € T(M).



On f-Kenmotsu manifolds admitting Schouten-Van Kampen connection 335

The fundamental 2-form ® of the manifold is defined by
(6) O(X,Y) = g(X, ¢Y),
for X,Y € T(M).
An almost contact metric manifold is normal if [¢, ¢](X,Y) 4+ 2dn(X,Y )¢ = 0. An

almost contact metric structure (¢,£,7,9) on a manifold M is called f-Kenmotsu
manifold if this may be expressed by the condition [11]

(7) (Vx@)Y = f{g(¢6X,Y)§ —n(Y)pX},

where f € C*°(M) such that df An =0 and V is Levi-Civita connection on M. If
f = a=constant# 0, then the manifold is an a-Kenmotsu manifold [5]. 1-Kenmotsu
manifold is a Kenmotsu [8]. If f=0, then the manifold is cosymplectic [5]. An f-
Kenmotsu manifold is said to be to be regular if f? + f' # 0, where ' = £(f).

For an f-Kenmotsu manifold it follows that

(8) Vx§ = X = n(X)¢}.

Then using (8), we have

(9) (Vxn)Y = f(g(X,Y) = n(X)n(Y)).

The condition df An = 0 holds if dim M > 5. This does not hold in general if dim
M=3 [12]. In a 3-dimensional f-Kenmotsu manifold M, we have [12]

RX,Y)Z = (La2f+2f){g(Y,2)X — g(X,2)Y}

2
= (537 +3{9(Y. 2n(X)E — g(X, Zm(V )
(10) + n(Y)n(Z2)X —n(X)n(2)Y},
(1) SLY) =G+ 2+ M9 Y) = (5 + 35+ 3 m(X0m(Y),
(12) QX = (5 + 1>+ )X = (5 + 37> + 3/ (X )&

where R denotes the curvature tensor, S is the Ricci tensor of type (0,2), @ is the
Ricci operator and r is the scalar curvature of the manifold M.

From (10) and (11), we have

(13) R(X,Y)E = —(f*+ f){n(Y)X —n(X)Y},
(14) R(&X)Y = —(f*+ f){g(X, V)¢ = n(Y)X},
(15) S(X,€) = =2(f* + f)n(X),

(16) n(R(EX)Y) = —(f*+ (X, Y) = n(Y)n(X)},
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3. Curvature tensor of a three-dimensional f-Kenmotsu manifold with
respect to the Schouten-Van Kampen connection

The Schouten-Van Kampen connections [9], [13] V and the Levi-Civita connection
V are related by

(17) VxY = VxY —(Y)Vxé+ (Vxn)(Y)E,
for all vector fields X,Y on M.

With the help of (8) and (9), the above equation takes the form

(18) VxY = VxY + f{g(X. V)¢ —n(Y)X},

for a f-Kenmotsu manifold.

We define the curvature tensor of a three-dimensional f-Kenmotsu manifold with
respect to the Schouten-Van Kampen connection V by

(19) R(X,Y)Z =VxVyZ —VyVxZ —VixyZ.

In view of (18) we obtain

R(X,Y)Z =R(X,Y)Z+ f{g(Y,2)X — g(X,Z2)Y}
+ f9(Y, Z)n(X)€ — 9(X, Z)n(Y)E
(20) +n(Y)n(Z2)X —n(X)n(Z)Y'}.

Taking inner product of (19) with W we have

R(X,KZ, W) = R(X> Y7 Z> W) + f2{g(Y7 Z)g(Xv W) - g(X’ Z)g(}/, W)}
+ f{9(Y, Z)n(X)n(W) — (X, Z)n(Y )n(W)
(21) + g(X, Win(Y)n(Z) — g(Y,W)n(X)n(Z)}.

where R(X,Y, Z,W) = g(R(X,Y)Z,W).

From (20) we have

(22) R(X,Y)Z +R(Y,X)Z =0,
and
(23) R(X,Y)Z+R(Y,Z)X + R(Z,X)Y = 0.

Putting Z = ¢ in (19) and using (13) we get
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(24) R(X,Y)¢=0.

Again putting W = £ in (21) we have

(25)  9(R(X,Y)Z) = R(X,Y, Z,&) + (f* + {g(Y. Z)n(X) — g(X, Z)n(Y)},

Putting X =W =¢;,{i = 1,2,3}, in (21), we get

(26) S(Y,2) = S(Y, Z) + 21 + [)g(Y, Z) + ['n(Y)n(Z),

From (26), implies that

(27) S(Y,7)=5(2,Y),
(28) QX = QX + 2f*+ )X + f'n(X)E.
(29) F=r+6f+4f,

where 7 and 7 are the scalar curvatures of the connection V and V respectively.

Putting Z = ¢ in (26) and using (15) we get

(30) S(Y.€) = =2fn(Y),

Hence we can state the following :

PROPOSITION 3.1. For a three-dimensional f-Kenmotsu manifold M with respect
to the Schouten-Van Kampen connection V

(a) the curvature tensor R is given by (20),

(b) the Ricci tensor S is given by (26),

(¢) RIX,Y)Z+R(Y,Z2)X + R(Z, X)Y =0,

(d) R(X,Y)Z+ R(Y,X)Z =0,

(e) the scalar curvature 7 is given by 7 =1 + 6% + 4f/,

(f) the Ricci tensor S is symmetric.
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4. ¢-Concircularly flat and ¢-Concircularly flat f-Kenmotsu manifolds
with respect to the Schouten-Van Kampen connection

DEFINITION 4.1. A f-Kenmotsu manifold M with respect to the Schouten-Van
Kampen connection is said to be &-concircularly flat if

(31) WX, Y)E =0,

for all vector fields X,Y € x(M), x(M) is the set of all differentiable vector fields
on M.

THEOREM 4.1. A three-dimensional f-Kenmotsu manifold with respect to the
Schouten-Van Kampen connection s £-concircularly flat if and only if the manifold
M with respect to the Levi-Civita connection is also &-concircular flat provided f is a
constant.

Proof. Combining (1), (2), (20) and (29), we get

WX, Y)Z =W(X,Y)Z — gf’{g(Y, )X —g(X,2)Y}

+ gV, Z)n(X)€ — g(X, Z)n(Y)E
(32) +n(Y)n(Z)X —n(X)n(Z)Y}.

Putting Z = ¢ in (32) we get

!/
(33) WX Y)E = WX, Y)E+ T {n(Y)X —n(X)Y}.
Hence the proof of theorem is completed. O

THEOREM 4.2. A three-dimensional f-Kenmotsu manifold is &-concircularly flat
with respect to the Schouten-Van Kampen connection if and only if the scalar curvature
with respect to the Schouten-Van Kampen connection vanishes.

Proof. Putting Z = £ in (2) and using (4) and (24), we have

(34) WX Y)E= — ()X —n(X)Y}

Thus the theorem is proved. O

THEOREM 4.3. A f-Kenmotsu manifold admitting Schouten-Van Kampen connec-
tion is ¢-concircular flat if and only if the manifold is an n-Einstein manifold with
respect to the Levi-Civita connection.

Proof. From (2) it follows that
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g(W(pX,0Y ) Z,oU) = g(R(¢X, $Y)$Z, ¢U)
— {96V, 02)9(6 X, 6U)

(35) — 9(6X,02)g(0Y, oW)}.
Suppose
(36) g(W(pX,¢Y)$Z,¢U) = 0.

Then from (35) we get

0= g(R(6X, dY)dZ, ¢U)

~ H{ol6Y. 62)g(6X, 0U)
(37) —9(¢X,0Z)g(¢Y, oW)}.

339

Let {e1,e2,£} be a local orthonormal basis of the vector fields in M and using the
fact that {¢ei, pes, £} is also a local orthonormal basis, putting X = U = ¢; in (37)

and summing up with respect to ¢, we have

2
0= 9(R(6X,6Y)0Z,6U)
=1

- £ 3 {0(0Y,02)9(6, 00)
(38) —9(¢X,0Z)g(¢Y, oW)}.

From the above equation it follows that

(39) 3(6Y, 67) = Lo(V.07).

Putting X = ¢X, Y = ¢Y in (39) and using (3), (15) and (26) we get

r—6f2—2f r+6f2+10f

(10)  S(,2) =] -

19(Y,Z) — |

Conversely, let S be of the form (40), then obviously

9(W(0X,0Y)pZ, ¢U) = 0.
Thus the theorem is proved.

In(Y)n(Z).
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5. Almost 7-Ricci soliton on f-Kenmotsu manifold admitting Schouten-
Van Kampen connection V satisfying W.5=0

In this section we consider f-Kenmotsu manifold admitting Schouten-Van Kampen
connection V satisfying W.S = 0.

THEOREM 5.1. A three-dimensional f-Kenmotsu manifold with respect to the
Schouten-Van Kampen connection satisfies W.S=0, then the manifold M is an Ein-

stein manifold with respect to the Schouten-Van Kampen connection provided f is not
a constant and 7 # 0.

Proof. We suppose that the manifold under consideration is the Schouten-Van
Kampen connection M, that is

(WX, Y).9)(U, V) =0,
where X, Y, U,V € x(M), x(M) is the set of all differentiable vector fields on M.

Then we have

(41) S(W(X,Y)U,V) + S(UW(X,Y)V) = 0.

Putting U = £ in (41) and using (2) we have

0==[n(Y)S(X,V) = n(X)S(Y,V)]

D =

(42) +2f[g(R(X,Y)V,€) — —{g(Y Vn(X) — g(X, V)n(Y)}].

Again putting X = ¢ in (42) and using (25), (26), (29) and (30) we have

(43) LS V)~ 27'9(Y V)} =0,

Then above equation implies that

(44) S(Y, V) ==2fg(Y,V),

provided 7 # 0.
Hence the theorem is proved. O
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6. Locally ¢-Ricci symmetry on f-Kenmotsu Manifold with respect to
the Schouten-Van Kampen connection

DEFINITION 6.1. A f-Kenmotsu manifold is said to be ¢-Ricci symmetric if the
Ricci operator satisfies

(45) ¢*(VxQ)Y) =0,

for all vector fields X,Y in M and S(X,Y) = g(QX,Y). If X, Y are orthogonal to
€, then the manifold is manifold is said to be locally ¢-Ricci symmetric. The notion
of ¢-symmetry was introduced by E. Boeckx, P. Buecken and L. Vanhecke [1]. In [3],
De and Sarkar studied ¢-Ricci symmetric sasakian manifolds.

THEOREM 6.1. A three-dimensional f-Kenmotsu manifold locally ¢-Ricci symme-
try with respect to the Schouten-Van Kampen connection and the Levi-Civita connec-
tion are equivalent.

Proof. We have

(46) (VxQ)Y = VQY — Q(VxY).

Using (18) and (28) in (46)

(47)  (VxQ)Y =VQY + f'(Vxn)(Y)E+ fn(Y)VxE — Q(VxY) — f'n(VxY)E.

Again using (12), (18) and (28) in (47) we have

(VxQ)Y = (VxQ)Y + f{g(X,QY)E —n(QY)X} + f(Vxn)(Y)E
(48) — Hy(X,Y)Q¢ —n(Y)QX} — f'n(VxY)E.

Considering X, Y orthogonal to £ and using (3), (12) from (48) it follows that

(49) F*(VxQ)Y = ¢*(VxQ)Y.

Thus the theorem is proved. O
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7. Example

We consider an example of a three-dimensional manifold M = {(z,y,z) € R®, 2 #
0}, where (z,y, 2) are the standard coordinates in R?® [14]. The vector fields

9 =2l =2
8x’ 2 — aya 3_827

are linearly independent at each point of M. Let g be the Riemannian metric defined
by

61222

9(61763) = 9(62763) = 9(61,62) =0, 9(61761) = 9(62762) = 9(€3> 63) =1L

Let n be the 1-form defined by n(Z) = g(Z, e3) for any Z € x(M). Let ¢ be the
(1,1) tensor field defined by ¢(e1) = —ea, ¢(e2) = e1, ¢(e3) = 0. Then using the
linearity of ¢ and g we have

nles) =1, ¢*Z=-Z+n(2)es, g(¢Z,¢W) = g(Z,W)—n(Z)n(W),

for any Z, W € x(M). Thus for e3 = &, (¢,£,n,g) defines an almost contact metric
structure on M. Now, by direct computations we obtain

2 2
=0, ,€3] = ——éaq, e, €3] = ——eq.
[61762] [62 63] z€2 [ 1 3] s 1
By Koszul formula we have
Ve, €3 = —2 1 Ve e2 =0, Ve e1 = %63,
v82€3 —3€2; v6262 = 3637 v6261 = Oa
Ve3e3 = 0 ve362 = O, v6361 =0.

From above we see that the manifold satisfies Vx& = f(X — n(X)¢) for £ = es,
where f = —2. Hence the manifold is a f-Kenmotsu manifold. Also f? + f' # 0.
Hence M is a regular f-Kenmotsu manifold [18].

In [18] the authors obtained the expression of the curvature tensor as follows:

R(e1,ez)es =0, Rles, e3)es = —Seo, R(e,e3)es = —Sey,
R(@l, 62)62 = —;1261, R(@Q, 63)62 = 2%63, R(el, 63)62 = 0,
R(e1,ez)er = eo, R(ez, e3)e; =0, Rley,e3)er = Ses.

Now using above relations we get from ( [19]) as follows:

?6163: (_%_f)elv ?6162:07 ?6161 = %(63_5)7
Y6263 = <_% - f)er Yt?ze? = %(63 - 6), Yegel =0,
Ve3€3 = _f(e3 - 6)7 V€3€2 = 07 v6361 =0.

From above we see that @eiej =0,(0<4,j<3)for{ =e3and f = —%. Hence the
manifold is f-Kenmotsu manifold with respect to Schouten-Van Kampen connection.
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From the above expressions of the curvature tensor we obtain the Ricci tensor as

follows:
3

10
S<€1, 61) = Zg(R(el, 61)61, 61) = —g
i=1
Similarly, we have
10 12
S(@Q,eg) = —; and 5(63,63) = —;
Therefore, the scalar curvature tensors r = 37 S(e;, e;) = —Handr = S S(ese) =
0 with respect to Levi-Civita connection and Schouten-Van Kampen connection re-
spectively. Hence for f = —%, PropPOSITION 3.1. is verified. Also the THEOREM

4.2. is verified.
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