ON FUZZY BI-IDEALS IN SEMIGROUPS

INHEUNG CHON

ABSTRACT. We characterize the fuzzy bi-ideal generated by a fuzzy subset in a semigroup and the fuzzy bi-ideal generated by a fuzzy subset A such that $A \subseteq A^2$ in a semigroup with an identity element. Our work generalizes the characterization of fuzzy bi-ideals by Mo and Wang ([8]).

1. Introduction

Zadeh ([13]) introduced the concept of a fuzzy set for the first time and this concept was applied by Rosenfeld ([9]) to define fuzzy subgroups and fuzzy ideals. Based on this crucial work, Kuroki ([2, 3, 4, 5, 6]) defined a fuzzy semigroup and various kinds of fuzzy ideals in semigroups and characterized them. On the other hand, Mo and Wang ([8]) defined some kinds of fuzzy ideals generated by fuzzy subsets in a semigroup with an identity element and Xie ([12]) reproved the results of Mo and Wang using the level subsets. However the fuzzy bi-ideal generated by a fuzzy subset in a semigroup has not yet been defined and studied. In this note we are able to define the fuzzy bi-ideal generated by a fuzzy subset in a semigroup and obtain the same results, as special cases of our main results, that Mo and Wang ([8]) found in a semigroup with an identity element or a regular semigroup.

In section 2 we give some definitions and propositions which will be used in the next section. In section 3 we define the fuzzy bi-ideal generated by a fuzzy subset in a semigroup, define the fuzzy bi-ideal generated by a fuzzy subset A such that $A \subseteq A^2$ in a semigroup with an identity element, and find, as special cases, the fuzzy bi-ideal generated

Received August 8, 2011. Revised September 5, 2011. Accepted September 10, 2011.

²⁰⁰⁰ Mathematics Subject Classification: 20N25.

Key words and phrases: t-norm, fuzzy bi-ideal, regular semigroup.

This work was supported by a special research grant from Seoul Women's University (2011).

by a fuzzy subset A in a semigroup S with an identity element e such that $A(e) \geq A(x)$ for all $x \in S$ and the fuzzy bi-ideal generated by a fuzzy subset in a regular semigroup.

2. Preliminaries

In this section, we give some definitions and propositions which will be used in section 3.

DEFINITION 2.1. A function B from a set X to the closed unit interval [0, 1] in \mathbb{R} is called a fuzzy subset in X. For every $x \in X$, B(x) is called the membership grade of x in B. A fuzzy subset in X is called a fuzzy point iff it takes the value 0 for all $y \in X$ except one, say, $x \in X$. If its value at x is α (0 < $\alpha \le 1$), we denote this fuzzy point by x_{α} , where the point x is called its support. The fuzzy point x_{α} is said to be contained in a fuzzy subset A, denoted by $x_{\alpha} \in A$, iff $\alpha \le A(x)$.

REMARK. The crisp set S itself is a fuzzy subset of S such that S(x) = 1 for all $x \in S$ (see Lemma 2.4 of [5] or [11]).

DEFINITION 2.2. A triangular norm (briefly t-norm) is a function $T:[0,1]\times[0,1]\to[0,1]$ satisfying, for each p,q,r,s in [0,1],

- (1) T(p,1) = p
- (2) $T(p,q) \le T(r,s)$ if $p \le r$ and $q \le s$
- (3) T(p,q) = T(q,p)
- (4) T(p, T(q, r)) = T(T(p, q), r)

DEFINITION 2.3. A t-norm $T: [0,1] \times [0,1] \to [0,1]$ is continuous if T is continuous with respect to the usual topologies.

It is well known ([1]) that the function $T_m:[0,1]\times[0,1]\to[0,1]$ defined by $T_m(a,b)=\min(a,b)$, the function $T_p:[0,1]\times[0,1]\to[0,1]$ defined by $T_p(a,b)=ab$, and the fuction $T_M:[0,1]\times[0,1]\to[0,1]$ defined by $T_M(a,b)=\max(a+b-1,0)$ are continuous t-norms.

For fuzzy sets U, V in a set X, Liu ([7]) defined $U \circ V$ by

$$(U \circ V)(x) = \begin{cases} \sup_{ab=x} \min(U(a), V(b)) & \text{if } ab = x \\ 0 & \text{if } ab \neq x. \end{cases}$$

Sessa ([10]) generalized this definition by replacing the minimum operation with a t-norm as follows.

DEFINITION 2.4. Let X be a set and let U, V be two fuzzy sets in X. $U \circ V$ is defined by

$$(U \circ V)(x) = \begin{cases} \sup_{ab=x} T(U(a), V(b)) & \text{if } ab = x \\ 0 & \text{if } ab \neq x. \end{cases}$$

We write UV for $U \circ V$ throughout this paper.

PROPOSITION 2.5. Let A_1, A_2, \ldots, A_n be fuzzy subsets of a set S. Then

$$(1) (A_1 \cup A_2 \cup \cdots \cup A_n)S \subseteq A_1S \cup A_2S \cup \cdots \cup A_nS.$$

$$(2) S(A_1 \cup A_2 \cup \cdots \cup A_n) \subseteq SA_1 \cup SA_2 \cup \cdots \cup SA_n.$$

Proof. (1) Since S(b) = 1,

$$[(A_1 \cup A_2 \cup \cdots \cup A_n)S](x)$$

$$= \sup_{ab=x} T((A_1 \cup A_2 \cup \cdots \cup A_n)(a), S(b))$$

$$= \sup_{ab=x} \max[A_1(a), A_2(a), \dots, A_n(a)].$$

Since S(b) = 1,

$$(A_1S \cup A_2S \cup \dots \cup A_nS)(x)$$
= $\max[\sup_{ab=x} T(A_1(a), S(b)), \dots, \sup_{ab=x} T(A_n(a), S(b))]$
= $\max[\sup_{ab=x} A_1(a), \sup_{ab=x} A_2(a), \dots, \sup_{ab=x} A_n(a)].$

Thus $(A_1 \cup A_2 \cup \cdots \cup A_n)S \subseteq A_1S \cup A_2S \cup \cdots \cup A_nS$. (2) Similarly, we may prove $S(A_1 \cup A_2 \cup \cdots \cup A_n) \subseteq SA_1 \cup SA_2 \cup \cdots \cup SA_n$.

Liu ([7]) proved Proposition 2.6, Proposition 2.7, and Proposition 2.8 for the case that the t-norm is a minimum function.

PROPOSITION 2.6. Let A, B be fuzzy sets in a set X and let x_p, y_q be fuzzy points in X. Then

(1)
$$x_p y_q = (xy)_{T(p,q)}$$
.
(2) $AB = \bigcup_{x_p \in A, y_q \in B} x_p y_q$, where $(x_p y_q)(z) = \sup_{cd=z} T(x_p(c), y_q(d))$.

Proof. The proof is similar to that of Proposition 1.1 of [7]. \Box

PROPOSITION 2.7. Let A be a fuzzy set of a groupoid X. Then the followings are equivalent.

- (1) A is a fuzzy groupoid, that is, $A(xy) \ge T(A(x), A(y))$.
- (2) For any $x_p, y_q \in A$, $x_p y_q \in A$.
- (3) $AA \subseteq A$.

Proof. Straightforward from Proposition 2.6. \square

PROPOSITION 2.8. Let A, B, and C be fuzzy sets in a semigroup X and let T be a continuous t-norm. Then (AB)C = A(BC).

From now on, we assume that every t-norm in this paper is continuous.

3. Fuzzy bi-ideals generated by fuzzy subsets in semigroups

In this section, we define the fuzzy bi-ideal generated by a fuzzy subset in a semigroup and the fuzzy bi-ideal generated by a fuzzy subset A in a semigroup with an identity element such that $A \subseteq AA$. Also we find, as special cases, the fuzzy bi-ideal generated by a fuzzy subset A in a semigroup with an identity element e such that $A(e) \geq A(x)$ for all $x \in S$ and the fuzzy bi-ideal generated by a fuzzy subset in a regular semigroup, which were found originally by Mo and Wang ([8]).

DEFINITION 3.1. Let S be a semigroup. The fuzzy subset H in S is a fuzzy subsemigroup of S if $H(xy) \geq T(H(x), H(y))$ for all $x, y \in S$. A fuzzy subsemigroup B of S is called a fuzzy bi-ideal of S if $B(xyz) \geq T(B(x), B(z))$.

DEFINITION 3.2. Let S be a semigroup. S is called a regular semigroup if for every $x \in S$, there exists $a \in S$ such that xax = x.

THEOREM 3.3. Let A be a fuzzy subset in a semigroup S. Then the fuzzy bi-ideal F generated by A is $A \cup A^2 \cup ASA$. That is, $F(x) = \max[A(x), \sup T(A(a), A(b)),$

$$\sup_{cdb=x} T(A(c), A(b))].$$

Proof. Let $\{J_i : i \in I\}$ be the collection of all fuzzy bi-ideals of S containing A. Since T is a continuous and increasing function,

$$(J_{i}SJ_{i})(x) = \sup_{ab=x} T(J_{i}S(a), J_{i}(b)) = \sup_{ab=x} T(\sup_{cd=a} T(J_{i}(c), S(d)), J_{i}(b))$$

$$= \sup_{ab=x} T(\sup_{cd=a} J_{i}(c), J_{i}(b)) = \sup_{ab=x} \sup_{cd=a} T(J_{i}(c), J_{i}(b))$$

$$= \sup_{cdb=x} T(J_{i}(c), J_{i}(b)) \le \sup_{cdb=x} J_{i}(cdb) = J_{i}(x)$$

for each $i \in I$. Thus $ASA \subseteq J_iSJ_i \subseteq J_i$ for each $i \in I$. Since each J_i is a fuzzy semigroup, $(J_iJ_i)(x) = \sup_{ab=x} T(J_i(a), J_i(b)) \le \sup_{ab=x} J_i(ab) = J_i(x)$. That is, $A^2 \subseteq J_iJ_i \subseteq J_i$ for each $i \in I$. Hence $A \cup A^2 \cup ASA \subseteq \bigcap_{i \in I} J_i$. By Proposition 2.5,

$$(A \cup A^2 \cup ASA)S(A \cup A^2 \cup ASA) \subseteq (AS \cup A^2S \cup ASAS)(A \cup A^2 \cup ASA).$$

Since $A \subseteq S$ and S is a semigroup.

$$(AS \cup A^{2}S \cup ASAS)(A \cup A^{2} \cup ASA)$$

$$\subseteq (AS \cup AS^{2} \cup AS^{3})(A \cup A^{2} \cup ASA)$$

$$\subseteq AS(A \cup A^{2} \cup ASA)$$

$$\subseteq ASA \cup ASA^{2} \cup ASASA$$

$$\subseteq ASA \cup AS^{2}A \cup AS^{3}A = ASA.$$

Thus $(A \cup A^2 \cup ASA)S(A \cup A^2 \cup ASA) \subseteq A \cup A^2 \cup ASA$. Let $H = A \cup A^2 \cup ASA$. Then $HSH \subseteq H$. Since T is a continuous and increasing

function,

$$H(xyz) \ge (HSH)(xyz) = \sup_{ab = xyz} T[HS(a), H(b)]$$

$$= \sup_{ab = xyz} T[\sup_{cd = a} T(H(c), S(d)), H(b)] = \sup_{ab = xyz} T[\sup_{cd = a} H(c), H(b)]$$

$$= \sup_{ab = xyz} \sup_{cd = a} T(H(c), H(b)) = \sup_{cdb = xyz} T(H(c), H(b))$$

$$> T(H(x), H(z)).$$

Since $A \subseteq S$ and S is a semigroup,

$$(A \cup A^2 \cup ASA)(A \cup A^2 \cup ASA)$$

$$\subseteq (A \cup AS \cup ASS)(A \cup SA \cup SSA)$$

$$\subseteq (A \cup AS)(A \cup SA)$$

$$\subseteq A^2 \cup ASA \cup ASA \cup ASSA$$

$$\subseteq A \cup A^2 \cup ASA.$$

By Proposition 2.7, $A \cup A^2 \cup ASA$ is a fuzzy subsemigroup. Thus $H = A \cup A^2 \cup ASA$ is a fuzzy bi-ideal of S containing A. Hence $A \cup A^2 \cup ASA = \bigcap_{i \in I} J_i$.

Since T is continuous and increasing,

$$(ASA)(x) = \sup_{ab=x} T(AS(a), A(b)) = \sup_{ab=x} T(\sup_{cd=a} T(A(c), S(d)), A(b))$$

$$= \sup_{ab=x} T(\sup_{cd=a} A(c), A(b)) = \sup_{ab=x} \sup_{cd=a} T(A(c), A(b))$$

$$= \sup_{cdb=x} T(A(c), A(b)).$$

Thus
$$F(x) = \max[A(x), \sup_{ab=x} T(A(a), A(b)), \sup_{cdb=x} T(A(c), A(b))].$$

Example of Theorem 3.3. Let $S = \{a, b, c, d, f\}$. We define a binary operation on S by means of the following table.

*	a	b	c	d	f
\overline{a}	a	a	a	d	d
b	a	b	c	d	d
c	a	c	b	d	d
d	d	d	d	a	a
$ \begin{array}{c} $	d	f	f	a	a

It is straightforward to see that S is a noncommutative semigroup. Let A be a fuzzy set in S such that

$$A(a) = 0.3, \ A(b) = 0.1, \ A(c) = 0.5, \ A(d) = 0.9, \ A(f) = 0.7.$$

Since
$$A^2(b) = \sup_{xy=b} T(A(x), A(y)),$$

$$A^{2}(b) = \max [T(A(b), A(b)), T(A(c), A(c))] = T(0.5, 0.5).$$

Similarly we may show that

$$A^{2}(a) = T(0.9, 0.9), \ A^{2}(c) = T(0.1, 0.5),$$

 $A^{2}(d) = T(0.5, 0.9), \ A^{2}(f) = T(0.7, 0.5).$

Since
$$(SA)(b) = \sup_{xy=b} T(S(x), A(y)) = \max [A(b), A(c)] = 0.5$$
 and $SA(c) = A(c) = 0.5$,

$$\begin{split} (ASA)(b) &= \sup_{xy=b} \, T(A(x), SA(y)) \\ &= \max \, \left[T(A(b), SA(b)), \, \, T(A(c), SA(c)) \right] \\ &= \max \, \left[T(0.1, 0.5), \, \, T(0.5, 0.5) \right] = T(0.5, 0.5). \end{split}$$

Similarly we may show that

$$(ASA)(a) = (ASA)(d) = T(0.9, 0.9), \ ASA(c) = T(0.5, 0.5),$$

 $ASA(f) = T(0.7, 0.5).$

Let $H = A \cup A^2 \cup ASA$. Then

$$H(a) = \max [0.3, T(0.9, 0.9)], H(b) = \max [0.1, T(0.5, 0.5)],$$

 $H(c) = 0.5, H(d) = 0.9, H(f) = 0.7.$

It is easily checked that $H(\alpha\beta) \geq T(H(\alpha), H(\beta))$ and $H(\alpha\beta\gamma) \geq T(H(\alpha), H(\gamma))$ for every $\alpha, \beta, \gamma \in S$. That is, H is a fuzzy bi-ideal in S. Let I be a fuzzy bi-ideal containing A. Since $I(a) = I(dd) \geq T(I(d), I(d)) \geq T(A(d), A(d)) = T(0.9, 0.9)$ and $I(a) \geq A(a) = 0.3$, $I(a) \geq H(a)$. Since $I(b) = I(cc) \geq T(I(c), I(c)) \geq T(A(c), A(c)) = T(0.5, 0.5)$ and $I(b) \geq A(b) = 0.1$, $I(b) \geq H(b)$. $I(c) \geq A(c) = 0.5 = H(c)$, $I(d) \geq A(d) = 0.9 = H(d)$, and $I(f) \geq A(f) = 0.9 = H(f)$. That is, $H \subseteq I$. Thus $H = A \cup A^2 \cup ASA$ is the fuzzy bi-ideal generated by A.

THEOREM 3.4. Let A be a fuzzy subset in a semigroup S with an identity element e such that $A \subseteq A^2$ and let a t-norm T be a minimum operation. Then the fuzzy bi-ideal F generated by A is ASA. That is, $F(x) = ASA(x) = \sup_{cdb = x} \min(A(c), A(b))$.

Proof. Let $\{J_i : i \in I\}$ be the collection of all fuzzy bi-ideals of S containing A. Then $ASA \subseteq \bigcap_{i \in I} J_i$ from the proof of Theorem 3.3. We may show that $(ASA)S(ASA) \subseteq ASA$ by the same way as shown in Theorem 3.3. Let H = ASA. Then we may show that $H(xyz) \ge \min(H(x), H(z))$ by the same way as shown in Theorem 3.3. Since S is a semigroup and $A \subseteq S$,

$$(ASA)(ASA) = A(SAAS)A \subset A(SSSS)A \subset ASA.$$

By Proposition 2.7, ASA is a fuzzy subsemigroup. Thus ASA is a fuzzy bi-ideal of S. Also

$$ASA(x) = \sup_{ab=x} \min(AS(a), A(b))$$

$$= \sup_{ab=x} \min(\sup_{cd=a} \min(A(c), S(d)), A(b))$$

$$\geq \sup_{ab=x} \min(\min(A(a), S(e)), A(b))$$

$$= \sup_{ab=x} \min(A(a), A(b)) = AA(x).$$

Since $A \subseteq AA$, $A \subseteq ASA$. Thus ASA is a fuzzy bi-ideal of S containing A. Hence $ASA = \bigcap_{i \in I} J_i$.

Mo and Wang showed that the fuzzy bi-ideal F generated by a fuzzy subsemigroup A such that $A(e) \geq A(x)$ for all $x \in S$ in a semigroup S with an identity element e is represented as $F(x) = \sup_{cdb=x} \min(A(c), A(b))$ (see Theorem 5.3 of [8]). Our Corollary 3.5 seems to be somewhat stronger than Mo and Wang's.

COROLLARY 3.5. Let A be a fuzzy subset in a semigroup S with an identity element e such that $A(e) \geq A(x)$ for all $x \in S$ and let a t-norm T be a minimum operation. Then the fuzzy bi-ideal F generated by A is ASA. That is, $F(x) = \sup \min(A(c), A(b))$.

cdb = x

Proof. Since $A(e) \geq A(x)$,

$$AA(x) = \sup_{ab=x} \min(A(a), A(b))$$

$$\geq \min(A(x), A(e)) = A(x)$$

That is, $A \subseteq AA$. By Theorem 3.4, the fuzzy ideal generated by A is ASA.

Corollary 3.6 is due to Mo and Wang (see Theorem 5.4 of [8]). Also Xie showed it again (see Theorem 4.2 of [12]). We obtain it as a special case of our more general approach.

COROLLARY 3.6. Let A be a fuzzy subset in a regular semigroup S and let a t-norm T be a minimum operation. Then the fuzzy bi-ideal F generated by A is ASA. That is, $F(x) = \sup_{cdb=x} \min(A(c), A(b))$.

Proof. Since S is a regular semigroup,

$$ASA(x) = \sup_{ab=x} \min(AS(a), A(b))$$

$$= \sup_{ab=x} \min \left[\sup_{cd=a} \min(A(c), S(d)), A(b) \right]$$

$$= \sup_{ab=x} \min(\sup_{cd=a} (A(c), A(b))$$

$$= \sup_{cdb=x} \min(A(c), A(b))$$

$$\geq \min(A(x), A(x)) = A(x).$$

That is, $A \subseteq ASA$. We may show that ASA is the smallest fuzzy bi-ideal of S containing A by the same way as shown in Theorem 3.4. From the proof of Theorem 3.3, $ASA(x) = \sup_{cdb=x} \min(A(c), A(b))$.

References

- [1] J.M. Anthony and H. Sherwood, Fuzzy groups redefined, J. Math. Anal. Appl. **69** (1979), 124–130.
- [2] N. Kuroki, Fuzzy bi-ideals in semigroups, Comment. Math. Univ. St. Pauli 28 (1979), 17–21.

- [3] N. Kuroki, On fuzzy ideals and bi-ideals in semigroups, Fuzzy Sets and Systems **5** (1981), 203–215.
- [4] N. Kuroki, Fuzzy semiprime ideals in semigroups, Fuzzy Sets and Systems 8 (1982), 71–79.
- [5] N. Kuroki, On fuzzy semigroups, Inform. Sci. 53 (1991), 203–236.
- [6] N. Kuroki, Fuzzy semiprime quasi-ideals in semigroups, Inform. Sci. 75 (1993), 201–211.
- [7] W.J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 8 (1982), 133–139.
- [8] Z.-W. Mo and X.-P. Wang, Fuzzy ideals generated by fuzzy sets in semigroups, Inform. Sci. 86 (1995), 203–210.
- [9] A. Rosenfeld, Fuzzy Groups, J. Math. Anal. Appl. 35 (1971), 512–517.
- [10] S. Sessa, On fuzzy subgroups and fuzzy ideals under triangular norms, Fuzzy Sets and Systems 13 (1984), 95–100.
- [11] X.-P. Wang, Fuzzy regular subsemigroups in semigroups, Inform. Sci. 68 (1993), 225–231.
- [12] X.-Y. Xie, Fuzzy ideals in semigroups, J. Fuzzy Math. 7 (1999), 357–365.
- [13] L.A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338–353.

Department of Mathematics Seoul Women's University 126 Kongnung 2-Dong, Nowon-Gu Seoul 139-774, South Korea