COEFFICIENT BOUNDS FOR p-VALENTLY CLOSE-TO-CONVEX FUNCTIONS ASSOCIATED WITH VERTICAL STRIP DOMAIN

Serap Bulut

Abstract

By considering a certain univalent function that maps the unit disk \mathbb{U} onto a strip domain, we introduce new subclasses of analytic and p-valent functions and determine the coefficient bounds for functions belonging to these new classes. Relevant connections of some of the results obtained with those in earlier works are also provided.

1. Introduction

Let $\mathbb{R}=(-\infty, \infty)$ be the set of real numbers, $\mathbb{C}:=\mathbb{C}^{*} \cup\{0\}$ be the set of complex numbers and

$$
\mathbb{N}:=\{1,2,3, \ldots\}=\mathbb{N}_{0} \backslash\{0\}
$$

be the set of positive integers.
Assume that \mathcal{H} is the class of analytic functions in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\}
$$

and let the class \mathcal{P} be defined by

$$
\mathcal{P}=\{p \in \mathcal{H}: p(0)=1 \quad \text { and } \quad \Re(p(z))>0(z \in \mathbb{U})\} .
$$

For two functions $f, g \in \mathcal{H}$, we say that the function f is subordinate to g in \mathbb{U}, and write

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}),
$$

if there exists a Schwarz function

$$
\omega \in \Omega:=\{\omega \in \mathcal{H}: \omega(0)=0 \quad \text { and } \quad|\omega(z)|<1(z \in \mathbb{U})\}
$$

such that

$$
f(z)=g(\omega(z)) \quad(z \in \mathbb{U}) .
$$

Indeed, it is known that

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}) \Rightarrow f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

Furthermore, if the function g is univalent in \mathbb{U}, then we have the following equivalence

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}) \Leftrightarrow f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

Received March 19, 2021. Revised May 6, 2021. Accepted May 7, 2021.
2010 Mathematics Subject Classification: 30C45, 30C50.
Key words and phrases: Analytic functions, close-to-convex functions, coefficient bounds, subordination.
(C) The Kangwon-Kyungki Mathematical Society, 2021.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

Let \mathcal{A}_{p} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{p+n} z^{p+n} \quad(p \in \mathbb{N}, z \in \mathbb{U}) \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk \mathbb{U}. In particular, we set $\mathcal{A}_{1}:=\mathcal{A}$ for the class of analytic functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=1}^{\infty} a_{n+1} z^{n+1} \quad(z \in \mathbb{U}) . \tag{2}
\end{equation*}
$$

We also denote by \mathcal{S} the class of all functions in the normalized analytic function class \mathcal{A} which are univalent in \mathbb{U}.

A function $f \in \mathcal{A}_{p}$ is said to be p-valently starlike of order $\alpha(0 \leq \alpha<1)$ with complex order $b\left(b \in \mathbb{C}^{*}\right)$, if it satisfies the inequality

$$
\Re\left\{1+\frac{1}{b}\left(\frac{1}{p} \frac{z f^{\prime}(z)}{f(z)}-1\right)\right\}>\alpha \quad(z \in \mathbb{U})
$$

We denote the class which consists of all functions $f \in \mathcal{A}_{p}$ satisfying the above condition by $\mathcal{S}_{p}^{*}(b, \alpha)$. In particular, we get the class
(i) $\mathcal{S}_{p}^{*}(b, 0)=\mathcal{S}_{p}^{*}(b)$ of p-valently starlike functions of complex order b,
(ii) $\mathcal{S}_{p}^{*}(1, \alpha)=\mathcal{S}_{p}^{*}(\alpha)$ of p-valently starlike functions of order α,
(iii) $\mathcal{S}_{p}^{*}(1,0)=\mathcal{S}_{p}^{*}$ of p-valently starlike functions,
(iv) $\mathcal{S}_{1}^{*}(b, \alpha)=\mathcal{S}^{*}(b, \alpha)$ of starlike functions of complex order b,
$(v) \mathcal{S}_{1}^{*}(1, \alpha)=\mathcal{S}^{*}(\alpha)$ of starlike functions of order α,
(vi) $\mathcal{S}_{1}^{*}(1,0)=\mathcal{S}^{*}$ of starlike functions.

A function $f \in \mathcal{A}_{p}$ is said to be p-valently convex of order $\alpha(0 \leq \alpha<1)$ with complex order $b\left(b \in \mathbb{C}^{*}\right)$, if it satisfies the inequality

$$
\Re\left\{1-\frac{1}{b}+\frac{1}{b p}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>\alpha \quad(z \in \mathbb{U})
$$

We denote the class which consists of all functions $f \in \mathcal{A}_{p}$ satisfying the above condition by $\mathcal{K}_{p}(b, \alpha)$. In particular, we get the class
(i) $\mathcal{K}_{p}(b, 0)=\mathcal{K}_{p}(b)$ of p-valently convex functions of complex order b,
(ii) $\mathcal{K}_{p}(1, \alpha)=\mathcal{K}_{p}(\alpha)$ of p-valently convex functions of order α,
(iii) $\mathcal{K}_{p}(1,0)=\mathcal{K}_{p}$ of p-valently convex functions,
(iv) $\mathcal{K}_{1}(b, \alpha)=\mathcal{K}(b, \alpha)$ of convex functions of complex order b,
(v) $\mathcal{K}_{1}(1, \alpha)=\mathcal{K}(\alpha)$ of convex functions of order α,
(vi) $\mathcal{K}_{1}(1,0)=\mathcal{K}$ of convex functions.

It is clear that

$$
f \in \mathcal{K}_{p}(b, \alpha) \Leftrightarrow \frac{1}{p} z f^{\prime} \in \mathcal{S}_{p}^{*}(b, \alpha)
$$

Definition 1.1. Let $0 \leq \alpha, \delta<1$ and $b, \gamma \in \mathbb{C}^{*}$. A function $f \in \mathcal{A}_{p}$ is said to be p-valently close-to-convex of order α with complex order b and type δ (or Libera type
p-valently close-to-convex of complex order b) if there exists a function $g \in \mathcal{S}_{p}^{*}(\gamma, \delta)$ such that the inequality

$$
\Re\left\{1+\frac{1}{b}\left(\frac{1}{p} \frac{z f^{\prime}(z)}{g(z)}-1\right)\right\}>\alpha \quad(z \in \mathbb{U})
$$

holds. We denote the class which consists of all functions $f \in \mathcal{A}_{p}$ satisfying the above condition by $\mathcal{C}_{p}^{\gamma, \delta}(b, \alpha)$.

In particular, we get the class $\mathcal{C}_{p}^{1, \delta}(1, \alpha)=\mathcal{C}_{p}(\alpha, \delta)$ of Libera type p-valently close-to-convex functions, and $\mathcal{C}_{1}^{1, \delta}(1, \alpha)=\mathcal{C}(\alpha, \delta)$ of Libera type close-to-convex functions [7].

Definition 1.2. Let α and β be real numbers such that $0 \leq \alpha<1<\beta$ and $b \in \mathbb{C}^{*}$. Then the function $f \in \mathcal{A}_{p}$ belongs to the class $\mathcal{S}_{b, p}(\alpha, \beta)$ if it satisfies the inequalities

$$
\alpha<\Re\left\{1+\frac{1}{b}\left(\frac{1}{p} \frac{z f^{\prime}(z)}{f(z)}-1\right)\right\}<\beta \quad(z \in \mathbb{U})
$$

In particular, we get the classes $\mathcal{S}_{1, p}(\alpha, \beta)=\mathcal{S}_{p}(\alpha, \beta), \mathcal{S}_{b, 1}(\alpha, \beta)=\mathcal{S}_{b}(\alpha, \beta)$ introduced by Kargar-Ebadian-Sokol [5] and $\mathcal{S}_{1,1}(\alpha, \beta)=\mathcal{S}(\alpha, \beta)$ introduced by Kuroki and Owa [6].

Remark 1.3. If we let $\beta \rightarrow \infty$ in Definition 1.2, then the class $\mathcal{S}_{b, p}(\alpha, \beta)$ reduces to the class $\mathcal{S}_{p}^{*}(b, \alpha)$.

Definition 1.4. Let α and β be real numbers such that $0 \leq \alpha<1<\beta$ and $b \in \mathbb{C}^{*}$. Then the function $f \in \mathcal{A}_{p}$ belongs to the class $\mathcal{K}_{b, p}(\alpha, \beta)$ if it satisfies the inequalities

$$
\alpha<\Re\left\{1-\frac{1}{b}+\frac{1}{b p}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}<\beta \quad(z \in \mathbb{U})
$$

It is clear that

$$
f \in \mathcal{K}_{b, p}(\alpha, \beta) \Leftrightarrow \frac{1}{p} z f^{\prime} \in \mathcal{S}_{b, p}(\alpha, \beta)
$$

For $p=1$, the class $\mathcal{K}_{b, p}(\alpha, \beta)$ reduces to the class $\mathcal{K}_{b}(\alpha, \beta)$ introduced by Kargar-Ebadian-Sokol [5].

Remark 1.5. If we let $\beta \rightarrow \infty$ in Definition 1.4, then the class $\mathcal{K}_{b, p}(\alpha, \beta)$ reduces to the class $\mathcal{K}_{p}(b, \alpha)$.

Definition 1.6. Let α and β be real numbers such that $0 \leq \alpha<1<\beta$ and $b \in \mathbb{C}^{*}$. We denote by $\mathcal{C}_{b, p}^{\gamma, \delta}(\alpha, \beta)$ the class of functions $f \in \mathcal{A}_{p}$ satisfying

$$
\alpha<\Re\left\{1+\frac{1}{b}\left(\frac{1}{p} \frac{z f^{\prime}(z)}{g(z)}-1\right)\right\}<\beta \quad(z \in \mathbb{U})
$$

where $g \in \mathcal{S}_{\gamma, p}(\delta, \beta)$ with $0 \leq \delta<1<\beta$ and $\gamma \in \mathbb{C}^{*}$.
In particular, we get the class $\mathcal{C}_{1,1}^{1, \delta}(\alpha, \beta)=\mathcal{S}_{g}(\alpha, \beta)$ introduced by Bulut [2].
Remark 1.7. If we let $\beta \rightarrow \infty$ in Definition 1.6, then the class $\mathcal{C}_{b, p}^{\gamma, \delta}(\alpha, \beta)$ reduces to the class $\mathcal{C}_{p}^{\gamma, \delta}(b, \alpha)$.

It is worthy to note that for given $0 \leq \alpha<1<\beta$ and $b \in \mathbb{C}^{*}, f \in \mathcal{S}_{b, p}(\alpha, \beta)$ if and only if the following two subordination equations are satisfied:
$1+\frac{1}{b}\left(\frac{1}{p} \frac{z f^{\prime}(z)}{f(z)}-1\right) \prec \frac{1+(1-2 \alpha) z}{1-z} \quad$ and $\quad 1+\frac{1}{b}\left(\frac{1}{p} \frac{z f^{\prime}(z)}{f(z)}-1\right) \prec \frac{1-(1-2 \beta) z}{1+z}$.
Let us consider the analytic function $f_{\alpha, \beta}: \mathbb{U} \rightarrow \mathbb{C}$ defined by

$$
\begin{equation*}
f_{\alpha, \beta}(z)=1+\frac{\beta-\alpha}{\pi} i \log \left(\frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha} z}}{1-z}\right) \quad(0 \leq \alpha<1<\beta) \tag{3}
\end{equation*}
$$

with $f_{\alpha, \beta}(0)=1$. Kuroki and Owa [6] proved that the function $f_{\alpha, \beta}$ maps the unit disk \mathbb{U} onto the vertical strip domain

$$
\begin{equation*}
\Omega_{\alpha, \beta}=\{w \in \mathbb{C}: \alpha<\Re(w)<\beta\} \tag{4}
\end{equation*}
$$

conformally and the function $f_{\alpha, \beta}$ is a convex univalent function in \mathbb{U} having the form

$$
\begin{equation*}
f_{\alpha, \beta}(z)=1+\sum_{n=1}^{\infty} B_{n} z^{n}, \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{n}=\frac{\beta-\alpha}{n \pi} i\left(1-e^{2 n \pi i \frac{1-\alpha}{\beta-\alpha}}\right) \quad(n \in \mathbb{N}) \tag{6}
\end{equation*}
$$

Lemma 1.8. A function $f \in \mathcal{A}_{p}$ given by (1) belongs to the class $\mathcal{S}_{b, p}(\alpha, \beta)$ if and only if there exists an analytic function $q, q(0)=1$ and $q(z) \prec f_{\alpha, \beta}(z)$ such that

$$
\begin{equation*}
f(z)=z^{p} \exp \left\{b p \int_{0}^{z} \frac{q(t)-1}{t} d t\right\} \quad(z \in \mathbb{U}) . \tag{7}
\end{equation*}
$$

Proof. Assume that $f \in \mathcal{S}_{b, p}(\alpha, \beta)$ and

$$
q(z)=1+\frac{1}{b}\left(\frac{1}{p} \frac{z f^{\prime}(z)}{f(z)}-1\right) .
$$

Then $q(z) \prec f_{\alpha, \beta}(z)$ and integrating the above equality we get (7). Conversely, if the function f is given by (7), with an analytic function $q, q(0)=1$ and $q(z) \prec f_{\alpha, \beta}(z)$, then we obtain $1+\frac{1}{b}\left(\frac{1}{p} \frac{z f^{\prime}(z)}{f(z)}-1\right)=q(z)$. Therefore we have $1+\frac{1}{b}\left(\frac{1}{p} \frac{z f^{\prime}(z)}{f(z)}-1\right) \prec$ $f_{\alpha, \beta}(z)$ which implies $f \in \mathcal{S}_{b, p}(\alpha, \beta)$.

Letting $q=f_{\alpha, \beta}$ in Lemma 1.8, we obtain the function

$$
\tilde{f}(z)=z^{p} \exp \left\{b p \int_{0}^{z} \frac{f_{\alpha, \beta}(t)-1}{t} d t\right\}
$$

and hence

$$
\tilde{f}(z)=z^{p} \exp \left\{\frac{b p(\beta-\alpha)}{\pi} i \int_{0}^{z} \frac{1}{t} \log \left(\frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} t}{1-t}\right) d t\right\}
$$

belongs to the class $\mathcal{S}_{b, p}(\alpha, \beta)$. This means that the class $\mathcal{S}_{b, p}(\alpha, \beta)$ is non-empty.
As a consequence of the principle of subordination and (4), we have the following results.

Lemma 1.9. Let $f \in \mathcal{A}_{p}$ and $0 \leq \alpha<1<\beta ; b \in \mathbb{C}^{*}$. Then $f \in \mathcal{S}_{b, p}(\alpha, \beta)$ if and only if

$$
1+\frac{1}{b}\left(\frac{1}{p} \frac{z f^{\prime}(z)}{f(z)}-1\right) \prec 1+\frac{\beta-\alpha}{\pi} i \log \left(\frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} z}{1-z}\right) \quad(z \in \mathbb{U}) .
$$

Lemma 1.10. Let $f \in \mathcal{A}_{p}$ and $0 \leq \alpha<1<\beta ; b \in \mathbb{C}^{*}$. Then $f \in \mathcal{K}_{b, p}(\alpha, \beta)$ if and only if

$$
1-\frac{1}{b}+\frac{1}{b p}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec 1+\frac{\beta-\alpha}{\pi} i \log \left(\frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha} z}}{1-z}\right) \quad(z \in \mathbb{U}) .
$$

Lemma 1.11. Let $f \in \mathcal{A}_{p}$ and $0 \leq \alpha, \delta<1<\beta ; b, \gamma \in \mathbb{C}^{*}$. Then $f \in \mathcal{C}_{b, p}^{\gamma, \delta}(\alpha, \beta)$ if and only if

$$
1+\frac{1}{b}\left(\frac{1}{p} \frac{z f^{\prime}(z)}{g(z)}-1\right) \prec 1+\frac{\beta-\alpha}{\pi} i \log \left(\frac{1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}} z}{1-z}\right) \quad(z \in \mathbb{U}) .
$$

The coefficient problem for close-to-convex functions are studied by many authors in recent years, (see, for example $[1,3,4,10,12-15]$). Upon inspiration from the recent work of Bulut [2] the aim of this paper is to obtain coefficient bounds for the TaylorMaclaurin coefficients for functions in the function classes $\mathcal{S}_{b, p}(\alpha, \beta), \mathcal{K}_{b, p}(\alpha, \beta)$ and $\mathcal{C}_{b, p}^{\gamma, \delta}(\alpha, \beta)$ of analytic functions which we have introduced here. Also we investigate Fekete-Szegö problem for functions belong to the function classes $\mathcal{S}_{b, p}(\alpha, \beta)$ and $\mathcal{K}_{b, p}(\alpha, \beta)$.

In order to prove our main results, we first recall the following lemmas.
Lemma 1.12. [11] Let the function \mathfrak{g} given by

$$
\mathfrak{g}(z)=\sum_{k=1}^{\infty} \mathfrak{b}_{k} z^{k} \quad(z \in \mathbb{U})
$$

be convex in \mathbb{U}. Also let the function \mathfrak{f} given by

$$
\mathfrak{f}(z)=\sum_{k=1}^{\infty} \mathfrak{a}_{k} z^{k} \quad(z \in \mathbb{U})
$$

be analytic in \mathbb{U}. If

$$
\mathfrak{f}(z) \prec \mathfrak{g}(z) \quad(z \in \mathbb{U})
$$

then

$$
\left|\mathfrak{a}_{k}\right| \leq\left|\mathfrak{b}_{1}\right| \quad(k=1,2, \ldots) .
$$

Lemma 1.13. [8] Let $p \in \mathcal{P}$ with $p(z)=1+c_{1} z+c_{2} z^{2}+\cdots$. Then for any complex number ν

$$
\left|c_{2}-\nu c_{1}^{2}\right| \leq 2 \max \{1,|2 \nu-1|\}
$$

and the result is sharp for the functions given by

$$
p(z)=\frac{1+z^{2}}{1-z^{2}} \quad \text { and } \quad p(z)=\frac{1+z}{1-z} .
$$

2. Coefficient inequalities for the classes $\mathcal{S}_{b, p}(\alpha, \beta)$ and $\mathcal{K}_{b, p}(\alpha, \beta)$

Theorem 2.1. Let α and β be real numbers such that $0 \leq \alpha<1<\beta ; b \in \mathbb{C}^{*}$ and let the function $f \in \mathcal{A}_{p}$ be defined by (1). If $f \in \mathcal{S}_{b, p}(\alpha, \beta)$, then

$$
\left|a_{p+n}\right| \leq \frac{\prod_{k=2}^{n+1}\left(k-2+\frac{2|b| p(\beta-\alpha)}{\pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha}\right)}{n!} \quad(p, n \in \mathbb{N})
$$

Proof. Let the function $f \in \mathcal{S}_{b, p}(\alpha, \beta)$ be of the form (1). Let us define the function $q(z)$ by

$$
\begin{equation*}
q(z)=1+\frac{1}{b}\left(\frac{1}{p} \frac{z f^{\prime}(z)}{f(z)}-1\right) \quad(z \in \mathbb{U}) . \tag{8}
\end{equation*}
$$

Then according to the assertion of Lemma 1.9, we get

$$
\begin{equation*}
q(z) \prec f_{\alpha, \beta}(z) \quad(z \in \mathbb{U}), \tag{9}
\end{equation*}
$$

where $f_{\alpha, \beta}(z)$ is defined by (3). Hence, using Lemma 1.12, we obtain

$$
\begin{equation*}
\left|\frac{q^{(m)}(0)}{m!}\right|=\left|c_{m}\right| \leq\left|B_{1}\right| \quad(m \in \mathbb{N}) \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
q(z)=1+c_{1} z+c_{2} z^{2}+\cdots \quad(z \in \mathbb{U}) \tag{11}
\end{equation*}
$$

and (by (6))

$$
\begin{equation*}
\left|B_{1}\right|=\left|\frac{\beta-\alpha}{\pi} i\left(1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}}\right)\right|=\frac{2(\beta-\alpha)}{\pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha} . \tag{12}
\end{equation*}
$$

Also from (8), we find

$$
\begin{equation*}
z f^{\prime}(z)=p\{b[q(z)-1]+1\} f(z) \quad(z \in \mathbb{U}) \tag{13}
\end{equation*}
$$

Since $a_{p}=1$, in view of (13), we obtain

$$
\begin{equation*}
n a_{p+n}=b p\left[c_{n}+c_{n-1} a_{p+1}+\cdots+c_{1} a_{p+n-1}\right]=b p \sum_{j=1}^{n} c_{j} a_{p+n-j} . \tag{14}
\end{equation*}
$$

Applying (10) into (14), we get

$$
n\left|a_{p+n}\right| \leq p\left|b B_{1}\right| \sum_{j=1}^{n}\left|a_{p+n-j}\right| \quad(p, n \in \mathbb{N}) .
$$

For $n=1,2,3$, we have

$$
\begin{aligned}
& \left|a_{p+1}\right| \leq p\left|b B_{1}\right| \\
& \left|a_{p+2}\right| \leq \frac{p\left|b B_{1}\right|}{2}\left(1+\left|a_{p+1}\right|\right) \leq \frac{p\left|b B_{1}\right|}{2}\left(1+p\left|b B_{1}\right|\right) \\
& \left|a_{p+3}\right| \leq \frac{p\left|b B_{1}\right|}{3}\left(1+\left|a_{p+1}\right|+\left|a_{p+2}\right|\right) \leq \frac{p\left|b B_{1}\right|\left(1+p\left|b B_{1}\right|\right)\left(2+p\left|b B_{1}\right|\right)}{6},
\end{aligned}
$$

respectively. Using the principle of mathematical induction and the equality (12), we obtain

$$
\left|a_{p+n}\right| \leq \frac{\prod_{k=2}^{n+1}\left(k-2+p\left|b B_{1}\right|\right)}{n!}=\frac{\prod_{k=2}^{n+1}\left(k-2+p|b| \frac{2(\beta-\alpha)}{\pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha}\right)}{n!} \quad(n \in \mathbb{N})
$$

This evidently completes the proof of Theorem 2.1.
Letting $b=1$ in Theorem 2.1, we have the following result.
Corollary 2.2. Let α and β be real numbers such that $0 \leq \alpha<1<\beta$ and let the function $f \in \mathcal{A}_{p}$ be defined by (1). If $f \in \mathcal{S}_{p}(\alpha, \beta)$, then

$$
\left|a_{p+n}\right| \leq \frac{\prod_{k=2}^{n+1}\left(k-2+\frac{2 p(\beta-\alpha)}{\pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha}\right)}{n!} \quad(p, n \in \mathbb{N})
$$

Letting $p=1$ in Theorem 2.1, we have the following result.
Corollary 2.3. [5] Let α and β be real numbers such that $0 \leq \alpha<1<\beta ; b \in \mathbb{C}^{*}$ and let the function $f \in \mathcal{A}$ be defined by (2). If $f \in \mathcal{S}_{b}(\alpha, \beta)$, then

$$
\left|a_{n+1}\right| \leq \frac{\prod_{k=2}^{n+1}\left(k-2+\frac{2|b|(\beta-\alpha)}{\pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha}\right)}{n!} \quad(n \in \mathbb{N})
$$

Letting $b=1$ and $p=1$ in Theorem 2.1, we have the following result.
Corollary 2.4. [6] Let α and β be real numbers such that $0 \leq \alpha<1<\beta$ and let the function $f \in \mathcal{A}$ be defined by (2). If $f \in \mathcal{S}(\alpha, \beta)$, then

$$
\left|a_{n+1}\right| \leq \frac{\prod_{k=2}^{n+1}\left(k-2+\frac{2(\beta-\alpha)}{\pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha}\right)}{n!} \quad(n \in \mathbb{N})
$$

Letting $\beta \rightarrow \infty$ in Theorem 2.1, we have the following result.
Corollary 2.5. Let α be a real number such that $0 \leq \alpha<1 ; b \in \mathbb{C}^{*}$ and let the function $f \in \mathcal{A}_{p}$ be defined by (1). If $f \in \mathcal{S}_{p}^{*}(b, \alpha)$, then

$$
\left|a_{p+n}\right| \leq \frac{\prod_{k=2}^{n+1}(k-2+2|b| p(1-\alpha))}{n!} \quad(p, n \in \mathbb{N})
$$

Theorem 2.6. Let α and β be real numbers such that $0 \leq \alpha<1<\beta ; b \in \mathbb{C}^{*}$ and let the function $f \in \mathcal{A}_{p}$ be defined by (1). If $f \in \mathcal{S}_{b, p}(\alpha, \beta)$, then for any $\mu \in \mathbb{C}$

$$
\left|a_{p+2}-\mu a_{p+1}^{2}\right| \leq \frac{|b| p(\beta-\alpha)}{\pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha} \max \left\{1,\left|\frac{B_{2}}{B_{1}}+b p B_{1}(1-2 \mu)\right|\right\},
$$

where

$$
\begin{equation*}
B_{1}=\frac{\beta-\alpha}{\pi} i\left(1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}}\right) \quad \text { and } \quad B_{2}=\frac{\beta-\alpha}{2 \pi} i\left(1-e^{4 \pi i \frac{1-\alpha}{\beta-\alpha}}\right) . \tag{15}
\end{equation*}
$$

The result is sharp.

Proof. If $f \in \mathcal{S}_{b, p}(\alpha, \beta)$, then we have

$$
q(z) \prec f_{\alpha, \beta}(z) \quad(z \in \mathbb{U}),
$$

where

$$
\begin{equation*}
q(z)=1+\frac{1}{b}\left(\frac{1}{p} \frac{z f^{\prime}(z)}{f(z)}-1\right)=1+c_{1} z+c_{2} z^{2}+\cdots \quad(z \in \mathbb{U}) \tag{16}
\end{equation*}
$$

and

$$
f_{\alpha, \beta}(z)=1+\sum_{n=1}^{\infty} B_{n} z^{n}=1+\sum_{n=1}^{\infty} \frac{\beta-\alpha}{n \pi} i\left(1-e^{2 n \pi i \frac{1-\alpha}{\beta-\alpha}}\right) z^{n} \quad(z \in \mathbb{U})
$$

As explained in the proof of Theorem 2.1, from (14) we get

$$
\begin{equation*}
c_{1}=\frac{1}{b p} a_{p+1}, \quad c_{2}=\frac{2}{b p} a_{p+2}-\frac{1}{b p} a_{p+1}^{2} . \tag{17}
\end{equation*}
$$

Since $f_{\alpha, \beta}(z)$ is univalent and $q(z) \prec f_{\alpha, \beta}(z)$, the function

$$
h(z)=\frac{1+f_{\alpha, \beta}^{-1}(q(z))}{1-f_{\alpha, \beta}^{-1}(q(z))}=1+h_{1} z+h_{2} z^{2}+\cdots \quad(z \in \mathbb{U})
$$

is analytic and has a positive real part in \mathbb{U}. Also we have

$$
\begin{equation*}
q(z)=f_{\alpha, \beta}\left(\frac{h(z)-1}{h(z)+1}\right)=1+\frac{B_{1} h_{1}}{2} z+\left[\frac{B_{1}}{2}\left(h_{2}-\frac{h_{1}^{2}}{2}\right)+\frac{B_{2}}{4} h_{1}^{2}\right] z^{2}+\cdots . \tag{18}
\end{equation*}
$$

Thus by (16)-(18) we get

$$
\begin{align*}
a_{p+1} & =\frac{b p B_{1}}{2} h_{1}, \tag{19}\\
a_{p+2} & =\frac{b p B_{1}}{4}\left[h_{2}-\frac{1}{2}\left(1-\frac{B_{2}}{B_{1}}-b p B_{1}\right) h_{1}^{2}\right] . \tag{20}
\end{align*}
$$

Taking into account (19) and (20), we obtain

$$
\begin{equation*}
a_{p+2}-\mu a_{p+1}^{2}=\frac{b p B_{1}}{4}\left(h_{2}-\lambda h_{1}^{2}\right), \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=\frac{1}{2}\left[1-\frac{B_{2}}{B_{1}}-b p B_{1}(1-2 \mu)\right] . \tag{22}
\end{equation*}
$$

Our result now follows by an application of Lemma 1.13. The result is sharp for the functions

$$
1+\frac{1}{b}\left(\frac{1}{p} \frac{z f^{\prime}(z)}{f(z)}-1\right)=f_{\alpha, \beta}\left(z^{2}\right) \quad \text { and } \quad 1+\frac{1}{b}\left(\frac{1}{p} \frac{z f^{\prime}(z)}{f(z)}-1\right)=f_{\alpha, \beta}(z) .
$$

This completes the proof of Theorem 2.6.
Letting $b=1$ in Theorem 2.6, we have the following result.
Corollary 2.7. Let α and β be real numbers such that $0 \leq \alpha<1<\beta$ and let the function $f \in \mathcal{A}_{p}$ be defined by (1). If $f \in \mathcal{S}_{p}(\alpha, \beta)$, then for any $\mu \in \mathbb{C}$

$$
\left|a_{p+2}-\mu a_{p+1}^{2}\right| \leq \frac{p(\beta-\alpha)}{\pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha} \max \left\{1,\left|\frac{B_{2}}{B_{1}}+p B_{1}(1-2 \mu)\right|\right\}
$$

where B_{1} and B_{2} are given by (15). The result is sharp.

Letting $p=1$ in Theorem 2.6, we have the following result.
Corollary 2.8. Let α and β be real numbers such that $0 \leq \alpha<1<\beta ; b \in \mathbb{C}^{*}$ and let the function $f \in \mathcal{A}$ be defined by (2). If $f \in \mathcal{S}_{b}(\alpha, \beta)$, then for any $\mu \in \mathbb{C}$

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|b|(\beta-\alpha)}{\pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha} \max \left\{1,\left|\frac{B_{2}}{B_{1}}+b B_{1}(1-2 \mu)\right|\right\}
$$

where B_{1} and B_{2} are given by (15). The result is sharp.
Letting $b=1$ and $p=1$ in Theorem 2.6, we have the following result.
Corollary 2.9. Let α and β be real numbers such that $0 \leq \alpha<1<\beta$ and let the function $f \in \mathcal{A}$ be defined by (2). If $f \in \mathcal{S}(\alpha, \beta)$, then for any $\mu \in \mathbb{C}$

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{\beta-\alpha}{\pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha} \max \left\{1,\left|\frac{B_{2}}{B_{1}}+B_{1}(1-2 \mu)\right|\right\}
$$

where B_{1} and B_{2} are given by (15). The result is sharp.
Letting $\mu=1 / 2$ and $\mu=1$ in Theorem 2.6, we have the following result.
Corollary 2.10. Let α and β be real numbers such that $0 \leq \alpha<1<\beta ; b \in \mathbb{C}^{*}$ and let the function $f \in \mathcal{A}_{p}$ be defined by (1). If $f \in \mathcal{S}_{b, p}(\alpha, \beta)$, then

$$
\left|a_{p+2}-\frac{1}{2} a_{p+1}^{2}\right| \leq \frac{|b| p(\beta-\alpha)}{\pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha}
$$

and

$$
\left|a_{p+2}-a_{p+1}^{2}\right| \leq \frac{|b| p(\beta-\alpha)}{\pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha} \max \left\{1,\left|\frac{B_{2}}{B_{1}}-b p B_{1}\right|\right\}
$$

where B_{1} and B_{2} are given by (15). The result is sharp.
Theorem 2.11. Let α and β be real numbers such that $0 \leq \alpha<1<\beta ; b \in \mathbb{C}^{*}$ and let the function $f \in \mathcal{A}_{p}$ be defined by (1). If $f \in \mathcal{K}_{b, p}(\alpha, \beta)$, then

$$
\left|a_{p+n}\right| \leq \frac{p \prod_{k=2}^{n+1}\left(k-2+\frac{2|b| p(\beta-\alpha)}{\pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha}\right)}{n!(p+n)} \quad(p, n \in \mathbb{N})
$$

Letting $\beta \rightarrow \infty$ in Theorem 2.11, we have the following result.
Corollary 2.12. Let α be a real number such that $0 \leq \alpha<1 ; b \in \mathbb{C}^{*}$ and let the function $f \in \mathcal{A}_{p}$ be defined by (1). If $f \in \mathcal{K}_{p}(b, \alpha)$, then

$$
\left|a_{p+n}\right| \leq \frac{p \prod_{k=2}^{n+1}(k-2+2|b| p(1-\alpha))}{n!(p+n)} \quad(p, n \in \mathbb{N})
$$

Theorem 2.13. Let α and β be real numbers such that $0 \leq \alpha<1<\beta ; b \in \mathbb{C}^{*}$ and let the function $f \in \mathcal{A}_{p}$ be defined by (1). If $f \in \mathcal{K}_{b, p}(\alpha, \beta)$, then for any $\mu \in \mathbb{C}$ $\left|a_{p+2}-\mu a_{p+1}^{2}\right| \leq \frac{|b| p^{2}(\beta-\alpha)}{(p+2) \pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha} \max \left\{1,\left|\frac{B_{2}}{B_{1}}+b p B_{1}\left(1-\frac{2 p(p+2)}{(p+1)^{2}} \mu\right)\right|\right\}$, where B_{1} and B_{2} are given by (15). The result is sharp.

3. Coefficient inequalities for the class $\mathcal{C}_{b, p}^{\gamma, \delta}(\alpha, \beta)$

Theorem 3.1. Let α, β and δ be real numbers such that $0 \leq \alpha, \delta<1<\beta$; $b, \gamma \in \mathbb{C}^{*}$ and let the function $f \in \mathcal{A}_{p}$ be defined by (1). If $f \in \mathcal{C}_{b, p}^{\gamma, \delta}(\alpha, \beta)$, then

$$
\left|a_{p+1}\right| \leq \frac{2|\gamma| p^{2}(\beta-\delta)}{(p+1) \pi} \sin \frac{\pi(1-\delta)}{\beta-\delta}+\frac{2|b| p(\beta-\alpha)}{(p+1) \pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha}
$$

and for $n=2,3, \ldots$

$$
\begin{gathered}
\left|a_{p+n}\right| \leq \frac{p}{n!(p+n)} \prod_{k=2}^{n+1}\left(k-2+\frac{2|\gamma| p(\beta-\delta)}{\pi} \sin \frac{\pi(1-\delta)}{\beta-\delta}\right) \\
+\frac{2|b| p(\beta-\alpha)}{(n-1)!(p+n) \pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha} \prod_{k=1}^{n-1}\left(k+\frac{2|\gamma| p(\beta-\delta)}{\pi} \sin \frac{\pi(1-\delta)}{\beta-\delta}\right) \quad(p \in \mathbb{N}) .
\end{gathered}
$$

Proof. Let the function $f \in \mathcal{C}_{b, p}^{\gamma, \delta}(\alpha, \beta)$ be of the form (1). Therefore, there exists a function

$$
\begin{equation*}
g(z)=z^{p}+\sum_{n=1}^{\infty} b_{p+n} z^{p+n} \in \mathcal{S}_{\gamma, p}(\delta, \beta) \tag{23}
\end{equation*}
$$

so that

$$
\begin{equation*}
\alpha<\Re\left\{1+\frac{1}{b}\left(\frac{1}{p} \frac{z f^{\prime}(z)}{g(z)}-1\right)\right\}<\beta . \tag{24}
\end{equation*}
$$

Note that by Theorem 2.1, we have

$$
\begin{equation*}
\left|b_{p+n}\right| \leq \frac{\prod_{k=2}^{n+1}\left(k-2+\frac{2|\gamma| p(\beta-\delta)}{\pi} \sin \frac{\pi(1-\delta)}{\beta-\delta}\right)}{n!} \quad(p, n \in \mathbb{N}) . \tag{25}
\end{equation*}
$$

Let us define the function \hat{q} by

$$
\begin{equation*}
\hat{q}(z)=1+\frac{1}{b}\left(\frac{1}{p} \frac{z f^{\prime}(z)}{g(z)}-1\right) \quad(z \in \mathbb{U}) . \tag{26}
\end{equation*}
$$

Then according to the assertion of Lemma 1.11, we get

$$
\begin{equation*}
\hat{q}(z) \prec f_{\alpha, \beta}(z) \quad(z \in \mathbb{U}), \tag{27}
\end{equation*}
$$

where $f_{\alpha, \beta}(z)$ is defined by (3). Hence, using Lemma 1.12 , we obtain

$$
\begin{equation*}
\left|\frac{\hat{q}^{(m)}(0)}{m!}\right|=\left|d_{m}\right| \leq\left|B_{1}\right| \quad(m \in \mathbb{N}) \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{q}(z)=1+d_{1} z+d_{2} z^{2}+\cdots \quad(z \in \mathbb{U}) \tag{29}
\end{equation*}
$$

and (by (6))

$$
\begin{equation*}
\left|B_{1}\right|=\left|\frac{\beta-\alpha}{\pi} i\left(1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}}\right)\right|=\frac{2(\beta-\alpha)}{\pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha} . \tag{30}
\end{equation*}
$$

Also from (26), we find

$$
\begin{equation*}
z f^{\prime}(z)=p\{b[\hat{q}(z)-1]+1\} g(z) . \tag{31}
\end{equation*}
$$

Since $a_{p}=b_{p}=1$, in view of (31), we obtain

$$
\begin{equation*}
(p+n) a_{p+n}-p b_{p+n}=b p\left[d_{n}+d_{n-1} b_{p+1}+\cdots+d_{1} b_{p+n-1}\right]=b p \sum_{j=1}^{n} d_{j} b_{p+n-j} \tag{32}
\end{equation*}
$$

Now we get from (28) and (32),

$$
\left|a_{p+n}\right| \leq \frac{p}{p+n}\left|b_{p+n}\right|+\frac{p\left|b B_{1}\right|}{p+n} \sum_{j=1}^{n}\left|b_{p+n-j}\right| \quad(p, n \in \mathbb{N})
$$

Using the fact that

$$
\sum_{j=1}^{n}\left|b_{p+n-j}\right|=1+\left|b_{p+1}\right|+\left|b_{p+2}\right|+\cdots+\left|b_{p+n-1}\right| \leq \frac{\prod_{k=1}^{n-1}\left(k+\frac{2|\gamma| p(\beta-\delta)}{\pi} \sin \frac{\pi(1-\delta)}{\beta-\delta}\right)}{(n-1)!}
$$

the proof of Theorem 3.1 is completed.
Letting $\beta \rightarrow \infty$ in Theorem 3.1, we have the following result.
Corollary 3.2. Let α and δ be real numbers such that $0 \leq \alpha, \delta<1 ; b, \gamma \in \mathbb{C}^{*}$ and let the function $f \in \mathcal{A}_{p}$ be defined by (1). If $f \in \mathcal{C}_{p}^{\gamma, \delta}(b, \alpha)$, then

$$
\left|a_{p+1}\right| \leq \frac{2|\gamma| p^{2}(1-\delta)}{p+1}+\frac{2|b| p(1-\alpha)}{p+1}
$$

and for $n=2,3, \ldots$

$$
\begin{aligned}
\left|a_{p+n}\right| \leq & \frac{p}{n!(p+n)} \prod_{k=2}^{n+1}(k-2+2|\gamma| p(1-\delta)) \\
& +\frac{2|b| p(1-\alpha)}{(n-1)!(p+n)} \prod_{k=1}^{n-1}(k+2|\gamma| p(1-\delta)) \quad(p \in \mathbb{N})
\end{aligned}
$$

Letting $b=\gamma=1$ and $p=1$ in Theorem 3.1, we have the following result.
Corollary 3.3. [2] Let α, β and δ be real numbers such that $0 \leq \alpha, \delta<1<\beta$, and let the function $f \in \mathcal{A}$ be defined by (2). If $f \in \mathcal{S}_{g}(\alpha, \beta)$, then

$$
\left|a_{2}\right| \leq \frac{\beta-\delta}{\pi} \sin \frac{\pi(1-\delta)}{\beta-\delta}+\frac{\beta-\alpha}{\pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha}
$$

and for $n=2,3, \ldots$

$$
\begin{aligned}
\left|a_{p+n}\right| \leq & \frac{1}{(n+1)!} \prod_{k=2}^{n+1}\left(k-2+\frac{2(\beta-\delta)}{\pi} \sin \frac{\pi(1-\delta)}{\beta-\delta}\right) \\
& +\frac{2(\beta-\alpha)}{(n-1)!(n+1) \pi} \sin \frac{\pi(1-\alpha)}{\beta-\alpha} \prod_{k=1}^{n-1}\left(k+\frac{2(\beta-\delta)}{\pi} \sin \frac{\pi(1-\delta)}{\beta-\delta}\right)
\end{aligned}
$$

Letting $b=\gamma=1, p=1$ and $\beta \rightarrow \infty$ in Theorem 3.1, we have the coefficient bounds for close-to-convex functions of order α and type δ.

Corollary 3.4. [7] Let α and δ be real numbers such that $0 \leq \alpha, \delta<1$ and let the function $f \in \mathcal{A}$ be defined by (2). If $f \in \mathcal{C}(\alpha, \delta)$, then

$$
\left|a_{n}\right| \leq \frac{2(3-2 \delta)(4-2 \delta) \cdots(n-2 \delta)}{n!}[n(1-\alpha)+(\alpha-\delta)] \quad(n=2,3, \ldots) .
$$

Letting $b=\gamma=1, p=1, \delta=0, \beta \rightarrow \infty$ in Theorem 3.1, we have the following coefficient bounds for close-to-convex functions of order α.

Corollary 3.5. Let α be a real number such that $0 \leq \alpha<1$ and let the function $f \in \mathcal{A}$ be defined by (2). If $f \in \mathcal{C}(\alpha)$, then

$$
\left|a_{n}\right| \leq n(1-\alpha)+\alpha \quad(n=2,3, \ldots) .
$$

Letting $b=\gamma=1, p=1, \alpha=\delta=0, \beta \rightarrow \infty$ in Theorem 3.1, we have the well-known coefficient bounds for close-to-convex functions.

Corollary 3.6. [9] Let the function $f \in \mathcal{A}$ be defined by (2). If $f \in \mathcal{C}$, then

$$
\left|a_{n}\right| \leq n \quad(n=2,3, \ldots) .
$$

References

[1] S. Bulut, Coefficient bounds for certain subclasses of close-to-convex functions of complex order, Filomat 31 (20) (2017), 6401-6408.
[2] S. Bulut, Coefficient bounds for close-to-convex functions associated with vertical strip domain, Commun. Korean Math. Soc. 35 (3) (2020), 789-797.
[3] S. Bulut, M. Hussain and A. Ghafoor, On coefficient bounds of some new subfamilies of close-to-convex functions of complex order related to generalized differential operator, Asian-Eur. J. Math. 13 (3) (2020), 2050049, 8 pp.
[4] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185 (1953).
[5] R. Kargar, A. Ebadian and J. Sokól, Some properties of analytic functions related with bounded positive real part, Int. J. Nonlinear Anal. Appl. 8 (1) (2017), 235-244.
[6] K. Kuroki and S. Owa, Notes on new class for certain analytic functions, RIMS Kokyuroku 1772 (2011), 21-25.
[7] R.J. Libera, Some radius of convexity problems, Duke Math. J. 31 (1964), 143-158.
[8] V. Ravichandran, A. Gangadharan and M. Darus, Fekete-Szegö inequality for certain class of Bazilevic functions, Far East J. Math. Sci. 15 (2004), 171-180.
[9] M.O. Reade, On close-to-convex univalent functions, Michigan Math. J. 3(1) (1955), 59-62.
[10] M.S. Robertson, On the theory of univalent functions, Ann. of Math. (2) 37 (2) (1936), 374-408.
[11] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (Ser. 2) 48 (1943), 48-82.
[12] H.M. Srivastava, O. Altıntaş and S. Kırcı Serenbay, Coefficient bounds for certain subclasses of starlike functions of complex order, Appl. Math. Lett. 24 (2011), 1359-1363.
[13] H.M. Srivastava, Q.-H. Xu and G.-P. Wu, Coefficient estimates for certain subclasses of spirallike functions of complex order, Appl. Math. Lett. 23 (2010), 763-768.
[14] W. Ul-Haq, A. Nazneen and N. Rehman, Coefficient estimates for certain subfamilies of close-to-convex functions of complex order, Filomat 28 (6) (2014), 1139-1142.
[15] W. Ul-Haq, A. Nazneen, M. Arif and N. Rehman, Coefficient bounds for certain subclasses of close-to-convex functions of Janowski type, J. Comput. Anal. Appl. 16 (1) (2014), 133-138.
[16] B.A. Uralegaddi, M.D. Ganigi and S.M. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math. 25 (1994), 225-230.

Serap Bulut

Faculty of Aviation and Space Sciences, Kocaeli University,
Arslanbey Campus, 41285 Kartepe-Kocaeli, Turkey
E-mail: serap.bulut@kocaeli.edu.tr

