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COEFFICIENT BOUNDS FOR p-VALENTLY CLOSE-TO-CONVEX

FUNCTIONS ASSOCIATED WITH VERTICAL STRIP DOMAIN

Serap Bulut

Abstract. By considering a certain univalent function that maps the unit disk U
onto a strip domain, we introduce new subclasses of analytic and p-valent functions
and determine the coefficient bounds for functions belonging to these new classes.
Relevant connections of some of the results obtained with those in earlier works are
also provided.

1. Introduction

Let R = (−∞,∞) be the set of real numbers, C := C∗ ∪ {0} be the set of complex
numbers and

N := {1, 2, 3, . . .} = N0\ {0}
be the set of positive integers.

Assume that H is the class of analytic functions in the open unit disk

U = {z : z ∈ C and |z| < 1} ,
and let the class P be defined by

P = { p ∈ H : p(0) = 1 and < (p(z)) > 0 (z ∈ U)} .
For two functions f, g ∈ H, we say that the function f is subordinate to g in U,

and write
f (z) ≺ g (z) (z ∈ U) ,

if there exists a Schwarz function

ω ∈ Ω := {ω ∈ H : ω(0) = 0 and |ω (z)| < 1 (z ∈ U)} ,
such that

f (z) = g (ω (z)) (z ∈ U) .

Indeed, it is known that

f (z) ≺ g (z) (z ∈ U)⇒ f (0) = g (0) and f (U) ⊂ g (U) .

Furthermore, if the function g is univalent in U, then we have the following equivalence

f (z) ≺ g (z) (z ∈ U)⇔ f (0) = g (0) and f (U) ⊂ g (U) .
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Let Ap denote the class of functions of the form

(1) f(z) = zp +
∞∑
n=1

ap+nz
p+n (p ∈ N, z ∈ U)

which are analytic in the open unit disk U. In particular, we set A1 := A for the class
of analytic functions of the form

(2) f(z) = z +
∞∑
n=1

an+1z
n+1 (z ∈ U) .

We also denote by S the class of all functions in the normalized analytic function class
A which are univalent in U.

A function f ∈ Ap is said to be p-valently starlike of order α (0 ≤ α < 1) with
complex order b (b ∈ C∗), if it satisfies the inequality

<
{

1 +
1

b

(
1

p

zf ′(z)

f(z)
− 1

)}
> α (z ∈ U) .

We denote the class which consists of all functions f ∈ Ap satisfying the above
condition by S∗p (b, α). In particular, we get the class

(i) S∗p (b, 0) = S∗p (b) of p-valently starlike functions of complex order b,

(ii) S∗p(1, α) = S∗p (α) of p-valently starlike functions of order α,

(iii) S∗p (1, 0) = S∗p of p-valently starlike functions,

(iv) S∗1 (b, α) = S∗(b, α) of starlike functions of complex order b,
(v) S∗1 (1, α) = S∗(α) of starlike functions of order α,
(vi) S∗1 (1, 0) = S∗ of starlike functions.

A function f ∈ Ap is said to be p-valently convex of order α (0 ≤ α < 1) with
complex order b (b ∈ C∗), if it satisfies the inequality

<
{

1− 1

b
+

1

bp

(
1 +

zf ′′(z)

f ′(z)

)}
> α (z ∈ U) .

We denote the class which consists of all functions f ∈ Ap satisfying the above
condition by Kp(b, α). In particular, we get the class

(i) Kp(b, 0) = Kp(b) of p-valently convex functions of complex order b,
(ii) Kp(1, α) = Kp(α) of p-valently convex functions of order α,
(iii) Kp(1, 0) = Kp of p-valently convex functions,
(iv) K1(b, α) = K(b, α) of convex functions of complex order b,
(v) K1(1, α) = K(α) of convex functions of order α,
(vi) K1(1, 0) = K of convex functions.

It is clear that

f ∈ Kp (b, α)⇔ 1

p
zf ′ ∈ S∗p (b, α) .

Definition 1.1. Let 0 ≤ α, δ < 1 and b, γ ∈ C∗. A function f ∈ Ap is said to be
p-valently close-to-convex of order α with complex order b and type δ (or Libera type
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p-valently close-to-convex of complex order b) if there exists a function g ∈ S∗p (γ, δ)
such that the inequality

<
{

1 +
1

b

(
1

p

zf ′(z)

g(z)
− 1

)}
> α (z ∈ U)

holds. We denote the class which consists of all functions f ∈ Ap satisfying the above
condition by Cγ,δp (b, α).

In particular, we get the class C1,δp (1, α) = Cp (α, δ) of Libera type p-valently close-

to-convex functions, and C1,δ1 (1, α) = C (α, δ) of Libera type close-to-convex functions
[7].

Definition 1.2. Let α and β be real numbers such that 0 ≤ α < 1 < β and
b ∈ C∗. Then the function f ∈ Ap belongs to the class Sb,p (α, β) if it satisfies the
inequalities

α < <
{

1 +
1

b

(
1

p

zf ′(z)

f(z)
− 1

)}
< β (z ∈ U) .

In particular, we get the classes S1,p (α, β) = Sp (α, β), Sb,1 (α, β) = Sb (α, β) intro-
duced by Kargar-Ebadian-Sokol [5] and S1,1 (α, β) = S (α, β) introduced by Kuroki
and Owa [6].

Remark 1.3. If we let β →∞ in Definition 1.2, then the class Sb,p (α, β) reduces
to the class S∗p (b, α).

Definition 1.4. Let α and β be real numbers such that 0 ≤ α < 1 < β and
b ∈ C∗. Then the function f ∈ Ap belongs to the class Kb,p (α, β) if it satisfies the
inequalities

α < <
{

1− 1

b
+

1

bp

(
1 +

zf ′′(z)

f ′(z)

)}
< β (z ∈ U) .

It is clear that

f ∈ Kb,p (α, β)⇔ 1

p
zf ′ ∈ Sb,p (α, β) .

For p = 1, the class Kb,p (α, β) reduces to the class Kb (α, β) introduced by Kargar-
Ebadian-Sokol [5].

Remark 1.5. If we let β →∞ in Definition 1.4, then the class Kb,p (α, β) reduces
to the class Kp(b, α).

Definition 1.6. Let α and β be real numbers such that 0 ≤ α < 1 < β and
b ∈ C∗. We denote by Cγ,δb,p (α, β) the class of functions f ∈ Ap satisfying

α < <
{

1 +
1

b

(
1

p

zf ′(z)

g(z)
− 1

)}
< β (z ∈ U) ,

where g ∈ Sγ,p (δ, β) with 0 ≤ δ < 1 < β and γ ∈ C∗.

In particular, we get the class C1,δ1,1 (α, β) = Sg (α, β) introduced by Bulut [2].

Remark 1.7. If we let β →∞ in Definition 1.6, then the class Cγ,δb,p (α, β) reduces

to the class Cγ,δp (b, α).
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It is worthy to note that for given 0 ≤ α < 1 < β and b ∈ C∗, f ∈ Sb,p (α, β) if and
only if the following two subordination equations are satisfied:

1+
1

b

(
1

p

zf ′(z)

f(z)
− 1

)
≺ 1 + (1− 2α) z

1− z
and 1+

1

b

(
1

p

zf ′(z)

f(z)
− 1

)
≺ 1− (1− 2β) z

1 + z
.

Let us consider the analytic function fα,β : U→ C defined by

(3) fα,β (z) = 1 +
β − α
π

i log

(
1− e2πi

1−α
β−α z

1− z

)
(0 ≤ α < 1 < β)

with fα,β(0) = 1. Kuroki and Owa [6] proved that the function fα,β maps the unit
disk U onto the vertical strip domain

(4) Ωα,β = {w ∈ C : α < < (w) < β}

conformally and the function fα,β is a convex univalent function in U having the form

(5) fα,β(z) = 1 +
∞∑
n=1

Bnz
n,

where

(6) Bn =
β − α
nπ

i
(

1− e2nπi
1−α
β−α

)
(n ∈ N) .

Lemma 1.8. A function f ∈ Ap given by (1) belongs to the class Sb,p (α, β) if and
only if there exists an analytic function q, q(0) = 1 and q(z) ≺ fα,β(z) such that

(7) f(z) = zp exp

{
bp

∫ z

0

q(t)− 1

t
dt

}
(z ∈ U) .

Proof. Assume that f ∈ Sb,p (α, β) and

q(z) = 1 +
1

b

(
1

p

zf ′(z)

f(z)
− 1

)
.

Then q(z) ≺ fα,β(z) and integrating the above equality we get (7). Conversely, if the
function f is given by (7), with an analytic function q, q(0) = 1 and q(z) ≺ fα,β(z),

then we obtain 1 + 1
b

(
1
p
zf ′(z)
f(z)
− 1
)

= q(z). Therefore we have 1 + 1
b

(
1
p
zf ′(z)
f(z)
− 1
)
≺

fα,β(z) which implies f ∈ Sb,p (α, β) .

Letting q = fα,β in Lemma 1.8, we obtain the function

f̃(z) = zp exp

{
bp

∫ z

0

fα,β(t)− 1

t
dt

}
and hence

f̃(z) = zp exp

{
bp (β − α)

π
i

∫ z

0

1

t
log

(
1− e2πi

1−α
β−α t

1− t

)
dt

}
belongs to the class Sb,p (α, β) . This means that the class Sb,p (α, β) is non-empty.

As a consequence of the principle of subordination and (4), we have the following
results.
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Lemma 1.9. Let f ∈ Ap and 0 ≤ α < 1 < β; b ∈ C∗. Then f ∈ Sb,p (α, β) if and
only if

1 +
1

b

(
1

p

zf ′(z)

f(z)
− 1

)
≺ 1 +

β − α
π

i log

(
1− e2πi

1−α
β−α z

1− z

)
(z ∈ U) .

Lemma 1.10. Let f ∈ Ap and 0 ≤ α < 1 < β; b ∈ C∗. Then f ∈ Kb,p (α, β) if and
only if

1− 1

b
+

1

bp

(
1 +

zf ′′(z)

f ′(z)

)
≺ 1 +

β − α
π

i log

(
1− e2πi

1−α
β−α z

1− z

)
(z ∈ U) .

Lemma 1.11. Let f ∈ Ap and 0 ≤ α, δ < 1 < β; b, γ ∈ C∗. Then f ∈ Cγ,δb,p (α, β) if
and only if

1 +
1

b

(
1

p

zf ′(z)

g(z)
− 1

)
≺ 1 +

β − α
π

i log

(
1− e2πi

1−α
β−α z

1− z

)
(z ∈ U) .

The coefficient problem for close-to-convex functions are studied by many authors
in recent years, (see, for example [1,3,4,10,12–15]). Upon inspiration from the recent
work of Bulut [2] the aim of this paper is to obtain coefficient bounds for the Taylor-
Maclaurin coefficients for functions in the function classes Sb,p (α, β) , Kb,p (α, β) and

Cγ,δb,p (α, β) of analytic functions which we have introduced here. Also we investi-
gate Fekete-Szegö problem for functions belong to the function classes Sb,p (α, β) and
Kb,p (α, β).

In order to prove our main results, we first recall the following lemmas.

Lemma 1.12. [11] Let the function g given by

g (z) =
∞∑
k=1

bkz
k (z ∈ U)

be convex in U. Also let the function f given by

f(z) =
∞∑
k=1

akz
k (z ∈ U)

be analytic in U. If

f (z) ≺ g (z) (z ∈ U) ,

then

|ak| ≤ |b1| (k = 1, 2, . . .) .

Lemma 1.13. [8] Let p ∈ P with p (z) = 1+c1z+c2z
2 + · · · . Then for any complex

number ν ∣∣c2 − νc21∣∣ ≤ 2 max {1, |2ν − 1|} ,
and the result is sharp for the functions given by

p (z) =
1 + z2

1− z2
and p (z) =

1 + z

1− z
.
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2. Coefficient inequalities for the classes Sb,p (α, β) and Kb,p (α, β)

Theorem 2.1. Let α and β be real numbers such that 0 ≤ α < 1 < β; b ∈ C∗ and
let the function f ∈ Ap be defined by (1). If f ∈ Sb,p (α, β), then

|ap+n| ≤

n+1∏
k=2

(
k − 2 + 2|b|p(β−α)

π
sin π(1−α)

β−α

)
n!

(p, n ∈ N) .

Proof. Let the function f ∈ Sb,p (α, β) be of the form (1). Let us define the function
q(z) by

(8) q(z) = 1 +
1

b

(
1

p

zf ′(z)

f(z)
− 1

)
(z ∈ U).

Then according to the assertion of Lemma 1.9, we get

(9) q(z) ≺ fα,β(z) (z ∈ U),

where fα,β(z) is defined by (3). Hence, using Lemma 1.12, we obtain

(10)

∣∣∣∣q(m) (0)

m!

∣∣∣∣ = |cm| ≤ |B1| (m ∈ N) ,

where

(11) q(z) = 1 + c1z + c2z
2 + · · · (z ∈ U)

and (by (6))

(12) |B1| =
∣∣∣∣β − απ i

(
1− e2πi

1−α
β−α

)∣∣∣∣ =
2 (β − α)

π
sin

π (1− α)

β − α
.

Also from (8), we find

(13) zf ′(z) = p {b [q(z)− 1] + 1} f(z) (z ∈ U).

Since ap = 1, in view of (13), we obtain

(14) nap+n = bp [cn + cn−1ap+1 + · · ·+ c1ap+n−1] = bp
n∑
j=1

cjap+n−j.

Applying (10) into (14) , we get

n |ap+n| ≤ p |bB1|
n∑
j=1

|ap+n−j| (p, n ∈ N) .

For n = 1, 2, 3, we have

|ap+1| ≤ p |bB1| ,

|ap+2| ≤
p |bB1|

2
(1 + |ap+1|) ≤

p |bB1|
2

(1 + p |bB1|) ,

|ap+3| ≤
p |bB1|

3
(1 + |ap+1|+ |ap+2|) ≤

p |bB1| (1 + p |bB1|) (2 + p |bB1|)
6

,
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respectively. Using the principle of mathematical induction and the equality (12), we
obtain

|ap+n| ≤

n+1∏
k=2

(k − 2 + p |bB1|)

n!
=

n+1∏
k=2

(
k − 2 + p |b| 2(β−α)

π
sin π(1−α)

β−α

)
n!

(n ∈ N) .

This evidently completes the proof of Theorem 2.1.

Letting b = 1 in Theorem 2.1, we have the following result.

Corollary 2.2. Let α and β be real numbers such that 0 ≤ α < 1 < β and let
the function f ∈ Ap be defined by (1). If f ∈ Sp (α, β), then

|ap+n| ≤

n+1∏
k=2

(
k − 2 + 2p(β−α)

π
sin π(1−α)

β−α

)
n!

(p, n ∈ N) .

Letting p = 1 in Theorem 2.1, we have the following result.

Corollary 2.3. [5] Let α and β be real numbers such that 0 ≤ α < 1 < β; b ∈ C∗
and let the function f ∈ A be defined by (2). If f ∈ Sb (α, β), then

|an+1| ≤

n+1∏
k=2

(
k − 2 + 2|b|(β−α)

π
sin π(1−α)

β−α

)
n!

(n ∈ N) .

Letting b = 1 and p = 1 in Theorem 2.1, we have the following result.

Corollary 2.4. [6] Let α and β be real numbers such that 0 ≤ α < 1 < β and
let the function f ∈ A be defined by (2). If f ∈ S (α, β), then

|an+1| ≤

n+1∏
k=2

(
k − 2 + 2(β−α)

π
sin π(1−α)

β−α

)
n!

(n ∈ N) .

Letting β →∞ in Theorem 2.1, we have the following result.

Corollary 2.5. Let α be a real number such that 0 ≤ α < 1; b ∈ C∗ and let the
function f ∈ Ap be defined by (1). If f ∈ S∗p (b, α), then

|ap+n| ≤

n+1∏
k=2

(k − 2 + 2 |b| p (1− α))

n!
(p, n ∈ N) .

Theorem 2.6. Let α and β be real numbers such that 0 ≤ α < 1 < β; b ∈ C∗ and
let the function f ∈ Ap be defined by (1). If f ∈ Sb,p (α, β), then for any µ ∈ C∣∣ap+2 − µa2p+1

∣∣ ≤ |b| p (β − α)

π
sin

π (1− α)

β − α
max

{
1,

∣∣∣∣B2

B1

+ bpB1 (1− 2µ)

∣∣∣∣} ,
where

(15) B1 =
β − α
π

i
(

1− e2πi
1−α
β−α

)
and B2 =

β − α
2π

i
(

1− e4πi
1−α
β−α

)
.

The result is sharp.
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Proof. If f ∈ Sb,p (α, β), then we have

q(z) ≺ fα,β(z) (z ∈ U),

where

(16) q(z) = 1 +
1

b

(
1

p

zf ′(z)

f(z)
− 1

)
= 1 + c1z + c2z

2 + · · · (z ∈ U)

and

fα,β(z) = 1 +
∞∑
n=1

Bnz
n = 1 +

∞∑
n=1

β − α
nπ

i
(

1− e2nπi
1−α
β−α

)
zn (z ∈ U).

As explained in the proof of Theorem 2.1, from (14) we get

(17) c1 =
1

bp
ap+1, c2 =

2

bp
ap+2 −

1

bp
a2p+1.

Since fα,β (z) is univalent and q (z) ≺ fα,β (z) , the function

h (z) =
1 + f−1α,β (q (z))

1− f−1α,β (q (z))
= 1 + h1z + h2z

2 + · · · (z ∈ U)

is analytic and has a positive real part in U. Also we have

(18) q (z) = fα,β

(
h (z)− 1

h (z) + 1

)
= 1 +

B1h1
2

z +

[
B1

2

(
h2 −

h21
2

)
+
B2

4
h21

]
z2 + · · · .

Thus by (16)-(18) we get

ap+1 =
bpB1

2
h1,(19)

ap+2 =
bpB1

4

[
h2 −

1

2

(
1− B2

B1

− bpB1

)
h21

]
.(20)

Taking into account (19) and (20) , we obtain

(21) ap+2 − µa2p+1 =
bpB1

4

(
h2 − λh21

)
,

where

(22) λ =
1

2

[
1− B2

B1

− bpB1 (1− 2µ)

]
.

Our result now follows by an application of Lemma 1.13. The result is sharp for the
functions

1 +
1

b

(
1

p

zf ′(z)

f(z)
− 1

)
= fα,β

(
z2
)

and 1 +
1

b

(
1

p

zf ′(z)

f(z)
− 1

)
= fα,β (z) .

This completes the proof of Theorem 2.6.

Letting b = 1 in Theorem 2.6, we have the following result.

Corollary 2.7. Let α and β be real numbers such that 0 ≤ α < 1 < β and let
the function f ∈ Ap be defined by (1). If f ∈ Sp (α, β), then for any µ ∈ C∣∣ap+2 − µa2p+1

∣∣ ≤ p (β − α)

π
sin

π (1− α)

β − α
max

{
1,

∣∣∣∣B2

B1

+ pB1 (1− 2µ)

∣∣∣∣} ,
where B1 and B2 are given by (15) . The result is sharp.
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Letting p = 1 in Theorem 2.6, we have the following result.

Corollary 2.8. Let α and β be real numbers such that 0 ≤ α < 1 < β; b ∈ C∗
and let the function f ∈ A be defined by (2). If f ∈ Sb (α, β), then for any µ ∈ C∣∣a3 − µa22∣∣ ≤ |b| (β − α)

π
sin

π (1− α)

β − α
max

{
1,

∣∣∣∣B2

B1

+ bB1 (1− 2µ)

∣∣∣∣} ,
where B1 and B2 are given by (15) . The result is sharp.

Letting b = 1 and p = 1 in Theorem 2.6, we have the following result.

Corollary 2.9. Let α and β be real numbers such that 0 ≤ α < 1 < β and let
the function f ∈ A be defined by (2). If f ∈ S (α, β), then for any µ ∈ C∣∣a3 − µa22∣∣ ≤ β − α

π
sin

π (1− α)

β − α
max

{
1,

∣∣∣∣B2

B1

+B1 (1− 2µ)

∣∣∣∣} ,
where B1 and B2 are given by (15) . The result is sharp.

Letting µ = 1/2 and µ = 1 in Theorem 2.6, we have the following result.

Corollary 2.10. Let α and β be real numbers such that 0 ≤ α < 1 < β; b ∈ C∗
and let the function f ∈ Ap be defined by (1). If f ∈ Sb,p (α, β), then∣∣∣∣ap+2 −

1

2
a2p+1

∣∣∣∣ ≤ |b| p (β − α)

π
sin

π (1− α)

β − α
and ∣∣ap+2 − a2p+1

∣∣ ≤ |b| p (β − α)

π
sin

π (1− α)

β − α
max

{
1,

∣∣∣∣B2

B1

− bpB1

∣∣∣∣} ,
where B1 and B2 are given by (15) . The result is sharp.

Theorem 2.11. Let α and β be real numbers such that 0 ≤ α < 1 < β; b ∈ C∗
and let the function f ∈ Ap be defined by (1). If f ∈ Kb,p (α, β), then

|ap+n| ≤
p
n+1∏
k=2

(
k − 2 + 2|b|p(β−α)

π
sin π(1−α)

β−α

)
n! (p+ n)

(p, n ∈ N) .

Letting β →∞ in Theorem 2.11, we have the following result.

Corollary 2.12. Let α be a real number such that 0 ≤ α < 1; b ∈ C∗ and let the
function f ∈ Ap be defined by (1). If f ∈ Kp (b, α), then

|ap+n| ≤
p
n+1∏
k=2

(k − 2 + 2 |b| p (1− α))

n! (p+ n)
(p, n ∈ N) .

Theorem 2.13. Let α and β be real numbers such that 0 ≤ α < 1 < β; b ∈ C∗
and let the function f ∈ Ap be defined by (1). If f ∈ Kb,p (α, β), then for any µ ∈ C∣∣ap+2 − µa2p+1

∣∣ ≤ |b| p2 (β − α)

(p+ 2) π
sin

π (1− α)

β − α
max

{
1,

∣∣∣∣B2

B1

+ bpB1

(
1− 2p (p+ 2)

(p+ 1)2
µ

)∣∣∣∣} ,
where B1 and B2 are given by (15) . The result is sharp.
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3. Coefficient inequalities for the class Cγ,δb,p (α, β)

Theorem 3.1. Let α, β and δ be real numbers such that 0 ≤ α, δ < 1 < β;
b, γ ∈ C∗ and let the function f ∈ Ap be defined by (1). If f ∈ Cγ,δb,p (α, β), then

|ap+1| ≤
2 |γ| p2 (β − δ)

(p+ 1) π
sin

π (1− δ)
β − δ

+
2 |b| p (β − α)

(p+ 1) π
sin

π (1− α)

β − α
and for n = 2, 3, . . .

|ap+n| ≤
p

n! (p+ n)

n+1∏
k=2

(
k − 2 +

2 |γ| p (β − δ)
π

sin
π (1− δ)
β − δ

)

+
2 |b| p (β − α)

(n− 1)! (p+ n) π
sin

π (1− α)

β − α

n−1∏
k=1

(
k +

2 |γ| p (β − δ)
π

sin
π (1− δ)
β − δ

)
(p ∈ N) .

Proof. Let the function f ∈ Cγ,δb,p (α, β) be of the form (1). Therefore, there exists a
function

(23) g(z) = zp +
∞∑
n=1

bp+nz
p+n ∈ Sγ,p (δ, β)

so that

(24) α < <
{

1 +
1

b

(
1

p

zf ′(z)

g(z)
− 1

)}
< β.

Note that by Theorem 2.1, we have

(25) |bp+n| ≤

n+1∏
k=2

(
k − 2 + 2|γ|p(β−δ)

π
sin π(1−δ)

β−δ

)
n!

(p, n ∈ N) .

Let us define the function q̂ by

(26) q̂(z) = 1 +
1

b

(
1

p

zf ′(z)

g(z)
− 1

)
(z ∈ U).

Then according to the assertion of Lemma 1.11, we get

(27) q̂(z) ≺ fα,β(z) (z ∈ U),

where fα,β(z) is defined by (3). Hence, using Lemma 1.12, we obtain

(28)

∣∣∣∣ q̂(m) (0)

m!

∣∣∣∣ = |dm| ≤ |B1| (m ∈ N) ,

where

(29) q̂(z) = 1 + d1z + d2z
2 + · · · (z ∈ U)

and (by (6))

(30) |B1| =
∣∣∣∣β − απ i

(
1− e2πi

1−α
β−α

)∣∣∣∣ =
2 (β − α)

π
sin

π (1− α)

β − α
.

Also from (26), we find

(31) zf ′(z) = p {b [q̂(z)− 1] + 1} g(z).
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Since ap = bp = 1, in view of (31), we obtain

(32) (p+ n) ap+n − pbp+n = bp [dn + dn−1bp+1 + · · ·+ d1bp+n−1] = bp

n∑
j=1

djbp+n−j.

Now we get from (28) and (32) ,

|ap+n| ≤
p

p+ n
|bp+n|+

p |bB1|
p+ n

n∑
j=1

|bp+n−j| (p, n ∈ N) .

Using the fact that

n∑
j=1

|bp+n−j| = 1 + |bp+1|+ |bp+2|+ · · ·+ |bp+n−1| ≤

n−1∏
k=1

(
k + 2|γ|p(β−δ)

π
sin π(1−δ)

β−δ

)
(n− 1)!

,

the proof of Theorem 3.1 is completed.

Letting β →∞ in Theorem 3.1, we have the following result.

Corollary 3.2. Let α and δ be real numbers such that 0 ≤ α, δ < 1; b, γ ∈ C∗
and let the function f ∈ Ap be defined by (1). If f ∈ Cγ,δp (b, α), then

|ap+1| ≤
2 |γ| p2 (1− δ)

p+ 1
+

2 |b| p (1− α)

p+ 1

and for n = 2, 3, . . .

|ap+n| ≤
p

n! (p+ n)

n+1∏
k=2

(k − 2 + 2 |γ| p (1− δ))

+
2 |b| p (1− α)

(n− 1)! (p+ n)

n−1∏
k=1

(k + 2 |γ| p (1− δ)) (p ∈ N) .

Letting b = γ = 1 and p = 1 in Theorem 3.1, we have the following result.

Corollary 3.3. [2] Let α, β and δ be real numbers such that 0 ≤ α, δ < 1 < β,
and let the function f ∈ A be defined by (2). If f ∈ Sg (α, β), then

|a2| ≤
β − δ
π

sin
π (1− δ)
β − δ

+
β − α
π

sin
π (1− α)

β − α
and for n = 2, 3, . . .

|ap+n| ≤
1

(n+ 1)!

n+1∏
k=2

(
k − 2 +

2 (β − δ)
π

sin
π (1− δ)
β − δ

)

+
2 (β − α)

(n− 1)! (n+ 1) π
sin

π (1− α)

β − α

n−1∏
k=1

(
k +

2 (β − δ)
π

sin
π (1− δ)
β − δ

)
.

Letting b = γ = 1, p = 1 and β → ∞ in Theorem 3.1, we have the coefficient
bounds for close-to-convex functions of order α and type δ.
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Corollary 3.4. [7] Let α and δ be real numbers such that 0 ≤ α, δ < 1 and let
the function f ∈ A be defined by (2). If f ∈ C(α, δ), then

|an| ≤
2 (3− 2δ) (4− 2δ) · · · (n− 2δ)

n!
[n (1− α) + (α− δ)] (n = 2, 3, . . .) .

Letting b = γ = 1, p = 1, δ = 0, β → ∞ in Theorem 3.1, we have the following
coefficient bounds for close-to-convex functions of order α.

Corollary 3.5. Let α be a real number such that 0 ≤ α < 1 and let the function
f ∈ A be defined by (2). If f ∈ C(α), then

|an| ≤ n (1− α) + α (n = 2, 3, . . .) .

Letting b = γ = 1, p = 1, α = δ = 0, β → ∞ in Theorem 3.1, we have the
well-known coefficient bounds for close-to-convex functions.

Corollary 3.6. [9] Let the function f ∈ A be defined by (2). If f ∈ C, then

|an| ≤ n (n = 2, 3, . . .) .
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