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COMPARISON OF DISCRETE TIME INVENTORY SYSTEMS

WITH POSITIVE SERVICE TIME AND LEAD TIME

Balagopal N, Deepthy C P, Jayaprasad P N, and Varghese Jacob∗

Abstract. This paper investigates two discrete time queueing inventory models
with positive service time and lead time. Customers arrive according to a Bernoulli
process and service time and lead time follow geometric distributions. The first
model under discussion based on replenishment of order upto S policy where as the
second model is based on order placement by a fixed quantity Q, where Q = S − s,
whenever the inventory level falls to s. We analyse this queueing systems using the
matrix geometric method and derive an explicit expression for the stability condi-
tion. We obtain the steady-state behaviour of these systems and several system
performance measures. The influence of various parameters on the systems per-
formance measures and comparison on the cost analysis are also discussed through
numerical example.

1. Introduction

There is a growing research interest in discrete time queues mainly motivated by
their applications in computer and communication systems because the basic time
unit in these systems is a binary code (See [1]). Also the discrete time system can
be used to approximate the continuous system. Discrete time queueing system has
been found to be more appropriate in modelling computer systems and communica-
tion network. Recently, due to the fast progress of computer and telecommunication
network technologies, the discrete time models have received more attention from re-
searchers (see [15]). BISDN (Broadband Integrated Service Digital Network) has been
of significant interest because it can provide a common interface for future commu-
nication needs including video, voice and data communication signals through high
speed Local Area Network (LAN), on-demand video distribution and video telephony
communications (see [15]). The Asynchronous Transfer Mode (ATM) is a key tech-
nology for accommodating such a wide area of services. In these systems, all the
information is segmented into small packets, represented as cells. The time is slotted
and in each slot the data units (packets) are transmitted. Applications in detail are
discussed in the papers [1], [2] and in the books [3], [15]. By a discrete time analysis,
we mean analysis in which the system is observed only at specific points in time which
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are equally spaced points on the time axis (see, [11], [16], [17]). That is, a system
in which observation is made only at points of event occurrences such as arrivals or
departures at specified points which are equally spaced and numbered sequentially as
0, 1, 2, . . . .

Lian and Liu [9] developed a discrete time inventory model with geometric inter
demand times and constant life time. The (s, S) inventory system with positive lead
time has been studied by several researchers (See, [4], [7], [8], [9], [10], [14]). Deepthi [5]
have studied many discrete time inventory models with/withot positive time in her
doctoral thesis. There exists a rich variety of different inventory models depending on
the combination of different assumptions (see, [6], [12]). Some common assumptions
are as follows. Continuous versus periodic review of the inventory, individual versus
batch arrivals, different replenishment policies (fixed, order upto level S etc.), constant
or random lead time etc. The inventory model in discussion is based on replenishment
of order up to S policy.

In this paper, we analyze two discrete time (s, S) inventory models with positive
service time and lead time where s is the reorder level and S is the maximum inventory
level permitted. These models differ by their respective replenishment policies. Model
1 is based on replenishment of order upto S policy. That is whenever the inventory
level reaches s, an order is placed to bring the level to S, where the replanishment
quantity is S− i when the inventory level is i, 0 ≤ i ≤ s just before the replenishment.
Model 2 is based on order placement by a fixed quantity Q, where Q = S − s,
whenever the inventory level falls to s. Here we assumed that S is greater than 2s to
avoid perpetual reordering. The decision of the order size is according to a discrete
probability function. In all these models we assume that demands are according to
a Bernoulli process. Service times and lead times are geometrically distributed. We
can construct a multidimensional Markov chain to model the joint queue length and
inventory process to obtain a product form solution for these models.

This paper is organized as follows :- In section 2, we present the mathematical
formulation of the model 1, steady-state anlaysis of the system. We also analyze
the computation of steady-state probabilities of the system state and derive some
performance measures. Section 3 discuss mathematical formulation of the model 2 and
steady-state anlaysis of the system, its stability condition and some key performance
measures. In section 4, we obtain a cost function for the models. Finally some
numerical results are given in section 5.

2. Mathematical formulation of model 1

We consider a Geo/Geo/1/(s, S) inventory system with positive lead time in which
demands arrive according to a Bernoulli process with parameter p. The demand
quantity at an epoch is for one unit of the item with probability p and is 0 with
probability p = 1−p. Thus a demand takes place at a slot boundary with probability
p and no demand with probability p. We assume that customers are not allowed
to join in the system when the inventory level is zero. The service time and lead
time for replenishment of inventory follow independent geometric distributions with
parameters q and r, respectively. Denote the complimentary probabilities as q = 1−q
and r = 1− r.
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It is assumed that all inventory activities (demand arrival, replenishment, depar-
ture) take place around the slot boundaries. We assume that a departure or replen-
ishment occurs in the interval (m−,m) and an arrival in (m,m+). Whenever the
inventory level falls to s, an order is placed to bring the level to S. It requires a
random amount of time for the fulfillment of orders placed and the inventory level
can be reduced to zero during this period due to demand. The lead time takes at
least one time slot to complete, hence an order can not be received at the epoch it is
placed.

Let Nm denote the number of customers in the system and Im, the inventory
level at m+. We denote the joint queue length and inventory process by {(Nm, Im) :
m ∈ N}. Then χ1 = {(Nm, Im) : m ∈ N} is a Markov Chain whose state space is
E = {0, 1, 2, . . .} × {0, 1, 2, . . . s, s+ 1, . . . S}.

The state space of the Markov chain is partitioned into levels defined as î =
{(i, 0), (i, 1), . . . (i, s), (i, s + 1), . . . (i, S)}. The one step transition probability ma-
trix P of the Markov chain χ1 is given by

(1) P =


P00 P01

P10 P11 P12

P10 P11 P12

. . . . . . . . .


where each entry is a square matrix of order S + 1.

In the above matrix P00 denotes the probability of transitions among states within
level 0; P01 is those from level 0 to level 1. The transitions from level i to level i + 1
are represented by elements of the matrix P12, those from level i to i− 1 by those of
P10 and transitions within the level i are represented by that in P11. Entries of these
matrices are

[P00]ij =


r, j = i, i = 0
p r, j = i, i = 1, 2, . . . , s
p, j = i, i = s+ 1, s+ 2, . . . , S
pr, j = S, i = 0, 1, . . . , s
0, otherwise

[P01]ij =


p r, j = i, i = 1, 2, . . . , s
p, j = i, i = s+ 1, s+ 2, . . . , S
p r, j = S, i = 0, 1, . . . , s
0, otherwise

[P10]ij =


q r, j = i− 1, i = 1
pqr, j = i− 1, i = 2, 3, . . . , s
pq, j = i− 1, i = s+ 1, s+ 2, . . . , S
pqr, j = S − 1, i = 1, 2, . . . , s
0, otherwise

[P12]ij =


pq r, j = i i = 1, 2, . . . , s
p, j = i, i = s+ 1, s+ 2, . . . , S
p r, j = S i = 0
pqr, j = S, i = 1, 2, . . . , s
0, otherwise
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[P11]ij =



r, j = i, i = 0
p q r, j = i, i = 1, 2, . . . , s
p q, j = i, i = s+ 1, s+ 2, . . . , S
p qr, j = i− 1, i = 2, 3, . . . , s
p q r, j = S − 1, i = 1, 2, . . . , s
pr, j = S, i = 0
p qr, j = S, i = 1, 2, . . . , s
0, otherwise

where p = 1− p, q = 1− q, r = 1− r.

2.1. Stability Condition. For determining the stability condition for the system,
consider the transition matrix A = P10 + P11 + P12 given by

[A]ij =



r, j = i, i = 0
q r, j = i− 1, i = 1, 2, . . . , s
pq, j = i− 1, i = s+ 1, s+ 2, . . . , S
q r, j = i, i = 1, 2, . . . , s
p+ p q, j = i, i = s+ 1, s+ 2, . . . , S
r, j = S, i = 0
q r, j = S − 1, i = 1, 2, . . . , s
qr, j = S, i = 1, 2, . . . , s
0, otherwise

The Markov chain χ1 is stable (see, Neuts [13]) if and only if πP12 e < πP10 e
where π is the stationary probability vector of A satisfying πA = π and πe = 1,
where e is a column vector of 1’s of appropriate order.

Write π = (π0, π1, . . . πs, . . . , πS). Then πA = π gives

πj =


(1−r)(1−q r)j−1

(q r)j
π0, j = 1, 2, . . . , s

(1−r)(1−q r)j−1

p q(q r)j−1 π0, j = s+ 1

πs+1 = πs+2 = · · · = πS−1;

πS = (1−r)[q(q r)s+q(1−q r)s]
p q(q r)s

π0.

Further, πe = 1 gives

π0 = p q(q r)s

(1−q r)s[p q+(S−s−1)r+r q]+rq(q r)s

It follows that

πP12e =

{
p q

(1− q r)s − (q r)s

(q r)s
+
pr(S − s− 1)(1− q r)s

p q(q r)s
+ pr +

prq

pq
+
pr q(1− q r)s

p q(q r)s

}
π0

and

πP10e =

{
pq

(1− q r)s − (q r)s

(q r)s
+
r(S − s− 1)(1− q r)s

(q r)s
− pr + q +

r q(1− q r)s

(q r)s

}
π0.

We obtain the following theorem.
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Theorem 2.1. The system χ1 is stable if and only if

(2)
pr + (pq)2 − pp r

pqr + (pq)2 + pqr(S−s−1) + pqq(r − p) + pr(S−s)
· q(q r)s

(1− q r)s
< 1

2.2. Steady-state analysis of model 1. Assume that the stability condition (2)
is satisfied and x be the steady-state probability vector of the transition probability
matrix P given in (1). That is,

(3) xP = x; x e = 1

Partition this vector as x = (x0,x1,x2, . . .). Then we see that, x has the matrix
geometric form xn = x1R

n−1, n ≥ 2 (see, Neuts [13]) where R is the minimal solution
of the matrix quadratic equation P12 +RP11 +R2P10 = R.

xP = x leads us to

x0 P00 + x1 P10 = x0

x0 P01 + x1 P11 + x2 P10 = x1(4)

xn−1 P12 + xn P11 + xn+1 P10 = xn, n ≥ 2

The normalizing condition of (3) gives

(5) x0 e + x1 (I −R)−1e = 1.

The rate matrix R can be obtained using the successive iterative method R(n+ 1) :=
(P12 + R(n)2P10)(I − P11)

−1, with R(0) = 0 and R(n) is the value of R at the nth

iteration. The iteration is usually stopped when |R(n)−R(n+ 1)|ij < ε,∀i, j.
For finding the steady-state probability vector of the process χ1 = {(Nm, Im) : m ∈

N}, consider the system where service time is negligible and where no customer joins
when inventory is out of stock (see, [8]). This means that if the item is available at
the epoch of demand, then it would be immediately delivered. As a consequence the
customer need not have to wait. Hence the system has only inventory and is of finite
state space.

The corresponding Markov chain is designated as χ̂1 = {Im : m ∈ N} where Im de-

note the inventory level. The state space of the process is given by Ê = {0, 1, 2, . . . , S}.
The transition probability matrix corresponding to χ̂1 is given by

[P̂ ]ij =



r, j = i, i = 0
p r, j = i− 1, i = 1, 2, . . . , s
p, j = i− 1, i = s+ 1, s+ 2, . . . , S
p r, j = i, i = 1, 2, . . . , s
p, j = i, i = s+ 1, s+ 2, . . . , S
r, j = S, i = 0, 1, . . . , s
0, otherwise

Let π̂ = (π̂0, π̂1, . . . , π̂S) be the steady-state probability vector of the process χ̂1.

Then π̂P̂ = π̂ and π̂e = 1.

It can be seen that

π̂j =

{
(1−r)(1−p r)j−1

(p r)j
π̂0, j = 1, 2, . . . , s

(1−r)(1−p r)j−1

p(p r)j−1 π̂0, j = s+ 1

π̂s+1 = π̂s+2 = · · · = π̂S.
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Also π̂e = 1 gives

π̂0 = p(pr)s

(1−p r)s[p+(S−s)r]

Now using π̂, we shall find the steady-state probability vector of χ1 given in (1).

Let x0 = ρ π̂ and xn = ρ
(

p
pq

)n
π̂, for n ≥ 1, where ρ is a constant to be determined.

This will satisfy the above equations (4). For,

xn−1P12 + xnP11 + xn+1P10

= xn−1P12 + xn

[
P00 −

pq

p
P12

]
+ xn+1P10

= ρ

(
p

pq

)n−1

π̂P12 + ρ

(
p

pq

)n

π̂

[
P00 −

pq

p
P12

]
+ ρ

(
p

pq

)n+1

π̂P10

= ρ

(
p

pq

)n

π̂

[
P00 +

p

pq
P10

]
= ρ

(
p

pq

)n

π̂ = xn

Using normalised condition, it follows that, ρ = 1− p
pq

This leads to the following result.

Theorem 2.2. Under the necessary and sufficient condition that p < pq, the
steady-state probability vector of the process χ1 with transition probability matrix P

is given by x = (x0,x1, . . .) where x0 = ρ π̂ and xn = ρ
(

p
pq

)n
π̂, for n ≥ 1; ρ = 1− p

pq

and the finite probability vector π̂ is given by π̂ = (π̂0, π̂1, . . . , π̂S) where

π̂j =


(1−r)(1−p r)j−1

(pr)j
π0, j = 1, 2, . . . , s

(1−r)(1−p r)s

p(pr)s
π0, j = s+ 1, s+ 2, . . . , S

and

π0 = p q(q r)s

(1−q r)s[p q+(S−s−1)r+r q]+rq(q r)s

2.3. System performance measures of model 1. In this section, we derive some
important performance measures and specific probabilities descriptions for the inven-
tory system.

Let x = (x0,x1, . . .) be the steady-state probability vector and xn, n ≥ 0 is further
partitioned as xn = (xn0, xn1, . . . , xnS).

1. Expected number of customers in the system :

µcust =
∞∑
n=0

nxn e

2. Expected inventory level :

µinv =
∞∑
n=0

S∑
m=1

mxnm

3. Expected reorder rate :

µreord = q

∞∑
n=0

xn,s+1
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4. Expected replenishment rate :

µrepl = r
∞∑
n=0

s∑
m=0

xnm

5. Probability that the system is idle : Pidle =
∞∑
n=0

xn0

6. Expected loss rate of customers :

µloss = p
∞∑
n=0

xn0

7. Expected number of customers waiting in the system when the inventory level
is zero :

µCW =
∞∑
n=0

nxn0

8. Expected rate, of departure after completing service :

ED = q

∞∑
n=1

S∑
m=1

xnm

3. Mathematical formulation of model 2 and its analysis

In this section, we consider a discrete time (s, S) inventory system with positive
lead time in which demands arrive according to a Bernoulli process with parameter p.
The service time and lead time follow geometric distributions with parameters q and r
respectively. Whenever the inventory level falls to s, place an order for replenishment
by a fixed quantity Q, where Q = S− s. Here S denote the maximum inventory level
and s is the reorder level. There is a positive lead time for replenishment. We assume
that no customer joins when the inventory level is zero. Those who are already present
in the system do not renege and exactly one item is demanded by each customer.

We denote the joint queue length and inventory process by χ2 = {(Nm, Im) : m ∈
N} where Nm denotes the number of customers in the system and Im denotes the
inventory level at time m+. Then χ2 provides a Markov Chain whose state space is
E = {0, 1, . . .} × {0, 1, . . . , s, s+ 1, . . . , Q,Q+ 1, . . . , S}.
The one step transition probability matrix of the process is given by

P =


P00 P01

P10 P11 P12

P10 P11 P12

. . . . . . . . .


where each entry is a square matrix of order S + 1 are given by

[P00]ij =


r, j = 0, i = 0
p r, j = i, i = 1, 2, . . . , s
p, j = i, i = s+ 1, s+ 2, . . . , S
pr, j = Q+ i, i = 0, 1, . . . , s
0, otherwise
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[P01]ij =


p r, j = i, i = 1, 2, . . . , s
p, j = i, i = s+ 1, s+ 2, . . . , S
p r, j = Q+ i, i = 0, 1, . . . , s
0, otherwise

For i ≥ 1, the transitions from level i to level i+ 1, transitions within the level i and
transitions from level i to level i− 1 are represented by the matrices P12, P11 and P10

respectively, and are given by

[P12]ij =


pq r, j = i i = 1, 2, . . . , s
p, j = i, i = s+ 1, s+ 2, . . . , S
p r, j = Q i = 0
pqr, j = Q+ i, i = 1, 2, . . . , s
0, otherwise

[P11]ij =



r, j = 0, i = 0
p q r, j = i, i = 1, 2, . . . , s
p q, j = i, i = s+ 1, s+ 2, . . . , S
p qr, j = i− 1, i = 2, 3, . . . , s
p q r, j = Q− 1 + i, i = 1, 2, . . . , s
pr, j = Q, i = 0
p qr, j = Q+ i, i = 1, 2, . . . , s
0, otherwise

[P10]ij =


q r, j = 0, i = 1
pqr, j = i− 1, i = 2, 3, . . . , s
pq, j = i− 1, i = s+ 1, s+ 2, . . . , S
pqr, j = Q− 1 + i, i = 1, 2, . . . , s
0, otherwise

where, p = 1− p, q = 1− q, r = 1− r

3.1. Stability Condition of model 2. To obtain the stability condition for the
model 2, consider the transition matrix A = P10 + P11 + P12 by

[A]ij =



r, j = 0, i = 0
q r, j = i, i = 1, 2, . . . , s
q r, j = i− 1, i = 1, 2, . . . , s
pq, j = i− 1, i = s+ 1, s+ 2, . . . , S
p+ p q, j = i, i = s+ 1, s+ 2, . . . , S
r, j = Q, i = 0
q r, j = Q+ i, i = 1, 2, . . . , s
q r, j = Q− 1, i = 1, 2, . . . , s
0, otherwise

The Markov chain χ2 is stable if and only if the left drift rate is higher than the
rate of drift to the right. That is, πP12e < πP10e (see, Neut’s [13]) where π is
the stationary probability vector of A satisfying πA = π and πe = 1, where e is
a column vector of 1’s of appropriate order. If we partition the probability vector
π = (π0, . . . , πs, πs+1, . . . , πQ, . . . , πS).
Then,
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π1 =

(
1− r
q r

)
π0

π2 =
(1− r)(1− q r)

(q r)2
π0

...

πs =
(1− r)(1− q r)s−1

(q r)s
π0

πi =
(1− r)(1− q r)s

pq(qr)s
π0, i = s+ 1, s+ 2, . . . , Q

πQ+1 =

(
(1− r)(1− q r)s

p q (q r)s
− qr

p q (q r)

)
π0

...

πS−2 =
r(1− r)(1− q r)s−3

p q(q r)s−2

[
q +

1− q r
q r

+
(1− q r)2

(q r)2

]
π0

πS−1 =
r(1− r)(1− q r)s−2

p q(q r)s−1

[
q +

1− q r
q r

]
π0

πS =
r(1− r)(1− q r)s−1

p q(q r)s
qπ0

and πe = 1 gives π0 =
p q(q r)s

(1− q r)s[Qr − pq] + q(q r)s

It follows that

πP12e =
[
−pq (1−q r)

s

(q r)s
− p q + pr

]
π0 + p

πP10e = [pr − pq] π0 + pq

Thus we proved the theorem,

Theorem 3.1. The system χ2 is stable if and only if

(6)
p q[(q − p)(q r)s − pq(1− q r)s]

(1− q r)s[Qr − pq] + q(q r)s
< p q − p

3.2. Steady-state analysis of model 2. Let x = (x0,x1, . . .) be the steady-state
probability vector of the Markov process χ2 satisfying xP = x and x e = 1. Then xn

has the matrix geometric form xn = x1R
n−1, n ≥ 2 where R is the minimal solution

of the matrix quadratic equation P12 +RP11 +R2P10 = R. The vectors x0 and x1 can
be obtained by solving the matrix equations.

x0P00 + x1P10 = x0(7)

x0P01 + x1 (P11 +RP10) = x1(8)

and the normalizing condition

(9) x0e + x1(I −R)−1e = 1
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From the above equations, to determine x, we have to compute the rate matrix R
(see, Neuts [13]) and we solved numerically. In some special cases we can compute
the rate matrix R explicitly.

3.3. System performance measures of model 2. Let x = (x0,x1, . . .) be the
steady-state probability vector and xn, n ≥ 0, be partitioned as xn = (xn0, xn1, . . . , xnS).
We have then the following measures for evaluating performance of the system.

1. Expected number of customers in the system :

µcust =
∞∑
n=0

nxne

2. Expected inventory level :

µinv =
∞∑
n=0

S∑
m=1

mxnm

3. Expected reorder rate :

µreord = q
∞∑
n=1

xn,s+1

4. Expected replenishment rate :

µrepl = r
∞∑
n=0

s∑
n=0

xnm

5. Probability that the system is idle : Pidle =
∞∑
n=0

xn0

6. Expected loss rate of fresh arrivals :

µloss = p
∞∑
n=0

xn0

7. Expected number of customers waiting in the system when the inventory level
is zero :

µCW =
∞∑
n=1

nxn0

8. Expected rate of departure after completing service :

ED = q
∞∑
n=1

S∑
m=1

xnm

4. Cost Analysis

In this section we discuss optimization problem of the systems under study. We
define the following costs for our model.
Denote c0 - fixed ordering cost,
c1 - procurement cost/ unit,
c2 - holding cost of inventory /unit/unit time,
c3 - holding cost of customers/unit/unit time,
c4 - cost due to the loss of customers /unit/unit time,
Using the above cost, we obtain the long run expected total cost function of these
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models. The Expected Total Cost, for Model 1,

(10) ETC1 =

[
c0 +

s∑
i=0

r (S − i) c1

]
µreord + c2 µinv + c3 µCW + c4 µloss

for Model 2,

(11) ETC2 = [c0 +Qc1]µreord + c2 µinv + c3 µCW + c4 µloss

5. Numerical illustration

In this section, we present some numerical results that show the system performance
measures with variations in values of underlying parameters. We assume that stability
condition hold for both the models.

Table 1. Effect of p on various performance measures of two models :
fix s=8, S=25, q=0.8

p ρ µcust µinv

Model-1 Model-2 Model-1 Model-2 Model-1 Model-2

r = 0.1
0.20 0.2648 0.2887 0.4315 0.4471 15.816 15.493
0.25 0.3559 0.3867 0.6542 0.6931 15.522 15.355
0.30 0.4614 0.4995 1.0003 1.0932 15.228 15.202
0.35 0.5844 0.6305 1.6193 1.8590 14.923 15.021
0.40 0.7296 0.7844 3.0634 3.9279 14.593 14.799

r = 0.5
0.20 0.2942 0.2934 0.4485 0.4484 16.705 15.594
0.25 0.3937 0.3926 0.6971 0.6967 16.631 15.483
0.30 0.5081 0.5067 1.1046 1.1034 16.548 15.359
0.35 0.6407 0.6391 1.8967 1.8920 16.448 15.212
0.40 0.7961 0.7943 4.1207 4.0925 16.318 15.029

r = 0.7
0.20 0.3020 0.2966 0.4509 0.4493 16.787 15.662
0.25 0.4035 0.3967 0.7038 0.6993 16.729 15.569
0.30 0.5199 0.5116 1.1237 1.1107 16.664 15.465
0.35 0.6545 0.6449 1.9589 1.9157 16.586 15.341
0.40 0.8121 0.8011 4.4437 4.2145 16.485 15.186

In table 1 and table 2, it is seen that in both the models, the traffic intensity
and the expected number of customers increases with increase in arrival rate p for
various values of r, consequently inventory level decreases. Also expected number of
customers waiting in the system when inventory level is zero increases.

From table 3 and table 4 as the service rate q increases, expected number of cus-
tomers decreases and consequently inventory level increases and expected reorder rate
also increases. As the rate of leadtime for replenishment increases the inventory level
increases, as expected. Also reorder rate increases and expected loss rate of customers
decreases for various values of r.
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Table 2. Effect of p on various performance measures of two models
when s=8, S=25, q=0.8

p µreord µrepl µCW

Model-1 Model-2 Model-1 Model-2 Model-1 Model-2

r = 0.1
0.20 0.0422 0.0471 0.0036 0.0087 0.2436 0.2482
0.25 0.0410 0.0471 0.0036 0.0101 0.3194 0.3294
0.30 0.0398 0.0472 0.0035 0.0111 0.4015 0.4208
0.35 0.0387 0.0474 0.0032 0.0118 0.4901 0.5242
0.40 0.0381 0.0481 0.0030 0.0122 0.5856 0.6417

r = 0.5
0.20 0.0464 0.0471 0.0094 0.0095 0.2486 0.2486
0.25 0.0462 0.0471 0.0110 0.0112 0.3302 0.3302
0.30 0.0460 0.0471 0.0123 0.0126 0.4224 0.4223
0.35 0.0459 0.0474 0.0133 0.0137 0.5272 0.5269
0.40 0.0461 0.0479 0.0139 0.0144 0.6472 0.6464

r = 0.7
0.20 0.0470 0.0471 0.0114 0.0102 0.2492 0.2488
0.25 0.0470 0.0471 0.0142 0.0122 0.3315 0.3307
0.30 0.0470 0.0471 0.0168 0.0139 0.4250 0.4233
0.35 0.0471 0.0473 0.0194 0.0154 0.5319 0.5287
0.40 0.0473 0.0478 0.0218 0.0165 0.6552 0.6497

From table 5 and table 6, it is noticed that as replenishment rate r increases, the
inventory level in both models increases. Note that the traffic intensity and expected
number of customers also increases this is because of customers are leaving the system
after completing the service.
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Figure 1. Idle probability and loss probability of Model-1 when S =
15; p = 0.4; q = 0.7

As seen from figure 1 and figure 2, in both the models, as the reorder level increases,
customer loss probability decreases and also system idle probability increases.

In table 7, we compute the optimum inventory level S and expected total cost
per unit time for the models by varying parameter S one at a time while keeping
others fixed and find the most profitable one by comparing the costs. Again as the
maximum inventory level S is increased, the cost function first decreases and then
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Table 3. Effect of q on various performance measures of two models
when s=8, S=25, p=0.4

q ρ µcust µinv

Model-1 Model-2 Model-1 Model-2 Model-1 Model-2

r = 0.1
0.70 0.8535 0.8251 6.4457 5.5031 14.537 11.775
0.75 0.7875 0.7572 4.1527 3.7032 14.568 11.809
0.80 0.7296 0.6976 3.0634 2.7896 14.593 11.841
0.85 0.6785 0.6448 2.4267 2.2371 14.613 11.869
0.90 0.6331 0.5978 2.0088 1.8668 14.628 11.895

r = 0.5
0.70 0.9197 0.9183 11.8948 11.7086 16.283 14.993
0.75 0.8539 0.8524 6.1186 6.0627 16.302 15.012
0.80 0.7961 0.7943 4.1207 4.0925 16.318 15.030
0.85 0.7448 0.7427 3.1076 3.0900 16.333 15.045
0.90 0.6990 0.6967 2.4951 2.4828 16.346 15.059

r = 0.7
0.70 0.9338 0.9337 14.3816 14.3637 16.463 15.429
0.75 0.8690 0.8689 6.7893 6.7847 16.474 15.441
0.80 0.8121 0.8120 4.4437 4.4415 16.485 15.451
0.85 0.7617 0.7616 3.3029 3.3015 16.494 15.460
0.90 0.7168 0.7166 2.6282 2.6273 16.502 15.468
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Figure 2. Idle probability and loss probability of Model-2 when S =
15; p = 0.4; q = 0.7

increases. From table 7, we observed that the expected total cost is minimum for
model-2. Hence model-2 is more profitable. That is when the inventory level reaches
s, for the first time, place an order for replenishment by a fixed quantity Q = S − s.

Conclusion

In this paper, we studied two discrete time queueing inventory models with positive
service time and lead time. In model 1, when the inventory level i deplates to s, place
an order upto S where the replenishment quantity is S−i. In model 2, replenishment of
order upto S policy where order placement by a fixed quantity Q = S−s. The systems
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Table 4. Effect of q on various performance measures of two models
when s=8, S=25, p=0.4

q µreord µrepl µCW

Model-1 Model-2 Model-1 Model-2 Model-1 Model-2

r = 0.1
0.70 0.0338 0.0421 0.0029 0.0036 0.5831 0.5664
0.75 0.0359 0.0446 0.0029 0.0036 0.5843 0.5680
0.80 0.0381 0.0471 0.0030 0.0037 0.5856 0.5695
0.85 0.0403 0.0497 0.0030 0.0037 0.5868 0.5709
0.90 0.0425 0.0523 0.0030 0.0037 0.5879 0.5723

r = 0.5
0.70 0.0407 0.0422 0.0138 0.0144 0.6471 0.6464
0.75 0.0434 0.0451 0.0139 0.0144 0.6471 0.6464
0.80 0.0461 0.0479 0.0139 0.0144 0.6472 0.6464
0.85 0.0488 0.0507 0.0140 0.0145 0.6472 0.6465
0.90 0.0516 0.0536 0.0140 0.0145 0.6473 0.6465

r = 0.7
0.70 0.0416 0.0418 0.0218 0.0219 0.6553 0.6552
0.75 0.0445 0.0447 0.0218 0.0219 0.6553 0.6552
0.80 0.0473 0.0475 0.0218 0.0219 0.6552 0.6552
0.85 0.0502 0.0504 0.0218 0.0219 0.6552 0.6552
0.90 0.0531 0.0533 0.0218 0.0219 0.6552 0.6552

Table 5. Effect of r on various performance measures of model 1 when
s=8, S=25, p=0.3, q=0.8

r ρ µcust µinv µreord µrepl µCW

0.2 0.6687 2.1891 16.0543 0.0326 0.0063 0.4144
0.3 0.6811 2.2670 16.3221 0.0337 0.0086 0.4187
0.6 0.6967 2.3677 16.5704 0.0349 0.0136 0.4233
0.7 0.6992 2.3844 16.6040 0.0351 0.0148 0.4240
0.8 0.7010 2.3974 16.6289 0.0352 0.0159 0.4246

Table 6. Effect of r on various performance measures of model 2 when
s=8, S=25, p=0.3, q=0.8

r ρ µcust µinv µreord µrepl µCW

0.2 0.6624 2.1638 14.3643 0.0357 0.0069 0.4131
0.3 0.6783 2.2550 14.8967 0.0356 0.0091 0.4182
0.6 0.6963 2.3656 15.4420 0.0355 0.0138 0.4232
0.7 0.6989 2.3832 15.5209 0.0354 0.0150 0.4240
0.8 0.7009 2.3968 15.5803 0.0354 0.0160 0.4245
0.9 0.7024 2.4075 15.6265 0.0354 0.0169 0.4250

are exhaustively analyzed. Using Matrix-geometric method we derived steady-state
analysis of the model and obtained an explicit expression for the stability condition.
Several performance measures are derived. The influence of various parameters on the
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Table 7. Optimum value of S when s=4, p=0.4, q=0.7, r= 0.3,
c0 = $50, c1 = $15, c2 = $0.2, c3 = $0.3, c4 = $0.5

S 12 13 14 15 16 17 18 19 20 21

ETC1 22.62 22.51 22.46 22.45 22.47 22.52 22.58 22.65 22.73 22.82

S 12 13 14 15 16 17 18 19 20 21

ETC2 18.79 18.43 18.19 18.04 17.94 17.89 17.87 17.88 17.89 17.93

system performance are also investigated through numerical example. Cost analysis
for the models are numerically investigated. We observed that the expected total cost
is minimum for model-2 in comparison with model-1 for a fixed parameters of the
models.
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