SYMMETRIC BI-DERIVATIONS OF SUBTRACTION ALGEBRAS

Kyung Ho Kim

Abstract

In this paper, we introduce the notion of symmetric bi-derivations on subtraction algebra and investigated some related properties. We prove that a map $D: X \times X \rightarrow X$ is a symmetric bi-derivation on X if and only if D is a symmetric map and it satisfies $D(x-y, z)=D(x, z)-y$ for all $x, y, z \in X$.

1. Introduction

B. M. Schein [4] considered systems of the form $(\Phi ; \circ, \backslash)$, where Φ is a set of functions closed under the composition " \circ " of functions (and hence ($\Phi ; \circ$) is a function semigroup) and the set theoretic subtraction "" (and hence ($\Phi ; \backslash$) is a subtraction algebra in the sense of [1]. He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B. Zelinka [6] discussed a problem proposed by B. M. Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. In this paper, we introduced the notion of symmetric bi-derivations on subtraction algebra and investigated some related properties. We prove that a map $D: X \times X \rightarrow X$ is a symmetric bi-derivation on X if and only if D is a symmetric map and it satisfies $D(x-y, z)=D(x, z)-y$ for all $x, y, z \in X$.

2. Preliminaries

We first recall some basic concepts which are used to present the paper.
By a subtraction algebra we mean an algebra ($X ;-$) with a single binary operation "-" that satisfies the following identities: for any $x, y, z \in X$,
(S1) $x-(y-x)=x$;
(S2) $x-(x-y)=y-(y-x)$;
(S3) $(x-y)-z=(x-z)-y$.
The last identity permits us to omit parentheses in expressions of the form $(x-y)-z$. The subtraction determines an order relation on $X: a \leq b \Leftrightarrow a-b=0$, where $0=a-a$ is an element that does not depend on the choice of $a \in X$. The ordered set $(X ; \leq)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice

[^0]with zero 0 in which every interval $[0, a]$ is a Boolean algebra with respect to the induced order. Here $a \wedge b=a-(a-b)$; the complement of an element $b \in[0, a]$ is $a-b$; and if $b, c \in[0, a]$, then
\[

$$
\begin{aligned}
b \vee c & =\left(b^{\prime} \wedge c^{\prime}\right)^{\prime}=a-((a-b) \wedge(a-c)) \\
& =a-((a-b)-((a-b)-(a-c))) .
\end{aligned}
$$
\]

In a subtraction algebra, the following are true for every $x, y, z \in X$ (see [4]):
(p1) $(x-y)-y=x-y$.
(p2) $x-0=x$ and $0-x=0$.
(p3) $(x-y)-x=0$.
(p4) $x-(x-y) \leq y$.
(p5) $(x-y)-(y-x)=x-y$.
(p6) $x-(x-(x-y))=x-y$.
(p7) $(x-y)-(z-y) \leq x-z$.
(p8) $x \leq y$ if and only if $x=y-w$ for some $w \in X$.
(p9) $x \leq y$ implies $x-z \leq y-z$ and $z-y \leq z-x$ for all $z \in X$.
(p10) $x, y \leq z$ implies $x-y=x \wedge(z-y)$.
(p11) $(x \wedge y)-(x \wedge z) \leq x \wedge(y-z)$.
(p12) $(x-y)-z=(x-z)-(y-z)$.
A mapping d from a subtraction algebra X to a subtraction algebra Y is called a morphism if $f(x-y)=f(x)-f(y)$ for all $x, y \in X$. A self map d of a subtraction algebra X which is a morphism is called an endomorphism.

Lemma 2.1. Let X be a subtraction algebra. Then the following properties hold:
(1) $x \wedge y=y \wedge x$, for every $x, y \in X$.
(2) $x-y \leq x$ for all $x, y \in X$.

Lemma 2.2. Every subtraction algebra X satisfies the following property

$$
(x-y)-(x-z) \leq z-y
$$

for all $x, y, z \in X$.
Definition 2.3. Let X be a subtraction algebra and Y a non-empty set of X. Then Y is called a subalgebra if $x-y \in Y$ whenever $x, y \in Y$.

Definition 2.4. A nonempty subset I of a subtraction algebra X is called an ideal of X if it satisfies
(I1) $0 \in I$,
(I2) for any $x, y \in X, y \in I$ and $x-y \in I$ implies $x \in I$.
For an ideal I of a subtraction algebra X, it is clear that $x \leq y$ and $y \in I$ imply $x \in I$ for any $x, y \in X$.

Definition 2.5. Let X be a subtraction algebra. A mapping $D(.,):. X \times X \rightarrow X$ is called symmetric if $D(x, y)=D(y, x)$ holds for all $x, y \in X$.

Definition 2.6. Let X be a subtraction algebra and $x \in X$. A mapping $d(x)=$ $D(x, x)$ is called a trace of $D(.,$.$) , where D(.,):. X \times X \rightarrow X$ is a symmetric mapping.

Definition 2.7. Let X be a subtraction algebra. By a derivation of X, a self-map f of X satisfying the identity $f(x-y)=(f(x)-y) \wedge(x-f(y))$ for all $x, y \in X$ is meant.

3. Symmetric bi-derivations of subtraction algebras

In what follows, let X denote a subtraction algebra unless otherwise specified.
Definition 3.1. Let X be a subtraction algebra and $D: X \times X \rightarrow X$ be a symmetric mapping. We call D a symmetric bi-derivation on X if it satisfies the following condition

$$
D(x-y, z)=(D(x, z)-y) \wedge(x-D(y, z))
$$

for all $x, y, z \in X$.
Example 3.2. Let $X=\{0, a, b\}$ be a subtraction algebra with the following Cayley table

$$
\begin{array}{c|ccc}
- & 0 & a & b \\
\hline 0 & 0 & 0 & 0 \\
a & a & 0 & a \\
b & b & b & 0
\end{array}
$$

Define a map $D: X \times X \rightarrow X$ by

$$
D(x, y)= \begin{cases}0 & \text { if }(x, y)=(0,0),(0, a),(a, 0),(0, b),(b, 0) \\ a & \text { if }(x, y)=(a, a),(a, b),(b, a) \\ b & \text { if }(x, y)=(b, b)\end{cases}
$$

Then it is easily checked that D is a symmetric bi-derivation of subtraction algebra X.

Proposition 3.3. Let D be a symmetric bi-derivation of subtraction algebra X and d the trace of symmetric bi-derivation D on X. Then the following identities hold:
(1) $D(0,0)=0$.
(2) $D(0, x)=D(x, 0)=0$ for all $x \in X$.
(3) $d(x) \leq x$ for all $x \in X$.

Proof. (1) Since $D(0,0)=D(0-0,0)$, we have

$$
\begin{aligned}
D(0,0) & =D(0-0,0)=(D(0,0)-0) \wedge(0-D(0,0)) \\
& =D(0,0) \wedge 0=D(0,0)-(D(0,0)-0) \\
& =D(0,0)-D(0,0)=0
\end{aligned}
$$

(2) For all $x \in X$, we get

$$
\begin{aligned}
D(0, x)= & D(0-0, x)=(D(0, x)-0) \wedge(0-D(0, x)) \\
& =D(0, x) \wedge 0=D(0, x)-(D(0, x)-0) \\
& =D(0, x)-D(0, x)=0 .
\end{aligned}
$$

(3) Since $d(x)=D(x, x)$, we obtain

$$
\begin{aligned}
d(x) & =D(x, x)=D(x-0, x)=(D(x, x)-0) \wedge(x-D(0, x)) \\
& =D(x, x) \wedge x=D(x, x)-(D(x, x)-x) \\
& =x-(x-D(x, x)) \quad(\text { by }(\text { S2 })) \\
& \leq x \quad(\text { by Lemma 2.1 }(2))
\end{aligned}
$$

Proposition 3.4. Let X be a subtraction algebra and d the trace of symmetric bi-derivation D on X. Then $d(0)=0$.

Proof. Let $x \in X$. Then we have

$$
\begin{aligned}
d(0) & =D(0,0)=D(0-x, 0)=(D(0,0)-x) \wedge(0-D(x, 0)) \\
& =(0-x) \wedge 0-0=(0 \wedge 0)=0 .
\end{aligned}
$$

This completes the proof.
Proposition 3.5. Let X be a subtraction algebra and d a trace of symmetric bi-derivation D on X. Then the following identities hold.
(1) $D(x, y)=D(x, y) \wedge x$ for every $x, y \in X$.
(2) $d(x)=d(x) \wedge x$ for every $x, y \in X$.

Proof. (1) Let $x, y \in X$. Then we have

$$
\begin{aligned}
D(x, y) & =D(x-0, y) \\
& =(D(x, y)-0) \wedge(x-D(0, y)) \\
& =D(x, y) \wedge(x-0)=D(x, y) \wedge x
\end{aligned}
$$

(2) Let $x \in X$. Then we obtain

$$
\begin{aligned}
d(x) & =D(x, x)=D(x-0, x) \\
& =(D(x, x)-0) \wedge(x-D(0, x)) \\
& =D(x, x) \wedge x=d(x) \wedge x
\end{aligned}
$$

Proposition 3.6. Let X be a subtraction algebra and d a trace of symmetric bi-derivation D on X. Then the following identities hold.
(1) $D(d(x)-x, x)=0$ for every $x \in X$.
(2) $d(x-d(x))=0$ for every $x \in X$.

Proof. (1) Let $x \in X$. Then we have

$$
\begin{aligned}
(D(d(x)-x, x) & =D(d(x), x)-x) \wedge(d(x)-D(x, x)) \\
& =(D(d(x), x)-x) \wedge 0 \\
& =(D(d(x), x)-x)-(D(d(x), x)-x)=0
\end{aligned}
$$

(2) Let $x \in X$. Then we obtain

$$
\begin{aligned}
d(x-d(x)) & =D(x-d(x), x-d(x)) \\
& =(D(x, x-d(x))-d(x)) \wedge(x-D(d(x), x-d(x))) \\
& =((D(x-d(x), x)-d(x))-d(x)) \wedge(x-D(x-d(x), d(x))) \\
& =((D(x, x)-d(x) \wedge(x-D(d(x), x))-d(x)) \wedge(x-D(x-d(x), d(x))) \\
& =0 \wedge(x-D(x-d(x), d(x))) \\
& =0
\end{aligned}
$$

Proposition 3.7. Let X be a subtraction algebra and D a symmetric bi-derivation on X. Then $D(x, y) \leq x$ and $D(x, y) \leq y$ for all $x, y \in X$.

Proof. For all $x \in X$, we have $D(x, y)=D(x-0, y)=(D(x, y)-0) \wedge(x-D(0, y))=$ $D(x, y) \wedge x=D(x, y)-(D(x, y)-x)=x-(x-D(x, y)) \leq x$. Hence $D(x, y) \leq x$. Similarly, we have $D(x, y) \leq y$.

Corollary 3.8. Let X be a subtraction algebra and D a symmetric bi-derivation on X. Then $D(x, y)-y \leq x-D(x, y)$ for every $x, y \in X$.

Proof. For all $x, y \in X$, we have $D(x, y)-y \leq x-y$ and $x-y \leq x-D(x, y)$ from (p9) and Proposition 3.7. Hence we obtain $D(x, y)-y \leq x-D(x, y)$. This completes the proof.

Theorem 3.9. Let X be a subtraction algebra and $D: X \times X \rightarrow X$ be a symmetric map defined by $D(x-y, z)=D(x, z)-y$ for every $x, y \in X$. Then D is a symmetric bi-derivation on X.

Proof. For any $y \in X$, we have $D(0, y)=D(0-D(0, y), y)=D(0, y)-D(0, y)=0$. Hence it follows that

$$
D(x, y)-x=D(x-x, y)=D(0, y)=0
$$

for all $x, y \in X$. Since $D(x, z) \leq x$ and $D(y, z) \leq y$, we have

$$
D(x, z)-y \leq x-y \leq x-D(y, z)
$$

for all $x, y, z \in X$. Hence $D(x-y, z)=(D(x, z)-y) \wedge(x-D(y, z))=D(x, z)-y$ for all $x, y, z \in X$, which implies that D is a symmetric bi-derivation on X.

Theorem 3.10. Let X be a subtraction algebra and $D: X \times X \rightarrow X$ be a symmetric bi-derivation on X. Then D satisfies $D(x-y, z)=D(x, z)-y$ for all $x, y, z \in X$.

Proof. Let D be a symmetric bi-derivation and $x, y, z \in X$. Since $D(x, z) \leq x$ and $D(y, z) \leq y$ by Proposition 3.7, we have

$$
D(x, z)-y \leq x-y \leq x-D(y, z)
$$

for all $x, y, z \in X$. Hence $D(x-y, z)=(D(x, z)-y) \wedge(x-D(y, z))=D(x, z)-y$ for all $x, y, z \in X$.

As a consequence of Proposition 3.9 and 3.10, we get the following theorem.
Theorem 3.11. Let X be a subtraction algebra. A map $D: X \times X \rightarrow X$ is a symmetric bi-derivation on X if and only if D is a symmetric map and it satisfies $D(x-y, z)=D(x, z)-y$ for all $x, y, z \in X$.

Proposition 3.12. Let X be a subtraction algebra and d be a trace of symmetric bi-derivation D on X. Then $d(x-y)=d(x)-y$ for all $x, y \in X$.

Proof. Let d be a trace of symmetric bi-derivation D on X. From (p1), we have

$$
\begin{aligned}
d(x-y) & =D(x-y, x-y)=D(x, x-y)-y \\
& =D(x-y, x)-y=(D(x, x)-y)-y \\
& =(d(x)-y)-y=d(x)-y
\end{aligned}
$$

for all $x, y \in X$.
Proposition 3.13. Let X be a subtraction algebra and d a trace of D. Then $d(x \wedge y)=d(x)-(x-y)$ for all $x, y \in X$.

Proof. Let $x, y \in X$. From (p1), we have

$$
\begin{aligned}
d(x \wedge y) & =D(x \wedge y, x \wedge y) \\
& =D(x-(x-y), x-(x-y))=D(x, x-(x-y))-(x-y) \\
& =D(x-(x-y), x)-(x-y) \\
& =(D(x, x)-(x-y))-(x-y) \\
& =d(x)-(x-y) .
\end{aligned}
$$

This completes the proof.
Corollary 3.14. Let X be a subtraction algebra and d a trace of D. Then $d(0 \wedge$ $x)=0$ for every $x \in X$.

Proof. Since $0 \leq x$ for all $x \in X$, we have $d(0 \wedge x)=d(0)-(0-x)=0-0=0$. This completes the proof.

Definition 3.15. Let X be a subtraction algebra and D a symmetric bi-derivation of X. For a fixed element $a \in X$, let us define a map $d_{a}: X \rightarrow X$ such that $d_{a}(x)=$ $D(x, a)$ for every $x \in X$.

Theorem 3.16. Let X be a subtraction algebra and D a symmetric bi-derivation of X. For each $a \in X$, the map d_{a} defined above is a derivation of X.

Proof. For a fixed element $a \in X$, let us define a map $d_{a}: X \rightarrow X$ such that $d_{a}(x)=D(x, a)$ for every $x \in X$. Now for every $x, y \in X$, we have

$$
\begin{aligned}
d_{a}(x-y) & =D(x-y, a) \\
& =(D(x, a)-y) \wedge(x-D(y, a)) \\
& =\left(d_{a}(x)-y\right) \wedge\left(x-d_{a}(y)\right) .
\end{aligned}
$$

This completes the proof.
Theorem 3.17. Let X be a subtraction algebra and D a symmetric bi-derivation of X. Then d_{a} is an isotone derivation of X.

Proof. Let $x, y \in X$ be such that $x \leq y$. Then by (p8), we obtain $x=y-w$ for some $w \in X$. Hence

$$
\begin{aligned}
d_{a}(x) & =d_{a}(y-w)=D(y-w, a) \\
& =D(y, a)-w \leq D(y, a)=d_{a}(y)
\end{aligned}
$$

by Lemma 2.1 (2) and Theorem 3.10.
Proposition 3.18. Let X be a subtraction algebra and D a symmetric bi-derivation on X. If there exist $a \in X$ such that $a-D(x, z)=0$, for all $x, z \in X$, we have $a=0$.

Proof. Let X be a subtraction algebra and D a symmetric bi-derivation on X . Assume that there exist $a \in X$ such that $a-D(x, z)=0$, for all $x, z \in X$. Since D is a symmetric bi-derivation, we get

$$
\begin{aligned}
0 & =a-D(a-x, z)=a-((D(a, z)-x) \wedge a-(D(x, z))) \\
& =a-(D(a, z)-x \wedge 0)=a-0=a .
\end{aligned}
$$

This completes the proof.

Definition 3.19. Let X be a subtraction algebra and D a symmetric bi-derivation on X. If $x \leq w$ implies $D(x, y) \leq D(w, y), D$ is called an isotone symmetric biderivation on X.

Theorem 3.20. Let X be a subtraction algebra and D a symmetric bi-derivation on X. Then D is an isotone symmetric bi-derivation on X.

Proof. Let $x, w \in X$ be such that $x \leq w$. Then $x=w-v$ from (p8). Hence we have

$$
\begin{aligned}
D(x, y) & =D(w-v, y)=(D(w, y)-v) \wedge(w-D(v, y)) \\
& =(D(w, y)-v)-((D(w, y)-v)-(w-D(v, y))) \\
& \leq D(w, y)-v \quad(\text { by Lemma } 2.1(2)) \\
& \leq D(w, y)
\end{aligned}
$$

Proposition 3.21. Let D be a symmetric bi-derivation on X. Then the following identities hold.
(1) $D(x \wedge y, z) \leq D(x, z)$ for all $x, y, z \in X$.
(2) $D(x \wedge y, z) \leq D(y, z)$ for all $x, y, z \in X$.

Proof. (1) Since $x \wedge y=x-(x-y) \leq x$ from (p4), by Proposition 3.20, we have $D(x \wedge y, z) \leq D(x, z)$ for all $x, y, z \in X$.
(2) Similarly, $x \wedge y=x-(x-y)=y-(y-x) \leq y$ from (p4), we have $D(x \wedge y, z) \leq$ $D(y, z)$ for all $x, y, z \in X$.

References

[1] J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969.
[2] S. D. Lee and K. H. Kim, A note on multipliers of subtraction algebras, The Hacettepe Journal of Mathematics and Statistics, 42 (2) (2013), 165-171.
[3] K. H. Kim, A note on f-derivations of subtraction algebras, Scientiae Mathematicae Japonicae, 72 (2) (2010), 127-132.
[4] B. M. Schein, Difference Semigroups, Comm. in Algebra 20 (1992), 2153-2169.
[5] Y. H. Yon and K. H. Kim, On derivations of subtraction algebras, The Hacettepe Journal of Mathematics and statistics, 41 (2) (2012), 157-168
[6] B. Zelinka, Subtraction Semigroups, Math. Bohemica, 120 (1995), 445-447.

Kyung Ho Kim

Department of Mathematics, Korea National University of Transportation, Chungju 27469, Korea.
E-mail: ghkim@ut.ac.kr

[^0]: Received April 23, 2021. Revised May 5, 2021. Accepted May 6, 2021.
 2010 Mathematics Subject Classification: 16Y30, 06B35, 06B99.
 Key words and phrases: Subtraction algebra, derivation, symmetric bi-derivation, isotone derivation.
 (C) The Kangwon-Kyungki Mathematical Society, 2021.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

