# CHARACTER ANALOGUES OF INFINITE SERIES IDENTITIES RELATED TO GENERALIZED NON-HOLOMORPHIC EISENSTEIN SERIES 

Sung Geun Lim


#### Abstract

In this paper, we derive analogues of a couple of classes of infinite series identities with the confluent hypergeometric functions involving Dirichlet characters.


## 1. Introduction

In [3], the author found character analogues of infinite series identities which originally come from modular transformation formula for generalized Eisenstein series. One of them shows the following symmetric identity( [3], Corollary 3.4);
Let $\alpha, \beta>0$ with $\alpha \beta=\pi^{2}$ and let $(\dot{\bar{p}})$ be the Legendre symbol modulo $p$, where $p$ is a prime with $p \equiv 1(\bmod 4)$. Then, for any integer $M>0$,

$$
\begin{aligned}
& \alpha^{2 M} \sum_{n=1}^{\infty}\left(\frac{n}{p}\right) \sigma_{4 M-1}\left(\left(\frac{\cdot}{p}\right), n\right) \cos (2 \pi n / p) e^{-2 \alpha n / p} \\
& =\beta^{2 M} \sum_{n=1}^{\infty}\left(\frac{n}{p}\right) \sigma_{4 M-1}\left(\left(\frac{\cdot}{p}\right), n\right) \cos (2 \pi n / p) e^{-2 \beta n / p},
\end{aligned}
$$

where

$$
\sigma_{s}\left(\left(\frac{\cdot}{p}\right), n\right)=\sum_{d \mid n}\left(\frac{d}{p}\right) d^{s} .
$$

The study to find this type of character analogues was motivated by the works of B. C. Berndt, A. Dixit and J. Sohn in [2]. For example, a character analogue of Guinand's formula shows the following elegant symmetric identity (Corollary 3.2 in [2]);

$$
\sqrt{\alpha} \sum_{n=1}^{\infty}\left(\frac{n}{p}\right) \sigma_{-1}(n) e^{-2 n \alpha / p}=\sqrt{\beta} \sum_{n=1}^{\infty}\left(\frac{n}{p}\right) \sigma_{-1}(n) e^{-2 n \beta / p},
$$

where $\sigma_{s}(n)$ is the sum of the $s$-th powers of the positive divisors of $n$.
In this paper, we establish character analogues of certain classes of infinite series identities which stem from a modular transformation formula for a class of functions related to generalized non-holomorphic Eisenstein series. We start with introducing

[^0]necessary notations and then shall state the principal theorem which shows a modular transformation formula for a large class of functions coming from generalized nonholomorphic Eisenstein series. In fact, the theorem that we shall use in this paper is a twisted version of the theorem in [4] and so some notations are twisted versions of those in [4].
Let $\mathbb{Z}, \mathbb{R}$ and $\mathbb{C}$ denote the set of integers, real numbers and complex numbers, respectively. Throughout this paper, let the branch of the argument of $z \in \mathbb{C}$ be defined by $-\pi \leq \arg z<\pi$. For any non-negative integer $n$, the rising factorial $(x)_{n}$ is defined by
$$
(x)_{n}=x(x+1) \cdots(x+n-1), n>0 \text { and }(x)_{0}=1
$$

Let $\Gamma(s)$ denote the gamma function. It is easy to see that

$$
\begin{equation*}
(x)_{n}=\frac{\Gamma(x+n)}{\Gamma(x)} \tag{1.1}
\end{equation*}
$$

The confluent hypergeometric function of the first kind ${ }_{1} F_{1}(\alpha ; \beta ; z)$ is defined by

$$
{ }_{1} F_{1}(\alpha ; \beta ; z)=\sum_{n=0}^{\infty} \frac{(\alpha)_{n}}{(\beta)_{n} n!} z^{n}
$$

and the confluent hypergeometric function of the second kind $U(\alpha, \beta, z)$ is defined by

$$
U(\alpha, \beta, z)=\frac{\Gamma(1-\beta)}{\Gamma(1+\alpha-\beta)}{ }_{1} F_{1}(\alpha ; \beta ; z)+\frac{\Gamma(\beta-1)}{\Gamma(\alpha)} z^{1-\beta}{ }_{1} F_{1}(1+\alpha-\beta ; 2-\beta ; z)
$$

The function $U(\alpha, \beta, z)$ can be analytically continued to all values of $\alpha, \beta, z \in \mathbb{C}[6]$. Let $\mathbb{H}=\{\tau \in \mathbb{C} \mid \operatorname{Im} \tau>0\}$ be the upper half-plane. For $r_{k}, h_{k} \in \mathbb{R}(k=1,2)$, let $\mathbf{r}=\left(r_{1}, r_{2}\right)$ and $\mathbf{h}=\left(h_{1}, h_{2}\right)$. Let $e(x)=e^{2 \pi i x}$ and let $N$ be a positive integer. For $\tau \in \mathbb{H}$ and $s_{1}, s_{2} \in \mathbb{C}$ with $s=s_{1}+s_{2}$, define

$$
\begin{aligned}
\mathcal{A}_{N}\left(\tau, s_{1}, s_{2} ; \mathbf{r}, \mathbf{h}\right)=\sum_{N m+r_{1}>0} \sum_{n-h_{2}>0} \frac{e\left(N m h_{1}+\left(\left(N m+r_{1}\right) \tau+r_{2}\right)\left(n-h_{2}\right)\right)}{\left(n-h_{2}\right)^{1-s}} \\
\times U\left(s_{2} ; s ; 4 \pi\left(N m+r_{1}\right)\left(n-h_{2}\right) \operatorname{Im}(\tau)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\overline{\mathcal{A}}_{N}\left(\tau, s_{1}, s_{2} ; \mathbf{r}, \mathbf{h}\right)=\sum_{N m+r_{1}>0} \sum_{n+h_{2}>0} \frac{e\left(N m h_{1}-\left(\left(N m+r_{1}\right) \bar{\tau}+r_{2}\right)\left(n+h_{2}\right)\right)}{\left(n+h_{2}\right)^{1-s}} \\
\times U\left(s_{1} ; s ; 4 \pi\left(N m+r_{1}\right)\left(n+h_{2}\right) \operatorname{Im}(\tau)\right) .
\end{aligned}
$$

Let

$$
\mathcal{H}_{N}\left(\tau, s_{1}, s_{2} ; \mathbf{r}, \mathbf{h}\right)=\mathcal{A}_{N}\left(\tau, s_{1}, s_{2} ; r, h\right)+e^{\pi i s} \mathcal{A}_{N}\left(\tau, s_{1}, s_{2} ;-\mathbf{r},-\mathbf{h}\right)
$$

and

$$
\overline{\mathcal{H}}_{N}\left(\tau, s_{1}, s_{2} ; \mathbf{r}, \mathbf{h}\right)=\overline{\mathcal{A}}_{N}\left(\tau, s_{1}, s_{2} ; r, h\right)+e^{\pi i s} \overline{\mathcal{A}}_{N}\left(\tau, s_{1}, s_{2} ;-\mathbf{r},-\mathbf{h}\right)
$$

Let

$$
\mathbf{H}_{N}\left(\tau, \bar{\tau}, s_{1}, s_{2} ; \mathbf{r}, \mathbf{h}\right)=\frac{1}{\Gamma\left(s_{1}\right)} \mathcal{H}_{N}\left(\tau, s_{1}, s_{2} ; \mathbf{r}, \mathbf{h}\right)+\frac{1}{\Gamma\left(s_{2}\right)} \overline{\mathcal{H}}_{N}\left(\tau, s_{1}, s_{2} ; r, h\right) .
$$

The functions $\mathcal{A}_{N}, \overline{\mathcal{A}}_{N}, \mathcal{H}_{N}, \overline{\mathcal{H}}_{N}$ and $\mathbf{H}_{N}$ are twisted versions of those in [4]. In fact, the function $\mathbf{H}_{N}$ comes from generalized non-holomorphic Eisenstein series and the
relation between $\mathbf{H}_{N}$ and the generalized non-holomorphic Eisenstein series is given in [4]. For $x, \alpha \in \mathbb{R}$ and $t \in \mathbb{C}$ with $\operatorname{Re} t>1$, let

$$
\psi(x, \alpha, t)=\sum_{n+\alpha>0} \frac{e(n x)}{(n+\alpha)^{t}}
$$

and let

$$
\begin{aligned}
& \Psi(x, \alpha, t)=\psi(x, \alpha, t)+e^{\pi i t} \psi(-x,-\alpha, t) \\
& \Psi_{-1}(x, \alpha, t)=\psi(x, \alpha, t-1)+e^{\pi i t} \psi(-x,-\alpha, t-1)
\end{aligned}
$$

Let $\lambda_{N}$ denote the characteristic function of the integers modulo $N$. For $x \in \mathbb{R},[x]$ denotes the greatest integer less than or equal to $x$ and $\{x\}=x-[x]$. Let

$$
V \tau=\frac{a \tau+b}{c \tau+d}
$$

denote a modular transformation with $c>0$ and $c \equiv 0(\bmod N)$ for $\tau \in \mathbb{C}$. Let

$$
\Re=\left(R_{1}, R_{2}\right)=\left(a r_{1}+c r_{2}, b r_{1}+d r_{2}\right)
$$

and

$$
\mathfrak{H}=\left(H_{1}, H_{2}\right)=\left(d h_{1}-b h_{2},-c h_{1}+a h_{2}\right) .
$$

Put

$$
\varrho_{N}=c\left\{R_{2}\right\}-N d\left\{\frac{R_{1}}{N}\right\} .
$$

We now state a twisted version of Theorem 3.4 in [4] which we shall use to obtain our results.

Theorem 1.1. [4]. Let $Q=\{\tau \in \mathbb{H} \mid \operatorname{Re} \tau>-d / c\}$. Let $s_{1}, s_{2} \in \mathbb{C}$ with $s=s_{1}+s_{2}$ and assume that $s$ is not an integer less than or equal to 1 . Then, for $\tau \in Q$,

$$
\begin{aligned}
& z^{-s_{1}} \bar{z}^{-s_{2}} \mathbf{H}_{N}\left(V \tau, V \bar{\tau}, s_{1}, s_{2} ; \mathbf{r}, \mathbf{h}\right) \\
& = \\
& =\mathbf{H}_{N}\left(\tau, \bar{\tau}, s_{1}, s_{2} ; \mathfrak{R}, \mathfrak{H}\right)+\lambda_{N}\left(R_{1}\right) e\left(-R_{1} H_{1}\right)(2 \pi i)^{-s} e^{-\pi i s_{2}} \Psi\left(-H_{2},-R_{2}, s\right) \\
& \quad-\lambda_{N}\left(r_{1}\right) e\left(-r_{1} h_{1}\right)(2 \pi i)^{-s} e^{\pi i s_{1}} z^{-s_{1}} \bar{z}^{-s_{2}} \Psi\left(h_{2}, r_{2}, s\right) \\
& \quad+\lambda_{N}\left(H_{2}\right)(4 \pi \operatorname{Im}(\tau))^{1-s} \frac{\Gamma(s-1)}{\Gamma\left(s_{1}\right) \Gamma\left(s_{2}\right)} \Psi_{-1}\left(H_{1}, R_{1}, s\right) \\
& \quad-\lambda_{N}\left(h_{2}\right)(4 \pi \operatorname{Im}(\tau))^{1-s} \frac{\Gamma(s-1)}{\Gamma\left(s_{1}\right) \Gamma\left(s_{2}\right)} z^{s_{2}-1} \bar{z}^{s_{1}-1} \Psi_{-1}\left(h_{1}, r_{1}, s\right) \\
& \quad+\frac{(2 \pi i)^{-s} e^{-\pi i s_{2}}}{\Gamma\left(s_{1}\right) \Gamma\left(s_{2}\right)} \mathbf{L}_{N}\left(\tau, \bar{\tau}, s_{1}, s_{2} ; \mathfrak{R}, \mathfrak{H}\right),
\end{aligned}
$$

where $z=c \tau+d$ and

$$
\begin{aligned}
& \mathbf{L}_{N}\left(\tau, \bar{\tau}, s_{1}, s_{2} ; \mathfrak{R}, \mathfrak{H}\right) \\
& =\sum_{j=1}^{c} e\left(-H_{1}\left(N j+N\left[R_{1} / N\right]-c\right)-H_{2}\left(\left[R_{2}\right]+1+\left[\left(N j d+\varrho_{N}\right) / c\right]-d\right)\right) \\
& \quad \times \int_{0}^{1} v^{s_{1}-1}(1-v)^{s_{2}-1} \int_{C} u^{s-1} \frac{e^{-(z v+\bar{z}(1-v))\left(N j-N\left\{R_{1} / N\right\}\right) u / c}}{e^{-(z v+\bar{z}(1-v)) u}-e\left(c H_{1}+d H_{2}\right)} \frac{e^{\left\{\left(N j d+\varrho_{N}\right) / c\right\} u}}{e^{u}-e\left(-H_{2}\right)} d u d v,
\end{aligned}
$$

where $C$ is a loop beginning at $+\infty$, proceeding in the upper half-plane, encircling the origin in a counterclockwise direction so that $u=0$ is the only zero of

$$
\left(e^{-(z v+\bar{z}(1-v)) u}-e\left(c H_{1}+d H_{2}\right)\right)\left(e^{u}-e\left(-H_{2}\right)\right)
$$

lying inside the loop, and then returning to $+\infty$ in the lower half plane. Here, we choose the branch of $u^{s}$ with $0<\arg u<2 \pi$.

Let $B_{n}(x)$ denote the $n$-th Bernoulli polynomial defined by

$$
\frac{t e^{x t}}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!} \quad(|t|<2 \pi)
$$

The $n$-th Bernoulli number $B_{n}, n \geq 0$, is defined by $B_{n}=B_{n}(0)$. Put $\bar{B}_{n}(x)=$ $B_{n}(\{x\}), n \geq 0$. Let ${ }_{2} F_{1}(\alpha, \beta ; \gamma ; z)$ be a hypergeometric function defined by

$$
{ }_{2} F_{1}(\alpha, \beta ; \gamma ; z)=\sum_{n=0}^{\infty} \frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n} n!} z^{n} .
$$

The function $\frac{1}{\Gamma(\gamma)}{ }_{2} F_{1}(\alpha, \beta ; \gamma ; z)$ can be analytically continued to all $\alpha, \beta, \gamma \in \mathbb{C}$ and all $z \in \mathbb{C}$ with $|z|<1$ ( [1]).

Remark 1.2. Let $s=s_{1}+s_{2}$ be an integer and let $h_{1}=h_{2}=0$. By the residue theorem, we find that

$$
\begin{aligned}
& \int_{C} u^{s-1} \frac{e^{-(z v+\bar{z}(1-v))\left(N j-N\left\{R_{1} / N\right\}\right) u / c}}{e^{-(z v+\bar{z}(1-v)) u}-1} \frac{e^{\left\{\left(N j d+\varrho_{N}\right) / c\right\} u}}{e^{u}-1} d u \\
& =2 \pi i \sum_{k=0}^{-s+2} \frac{B_{k}\left(\left(N j-N\left\{R_{1} / N\right\}\right) / c\right) \bar{B}_{-s+2-k}\left(\left(N j d+\varrho_{N}\right) / c\right)}{k!(-s+2-k)!}(-z v-\bar{z}(1-v))^{k-1} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \int_{0}^{1} v^{s_{1}-1}(1-v)^{s_{2}-1} \int_{C} u^{-s-1} \frac{e^{-(z v+\bar{z}(1-v))\left(N j-N\left\{R_{1} / N\right\}\right) u / c}}{e^{-(z v+\bar{z}(1-v)) u}-1} \frac{e^{\left\{\left(N j d+\varrho_{N}\right) / c\right\} u}}{e^{u}-1} d u d v \\
& =2 \pi i \sum_{k=0}^{-s+2} \frac{B_{k}\left(\left(N j-N\left\{R_{1} / N\right\}\right) / c\right) \bar{B}_{-s+2-k}\left(\left(N j d+\varrho_{N}\right) / c\right)}{k!(-s+2-k)!}(-z)^{k-1} \\
& \times \int_{0}^{1}(1-v)^{s_{1}-1} v^{s_{2}-1}\left(1-\frac{z-\bar{z}}{z} v\right)^{k-1} d v \\
& =2 \pi i \frac{\Gamma\left(s_{1}\right) \Gamma\left(s_{2}\right)}{\Gamma(s)} \sum_{k=0}^{-s+2} \frac{B_{k}\left(\left(N j-N\left\{R_{1} / N\right\}\right) / c\right) \bar{B}_{-s+2-k}\left(\left(N j d+\varrho_{N}\right) / c\right)}{k!(-s+2-k)!} \\
& \times(-z)^{k-1}{ }_{2} F_{1}\left(s_{2}, 1-k ; s ; \frac{z-\bar{z}}{z}\right) .
\end{aligned}
$$

The last equality holds due to the integral representation of the hypergeometric function. Hence we obtain

$$
\begin{aligned}
& \frac{1}{\Gamma\left(s_{1}\right) \Gamma\left(s_{2}\right)} \mathbf{L}_{N}\left(\tau, \bar{\tau}, s_{1}, s_{2} ; \mathfrak{R}, \mathfrak{H}\right) \\
& =\frac{2 \pi i}{\Gamma(s)} \sum_{k=0}^{-s+2} \frac{B_{k}\left(\left(N j-N\left\{R_{1} / N\right\}\right) / c\right) \bar{B}_{-s+2-k}\left(\left(N j d+\varrho_{N}\right) / c\right)}{k!(-s+2-k)!} \\
& \quad \times(-z)^{k-1}{ }_{2} F_{1}\left(s_{2}, 1-k ; s ; \frac{z-\bar{z}}{z}\right) .
\end{aligned}
$$

We now see that $\frac{1}{\Gamma\left(s_{1} \Gamma\left(s_{2}\right)\right.} \mathbf{L}_{N}\left(\tau, \bar{\tau}, s_{1}, s_{2} ; \mathfrak{R}, \mathfrak{H}\right)$ vanishes for $s>2$. Let $s=2$ and $s_{2}=-B$ be a non-positive integer. Then, applying

$$
\left(s_{2}\right)_{n}= \begin{cases}(-1)^{n} \frac{B!}{(B-n)!}, & n \leq B \\ 0, & n>B\end{cases}
$$

and using the binomial expansion

$$
(1+x)^{B}=\sum_{n=0}^{B}\binom{B}{n} x^{n}
$$

we find

$$
\begin{aligned}
{ }_{2} F_{1}\left(s_{2}, 1 ; 2 ; \frac{z-\bar{z}}{z}\right) & =\sum_{n=0}^{B}\binom{B}{n} \frac{1}{n+1}\left(\frac{\bar{z}-z}{z}\right)^{n} \\
& =\frac{1}{B+1} \frac{z}{\bar{z}-z}\left(\left(\frac{\bar{z}}{z}\right)^{B+1}-1\right) .
\end{aligned}
$$

Thus, for $s=2$ and $s_{2}$ a non-positive integer, after the evaluation of $\mathbf{L}_{N}\left(\tau, \bar{\tau}, s_{1}, s_{2} ; \mathfrak{R}, \mathfrak{H}\right)$, the relevant formula will be valid for all $z \in \mathbb{H}$ by analytic continuation.

## 2. A class of character analogues of infinite series identities

In this section, let $\chi$ be a Dirichlet character of modulus $N$ and $\chi_{o}$ be the principal Dirichlet character of modulus $N$. From now on, we set

$$
V \tau=\frac{\tau-1}{N \tau-N+1}
$$

The function $\varphi$ denotes Euler's phi function, i.e., $\varphi(N)$ is the number of positive integers up to $N$ that is relatively prime to $N$. Let $\zeta_{N}=e^{2 \pi i / N}$ and let

$$
\sigma_{t}(\chi, n)=\sum_{d \mid n} \chi(d) d^{t}
$$

Theorem 2.1. Let $\chi$ be even. For any integers $B \geq 0, M \geq 1$ and for $z \in \mathbb{H}$,

$$
\begin{aligned}
& z^{-B-2 M} \bar{z}^{B} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{\left(4 \pi \operatorname{Im}\left(z^{-1}\right) / N\right)^{\ell}}{(2 M+k-1)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \zeta_{N}^{n} \sigma_{2 M-1}(\bar{\chi}, n) e\left(\frac{-n z^{-1}}{N}\right) \\
& =\sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \pi \operatorname{Im}(z) / N)^{\ell}}{(2 M+k-1)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \zeta_{N}^{-n} \sigma_{2 M-1}(\bar{\chi}, n) e\left(\frac{n z}{N}\right)+\frac{1}{2} \delta_{M}(B, z) \nu_{\chi}(N),
\end{aligned}
$$

where

$$
\delta_{M}(B, z)= \begin{cases}\frac{(-1)^{B+1}}{2 \pi(B+1)} \frac{1}{z-\bar{z}}\left(\left(\frac{\bar{z}}{z}\right)^{B+1}-1\right), & M=1 \\ 0, & M>1\end{cases}
$$

and

$$
\nu_{\chi}(N)= \begin{cases}\varphi(N), & \chi=\chi_{\mathrm{o}} \\ 0, & \chi \neq \chi_{\mathrm{o}}\end{cases}
$$

Proof. Let $s_{1}=A \geq 1, s_{2}=-B \leq 0$ and $s=2 M \geq 2$ for $A, B, M \in \mathbb{Z}$. Put $\mathbf{r}=(k, 0)$ for any integer $k$ with $1 \leq k<N$ and put $\mathbf{h}=(0,0)$ in Theorem 1.1. Then $\mathfrak{R}=(k,-k)$ and $\mathfrak{H}=(0,0)$. We see that $\lambda_{N}\left(r_{1}\right)=\lambda_{N}\left(R_{1}\right)=\lambda_{N}(k)=0$. Put $z=N \tau-N+1$. Using Remark 1.2, we have

$$
\frac{(2 \pi i)^{1-s} e^{-\pi i s_{2}}}{\Gamma\left(s_{1}\right) \Gamma\left(s_{2}\right)} \mathbf{L}_{N}\left(\tau, \bar{\tau}, s_{1}, s_{2} ; \mathfrak{R}, \mathfrak{H}\right)= \begin{cases}\frac{(-1)^{B+1}}{2 \pi(B+1)} \frac{1}{z-\bar{z}}\left(\left(\frac{\bar{z}}{z}\right)^{B+1}-1\right), & M=1 \\ 0, & M>1\end{cases}
$$

Note that $\frac{1}{\Gamma\left(s_{2}\right)}=\frac{1}{\Gamma(-B)}=0$. Thus, in Theorem 1.1, the terms with $\lambda_{N}\left(h_{2}\right)$ and $\lambda_{N}\left(H_{2}\right)$ are equal to 0 . Thus we have
(2.1) $z^{-A} \bar{z}^{B} \mathbf{H}_{N}(V \tau, V \bar{\tau}, A,-B ; \mathbf{r}, \mathbf{h})=\mathbf{H}_{N}(\tau, \bar{\tau}, A,-B ; \mathfrak{\Re}, \mathfrak{H})+\delta_{M}(B, z)$.

Multiplying both sides in (2.1) by $\chi(k)$ and summing over $k$, we find that

$$
\begin{align*}
& z^{-A} \bar{z}^{B} \sum_{k=1}^{N-1} \chi(k) \mathbf{H}_{N}(V \tau, V \bar{\tau}, A,-B ; \mathbf{r}, \mathbf{h}) \\
& =\sum_{k=1}^{N-1} \chi(k) \mathbf{H}_{N}(\tau, \bar{\tau}, A,-B ; \mathfrak{R}, \mathfrak{H})+\sum_{k=1}^{N-1} \chi(k) \delta_{M}(B, z) . \tag{2.2}
\end{align*}
$$

Since $\frac{1}{\Gamma\left(s_{2}\right)}=\frac{1}{\Gamma(-B)}=0$,

$$
\mathbf{H}_{N}(V \tau, V \bar{\tau}, A,-B ; \mathbf{r}, \mathbf{h})=\frac{1}{\Gamma(A)} \mathcal{H}_{N}(V \tau, A,-B ; \mathbf{r}, \mathbf{h})
$$

It is easy to see that

$$
\begin{align*}
& \mathcal{A}_{N}(V \tau, A,-B ; \mathbf{r}, \mathbf{h}) \\
& =\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \frac{e((N m+k) n V \tau)}{n^{1-2 M}} U(-B ; 2 M ; 4 \pi(N m+k) n \operatorname{Im}(V \tau)) \tag{2.3}
\end{align*}
$$

and

$$
\begin{align*}
& \mathcal{A}_{N}(V \tau, A,-B ;-\mathbf{r},-\mathbf{h}) \\
& =\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \frac{e((N m+N-k) n V \tau)}{n^{1-2 M}} U(-B ; 2 M ; 4 \pi(N m+N-k) n \operatorname{Im}(V \tau)) . \tag{2.4}
\end{align*}
$$

Using (2.3) and (2.4), we obtain that

$$
\begin{aligned}
& \sum_{k=1}^{N-1} \chi(k) \mathbf{H}_{N}(V \tau, V \bar{\tau}, A,-B ; \mathbf{r}, \mathbf{h}) \\
& =\frac{1}{\Gamma(A)} \sum_{k=1}^{N-1} \chi(k)\left(\mathcal{A}_{N}(V \tau, A,-B ; \mathbf{r}, \mathbf{h})+\mathcal{A}_{N}(V \tau, A,-B ;-\mathbf{r},-\mathbf{h})\right) \\
& =\frac{2}{\Gamma(A)} \sum_{k=1}^{N-1} \chi(k) \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \frac{e((N m+k) n V \tau)}{n^{1-2 M}} U(-B ; 2 M ; 4 \pi(N m+k) n \operatorname{Im}(V \tau)) \\
& =\frac{2}{\Gamma(A)} \sum_{n=1}^{\infty} \frac{1}{n^{1-2 M}} \sum_{m=1}^{\infty} \chi(m) e(m n V \tau) U(-B ; 2 M ; 4 \pi m n \operatorname{Im}(V \tau)) \\
& =\frac{2}{\Gamma(A)} \sum_{n=1}^{\infty} \chi(n) \sigma_{2 M-1}(\bar{\chi}, n) e(n V \tau) U(-B ; 2 M ; 4 \pi n \operatorname{Im}(V \tau))
\end{aligned}
$$

Recall $\frac{1}{\Gamma\left(s_{2}\right)}=\frac{1}{\Gamma(-B)}=0$ and apply (1.1) to obtain

$$
U(-B ; 2 M ; 4 \pi n \operatorname{Im}(V \tau))=(-1)^{B}(A-1)!\sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \pi n \operatorname{Im}(V \tau))^{\ell}}{(2 M+\ell-1)!}
$$

Since $z=N \tau-N+1$,

$$
\begin{gathered}
V \tau=\frac{\tau-1}{N \tau-N+1}=\frac{1}{N}\left(1-z^{-1}\right), \\
e(n V \tau)=e^{2 \pi i\left(n\left(1-z^{-1}\right) / N\right)}=\zeta_{N}^{n} e\left(\frac{-n z^{-1}}{N}\right)
\end{gathered}
$$

and

$$
\operatorname{Im}(V \tau)=-\frac{1}{N} \operatorname{Im}\left(z^{-1}\right)
$$

Hence we obtain

$$
\begin{aligned}
& \sum_{k=1}^{N-1} \chi(k) \mathbf{H}_{N}(V \tau, V \bar{\tau}, A,-B ; \mathbf{r}, \mathbf{h}) \\
& =2(-1)^{B} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{\left(4 \pi \operatorname{Im}\left(z^{-1}\right) / N\right)^{\ell}}{(2 M+\ell-1)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \zeta_{N}^{n} \sigma_{2 M-1}(\bar{\chi}, n) e\left(\frac{-n z^{-1}}{N}\right)
\end{aligned}
$$

By the same way, we also obtain

$$
\begin{aligned}
& \sum_{k=1}^{N-1} \chi(k) \mathbf{H}_{N}(\tau, \bar{\tau}, A,-B ; \mathfrak{R}, \mathfrak{H}) \\
& =2(-1)^{B} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \pi \operatorname{Im}(z) / N)^{\ell}}{(2 M+\ell-1)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \zeta_{N}^{-n} \sigma_{2 M-1}(\bar{\chi}, n) e\left(\frac{n z}{N}\right)
\end{aligned}
$$

Put the last two identities into (2.2) and use

$$
\sum_{k=1}^{N-1} \chi(k)= \begin{cases}\varphi(N), & \chi=\chi_{\mathrm{o}} \\ 0, & \chi \neq \chi_{\mathrm{o}}\end{cases}
$$

to complete the proof.
Theorem 2.2. Let $\chi$ be even and let $\alpha, \beta>0$ with $\alpha \beta=\pi^{2}$. For any integers $B \geq 0$ and $M \geq 1$,

$$
\begin{aligned}
& (-1)^{B} \alpha^{M} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \alpha / N)^{\ell}}{(2 M+\ell-1)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \zeta_{N}^{n} \sigma_{2 M-1}(\bar{\chi}, n) e^{-2 n \alpha / N} \\
& =(-1)^{M} \beta^{M} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \beta / N)^{\ell}}{(2 M+\ell-1)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \zeta_{N}^{-n} \sigma_{2 M-1}(\bar{\chi}, n) e^{-2 n \beta / N}-\frac{1}{2} \delta_{M}(B) \nu_{\chi}(N),
\end{aligned}
$$

where

$$
\delta_{M}(B)= \begin{cases}\frac{(-1)^{B}+1}{4(B+1)}, & M=1 \\ 0, & M>1\end{cases}
$$

Proof. Put $z=\frac{\pi}{\alpha} i$ in Theorem 2.1. Then

$$
z^{-A} \bar{z}^{B}=(-1)^{B} \alpha^{M}(-\beta)^{-M}, e\left(\frac{-n z^{-1}}{N}\right)=e^{-2 n \alpha / N} \text { and } e\left(\frac{n z}{N}\right)=e^{-2 n \beta / N}
$$

A short calculation shows that

$$
\delta_{1}\left(B, \frac{\pi}{\alpha} i\right)=\frac{(-1)^{B}+1}{4 \beta(B+1)}
$$

Multiplying both sides of the identity in Theorem 2.1 by $(-\beta)^{M}$, we complete the proof.

Let $B=0$ in Theorem 2.2. If $M \geq 2$ or $\chi \neq \chi_{\mathrm{o}}$, then we have

$$
\alpha^{M} \sum_{n=1}^{\infty} \chi(n) \zeta_{N}^{n} \sigma_{2 M-1}(\bar{\chi}, n) e^{-2 n \alpha / N}=(-\beta)^{M} \sum_{n=1}^{\infty} \chi(n) \zeta_{N}^{-n} \sigma_{2 M-1}(\bar{\chi}, n) e^{-2 n \beta / N},
$$

which is given as Corollary 3.3 in [3].
Let $\chi=\chi_{\mathrm{o}}, M=1$ and $\alpha=\beta=\pi$ in Theorem 2.2. If $B$ is even, then

$$
\sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \pi / N)^{\ell}}{\ell!} \sum_{n=1}^{\infty} \frac{\chi_{\mathrm{o}}(n)}{n^{-\ell}} \cos \left(\frac{2 n \pi}{N}\right) \sigma_{1}\left(\bar{\chi}_{\mathrm{o}}, n\right) e^{-2 n \pi / N}=-\frac{\varphi(N)}{8 \pi(B+1)}
$$

Put $B=0$. Then

$$
\sum_{n=1}^{\infty} \chi_{\mathrm{o}}(n) \cos \left(\frac{2 n \pi}{N}\right) \sigma_{1}\left(\chi_{\mathrm{o}}, n\right) e^{-2 n \pi / N}=-\frac{1}{8 \pi} \varphi(N)
$$

Let $\chi=\bar{\chi}$ and let $M \geq 2$ or $\chi \neq \chi_{\mathrm{o}}$ in Theorem 2.2. Then, equating the real part and the imaginary part, respectively, we have

$$
\begin{aligned}
& (-1)^{B} \alpha^{M} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \alpha / N)^{\ell}}{(2 M+\ell-1)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \cos \left(\frac{2 \pi n}{N}\right) \sigma_{2 M-1}(\bar{\chi}, n) e^{-2 n \alpha / N} \\
& =(-1)^{M} \beta^{M} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \beta / N)^{\ell}}{(2 M+\ell-1)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \cos \left(\frac{2 \pi n}{N}\right) \sigma_{2 M-1}(\bar{\chi}, n) e^{-2 n \beta / N}
\end{aligned}
$$

and

$$
\begin{aligned}
& (-1)^{B} \alpha^{M} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \alpha / N)^{\ell}}{(2 M+\ell-1)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \sin \left(\frac{2 \pi n}{N}\right) \sigma_{2 M-1}(\bar{\chi}, n) e^{-2 n \alpha / N} \\
& =(-1)^{M+1} \beta^{M} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \beta / N)^{\ell}}{(2 M+\ell-1)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \sin \left(\frac{2 \pi n}{N}\right) \sigma_{2 M-1}(\bar{\chi}, n) e^{-2 n \beta / N} .
\end{aligned}
$$

Thus we obtain the following two corollaries which include elegant symmetric identities for $\alpha$ and $\beta$.

Corollary 2.3. Let $\chi$ be even and $\chi=\bar{\chi}$. Let $\alpha, \beta>0$ with $\alpha \beta=\pi^{2}$ and let $B, M$ be integers with $B \geq 0$ and $M \geq 1$. Suppose that $M=1$ and $\chi=\chi_{\mathrm{o}}$ cannot be considered simultaneously. If $B$ and $M$ have the same parity, then

$$
\alpha^{M} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \alpha / N)^{\ell}}{(2 M+\ell-1)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \cos \left(\frac{2 \pi n}{N}\right) \sigma_{2 M-1}(\chi, n) e^{-2 n \alpha / N}
$$

$$
\begin{aligned}
& =\beta^{M} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \beta / N)^{\ell}}{(2 M+\ell-1)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \cos \left(\frac{2 \pi n}{N}\right) \sigma_{2 M-1}(\chi, n) e^{-2 n \beta / N}, \\
& \alpha^{M} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \alpha / N)^{\ell}}{(2 M+\ell-1)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \sin \left(\frac{2 \pi n}{N}\right) \sigma_{2 M-1}(\chi, n) e^{-2 n \alpha / N} \\
& =-\beta^{M} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \beta / N)^{\ell}}{(2 M+\ell-1)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \sin \left(\frac{2 \pi n}{N}\right) \sigma_{2 M-1}(\chi, n) e^{-2 n \beta / N} .
\end{aligned}
$$

If $B$ and $M$ have the different parity, then

$$
\begin{aligned}
& \alpha^{M} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \alpha / N)^{\ell}}{(2 M+\ell-1)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \cos \left(\frac{2 \pi n}{N}\right) \sigma_{2 M-1}(\chi, n) e^{-2 n \alpha / N} \\
& =-\beta^{M} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \beta / N)^{\ell}}{(2 M+\ell-1)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \cos \left(\frac{2 \pi n}{N}\right) \sigma_{2 M-1}(\chi, n) e^{-2 n \beta / N}, \\
& \alpha^{M} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \alpha / N)^{\ell}}{(2 M+\ell-1)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \sin \left(\frac{2 \pi n}{N}\right) \sigma_{2 M-1}(\chi, n) e^{-2 n \alpha / N} \\
& =\beta^{M} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \beta / N)^{\ell}}{(2 M+\ell-1)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \sin \left(\frac{2 \pi n}{N}\right) \sigma_{2 M-1}(\chi, n) e^{-2 n \beta / N} .
\end{aligned}
$$

Corollary 2.3 contains generalizations of Corollary 3.4 and 3.5 in [3].
Corollary 2.4. Let $\chi$ be even and $\chi=\bar{\chi}$. Let $B, M$ be integers with $B \geq 0$ and $M \geq 1$. Suppose that $M=1$ and $\chi=\chi_{\circ}$ cannot be considered simultaneously. If $B$ and $M$ have the same parity, then

$$
\sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \pi / N)^{\ell}}{(2 M+\ell-1)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \sin \left(\frac{2 \pi n}{N}\right) \sigma_{2 M-1}(\chi, n) e^{-2 n \pi / N}=0
$$

If $B$ and $M$ have the different parity, then

$$
\sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \pi / N)^{\ell}}{(2 M+\ell-1)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \cos \left(\frac{2 \pi n}{N}\right) \sigma_{2 M-1}(\chi, n) e^{-2 n \pi / N}=0
$$

Proof. Let $\alpha=\beta=\pi$ in Corollary 2.3.
Let $B=0$ and replace $M$ by $2 M$ in the first equation in Corollary 2.4. Then

$$
\sum_{n=1}^{\infty} \chi(n) \sin \left(\frac{2 \pi n}{N}\right) \sigma_{4 M-1}(\chi, n) e^{-2 n \pi / N}=0
$$

Let $B=0$ and replace $M$ by $2 M-1$ in the second equation in Corollary 2.4. Then

$$
\sum_{n=1}^{\infty} \chi(n) \cos \left(\frac{2 \pi n}{N}\right) \sigma_{4 M-3}(\chi, n) e^{-2 n \pi / N}=0
$$

Let $p$ be a prime with $p \equiv 1(\bmod 4)$ and let $(\dot{\bar{p}})$ be the Legendre symbol. Then $(\dot{\dot{p}})$ is an even character with real values. Thus we can put $\chi=(\dot{\bar{p}})$ in Theorem 2.1,

Theorem 2.2, Corollary 2.3 and Corollary 2.4. For example, if $\chi=(\dot{\bar{p}})$ in the first identity in Corollary 2.3, we obtain

$$
\begin{aligned}
& \alpha^{M} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \alpha / p)^{\ell}}{(2 M+\ell-1)!} \sum_{n=1}^{\infty}\left(\frac{n}{p}\right) n^{\ell} \cos \left(\frac{2 \pi n}{p}\right) \sigma_{2 M-1}\left(\left(\frac{\dot{-}}{p}\right), n\right) e^{-2 n \alpha / p} \\
& =\beta^{M} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \beta / p)^{\ell}}{(2 M+\ell-1)!} \sum_{n=1}^{\infty}\left(\frac{n}{p}\right) n^{\ell} \cos \left(\frac{2 \pi n}{p}\right) \sigma_{2 M-1}\left(\left(\frac{\cdot}{p}\right), n\right) e^{-2 n \beta / p}
\end{aligned}
$$

which gives a generalization of Corollary 3.4 in [3].
For an odd character $\chi$, applying the similar method, we obtain the following theorems and corollaries.

Theorem 2.5. Let $\chi$ be odd. For any integers $B \geq 0, M \geq 1$ and for $z \in \mathbb{H}$,

$$
\begin{aligned}
& z^{-B-2 M-1} \bar{z}^{B} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{\left(4 \pi \operatorname{Im}\left(z^{-1}\right) / N\right)^{\ell}}{(2 M+k)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \zeta_{N}^{n} \sigma_{2 M}(\bar{\chi}, n) e\left(\frac{-n z^{-1}}{N}\right) \\
& =\sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \pi \operatorname{Im}(z) / N)^{\ell}}{(2 M+k)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \zeta_{N}^{-n} \sigma_{2 M}(\bar{\chi}, n) e\left(\frac{n z}{N}\right) .
\end{aligned}
$$

Proof. Let $s_{1}=A \geq 1, s_{2}=-B \leq 0$ and $s=2 M+1 \geq 3$ for $A, B, M \in \mathbb{Z}$. Since $s \geq 3$, we have, by using Remark 1.2,

$$
\frac{1}{\Gamma\left(s_{1}\right) \Gamma\left(s_{2}\right)} \mathbf{L}_{N}\left(\tau, \bar{\tau}, s_{1}, s_{2} ; \mathfrak{R}, \mathfrak{H}\right)=0 .
$$

For the other parts of the proof, apply the similar method in the proof of Theorem 2.1.

Theorem 2.6. Let $\chi$ be odd and let $\alpha, \beta>0$ with $\alpha \beta=\pi^{2}$. For any integers $B \geq 0$ and $M \geq 1$,

$$
\begin{aligned}
& (-1)^{B} \alpha^{M+1 / 2} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \alpha / N)^{\ell}}{(2 M+\ell)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \zeta_{N}^{n} \sigma_{2 M}(\bar{\chi}, n) e^{-2 n \alpha / N} \\
& =(-\beta)^{M+1 / 2} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \beta / N)^{\ell}}{(2 M+\ell)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \zeta_{N}^{-n} \sigma_{2 M}(\bar{\chi}, n) e^{-2 n \beta / N} .
\end{aligned}
$$

Corollary 2.7. Let $\chi$ be odd and $\chi=\bar{\chi}$. Let $\alpha, \beta>0$ with $\alpha \beta=\pi^{2}$. Let $B, M$ be integers with $B \geq 0, M \geq 1$. If $B$ and $M$ have the same parity, then

$$
\begin{aligned}
& \alpha^{M+1 / 2} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \alpha / N)^{\ell}}{(2 M+\ell)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \cos \left(\frac{2 \pi n}{N}\right) \sigma_{2 M}(\chi, n) e^{-2 n \alpha / N} \\
& =\beta^{M+1 / 2} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \beta / N)^{\ell}}{(2 M+\ell)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \sin \left(\frac{2 \pi n}{N}\right) \sigma_{2 M}(\chi, n) e^{-2 n \beta / N} .
\end{aligned}
$$

If $B$ and $M$ have the different parity, then

$$
\alpha^{M+1 / 2} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \alpha / N)^{\ell}}{(2 M+\ell)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \cos \left(\frac{2 \pi n}{N}\right) \sigma_{2 M}(\chi, n) e^{-2 n \alpha / N}
$$

$$
=-\beta^{M+1 / 2} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \beta / N)^{\ell}}{(2 M+\ell)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \sin \left(\frac{2 \pi n}{N}\right) \sigma_{2 M}(\chi, n) e^{-2 n \beta / N} .
$$

Corollary 2.8. Let $\chi$ be odd and $\chi=\bar{\chi}$. Let $B, M$ be integers with $B \geq 0$, $M \geq 1$. If $B$ and $M$ have the same parity, then

$$
\sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \pi / N)^{\ell}}{(2 M+\ell)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \sin \left(\frac{2 \pi n}{N}-\frac{\pi}{4}\right) \sigma_{2 M}(\chi, n) e^{-2 n \pi / N}=0
$$

If $B$ and $M$ have the different parity, then

$$
\sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(-4 \pi / N)^{\ell}}{(2 M+\ell)!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{-\ell}} \sin \left(\frac{2 \pi n}{N}+\frac{\pi}{4}\right) \sigma_{2 M}(\chi, n) e^{-2 n \pi / N}=0
$$

Proof. Let $\alpha=\beta=\pi$ in Corollary 2.7.
Put $B=0$ in Corollary 2.8. Then

$$
\sum_{n=1}^{\infty} \chi(n) \sin \left(\frac{2 \pi n}{N}-\frac{\pi}{4}\right) \sigma_{4 M}(\chi, n) e^{-2 n \pi / N}=0
$$

and

$$
\sum_{n=1}^{\infty} \chi(n) \sin \left(\frac{2 \pi n}{N}+\frac{\pi}{4}\right) \sigma_{4 M-2}(\chi, n) e^{-2 n \pi / N}=0
$$

Let $p$ be a prime with $p \equiv 3(\bmod 4)$. Then $(\dot{\dot{p}})$ is an odd character with real values. Thus we also put $\chi=(\dot{\bar{p}})$ in Theorem 2.5, Theorem 2.6, Corollary 2.7 and Corollary 2.8.

## 3. Another class of character analogue of infinite series identities

In this section, we obtain another type of character analogue of infinite series identities. We shall let $s_{1} \geq 1, s_{2} \geq 1$ and let $s \geq 3$ or $s \geq 4$ for $s=s_{1}+s_{2}$. Thus, by Remark 1.2, we see that

$$
\frac{1}{\Gamma\left(s_{1}\right) \Gamma\left(s_{2}\right)} \mathbf{L}_{N}\left(\tau, \bar{\tau}, s_{1}, s_{2} ; \mathfrak{R}, \mathfrak{H}\right)=0
$$

Theorem 3.1. Let $\chi$ be even. For $A, B, M \in \mathbb{Z}$, let $A \geq 0, B \geq 0, M \geq 1$ with $A+B=2 M$. Then, for $z \in \mathbb{H}$,

$$
\begin{aligned}
& z^{-A-1} \bar{z}^{-B-1} \sum_{\ell=0}^{A}\binom{A}{\ell} \frac{(2 M-\ell)!}{\left(-4 \pi \operatorname{Im}\left(z^{-1}\right) / N\right)^{2 M-\ell+1}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell+1}} \zeta_{N}^{n} \sigma_{2 M+1}(\bar{\chi}, n) e\left(\frac{-n z^{-1}}{N}\right) \\
& +z^{-A-1} \bar{z}^{-B-1} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(2 M-\ell)!}{\left(-4 \pi \operatorname{Im}\left(z^{-1}\right) / N\right)^{2 M-\ell+1}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell+1}} \zeta_{N}^{n} \sigma_{2 M+1}(\bar{\chi}, n) e\left(\frac{n \bar{z}^{-1}}{N}\right) \\
& =\sum_{\ell=0}^{A}\binom{A}{\ell} \frac{(2 M-\ell)!}{(4 \pi \operatorname{Im}(z) / N)^{2 M-\ell+1}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell+1}} \zeta_{N}^{-n} \sigma_{2 M+1}(\bar{\chi}, n) e\left(\frac{n z}{N}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(2 M-\ell)!}{(4 \pi \operatorname{Im}(z) / N)^{2 M-\ell+1}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell+1}} \zeta_{N}^{n} \sigma_{2 M+1}(\bar{\chi}, n) e\left(\frac{-n \bar{z}}{N}\right) \\
& +\mu_{\chi}(A, B, M, z),
\end{aligned}
$$

where

$$
\mu_{\chi}(A, B, M, z)= \begin{cases}\frac{(2 M)!}{(4 \pi \operatorname{Im}(z / N))^{2 M+1}}\left(1-z^{B} \bar{z}^{A}\right) \zeta(2 M+1) \varphi(N), & \chi=\chi_{\mathrm{o}}, \\ 0, & \chi \neq \chi_{\mathrm{o}}\end{cases}
$$

Proof. Let $s_{1}=A+1 \geq 1, s_{2}=B+1 \geq 1$ and $s=2 M+2 \geq 4$ with $A, B, M \in \mathbb{Z}$. Put $\mathbf{r}=(k, 0)$ for any integer $k$ with $1 \leq k<N$ and put $\mathbf{h}=(0,0)$ in Theorem 1.1. Then $\mathfrak{R}=(k,-k)$ and $\mathfrak{H}=(0,0)$. We see that $\lambda_{N}\left(r_{1}\right)=\lambda_{N}\left(R_{1}\right)=\lambda_{N}(k)=0$ and $\lambda\left(h_{2}\right)=\lambda\left(H_{2}\right)=1$. Put $z=N \tau-N+1$. Since

$$
\Psi_{-1}(0, k, 2 M+2)=2 \sum_{n=1}^{\infty} \frac{1}{n^{2 M+1}}=2 \zeta(2 M+1),
$$

we have

$$
\begin{align*}
& z^{-A-1} \bar{z}^{-B-1} \mathbf{H}_{N}(V \tau, V \bar{\tau}, A+1, B+1 ; \mathbf{r}, \mathbf{h}) \\
& =\mathbf{H}_{N}(\tau, \bar{\tau}, A+1, B+1 ; \mathfrak{R}, \mathfrak{H})+\frac{2(2 M)!}{A!B!} \frac{1-z^{B} \bar{z}^{A}}{(4 \pi \operatorname{Im}(\tau))^{2 M+1}} \zeta(2 M+1) . \tag{3.1}
\end{align*}
$$

Note that, for any $b \in \mathbb{C}$,

$$
\sum_{k=1}^{N-1} \chi(k) b= \begin{cases}b \varphi(N), & \chi=\chi_{\mathrm{o}} \\ 0, & \chi \neq \chi_{\mathrm{o}}\end{cases}
$$

Thus, multiplying both sides in (3.1) by $\chi(k)$ and summing over $k$, we find that

$$
\begin{align*}
& z^{-A-1} \bar{z}^{-B-1} \sum_{k=1}^{N-1} \chi(k) \mathbf{H}_{N}(V \tau, V \bar{\tau}, A+1, B+1 ; \mathbf{r}, \mathbf{h}) \\
& =\sum_{k=1}^{N-1} \chi(k) \mathbf{H}_{N}(\tau, \bar{\tau}, A+1, B+1 ; \mathfrak{R}, \mathfrak{H})+2 \mu_{\chi}(A, B, M, z), \tag{3.2}
\end{align*}
$$

where

$$
\mu_{\chi}(A, B, M, z)= \begin{cases}\frac{(2 M)!}{A!B!} \frac{1-z^{B} \bar{z}^{A}}{(4 \pi \operatorname{Im}(z / N))^{2 M+1}} \zeta(2 M+1) \varphi(N), & \chi=\chi_{\mathrm{o}}, \\ 0, & \chi \neq \chi_{\mathrm{o}} .\end{cases}
$$

To compute $\sum_{k=1}^{N-1} \chi(k) \mathbf{H}_{N}(V \tau, V \bar{\tau}, A+1, B+1 ; \mathbf{r}, \mathbf{h})$, we shall apply the same method in the proof of Theorem 2.1. Then

$$
\begin{aligned}
& \sum_{k=1}^{N-1} \chi(k) \mathcal{H}_{N}(V \tau, A+1, B+1 ; \mathbf{r}, \mathbf{h}) \\
& =2 \sum_{n=1}^{\infty} \chi(n) \zeta_{N}^{n} \sigma_{2 M+1}(\bar{\chi}, n) e\left(\frac{-n z^{-1}}{N}\right) U(B+1 ; 2 M+2 ; 4 \pi n \operatorname{Im}(V \tau))
\end{aligned}
$$

and

$$
\sum_{k=1}^{N-1} \chi(k) \overline{\mathcal{H}}_{N}(V \tau, A+1, B+1 ;-\mathbf{r},-\mathbf{h})
$$

$$
=2 \sum_{n=1}^{\infty} \chi(n) \zeta_{N}^{-n} \sigma_{2 M+1}(\bar{\chi}, n) e\left(\frac{n \bar{z}^{-1}}{N}\right) U(A+1 ; 2 M+2 ; 4 \pi n \operatorname{Im}(V \tau))
$$

Apply Lemma 2.1 in [5] to obtain

$$
U(B+1 ; 2 M+2 ; 4 \pi n \operatorname{Im}(V \tau))=\frac{1}{B!} \sum_{\ell=0}^{A}\binom{A}{\ell} \frac{(2 M-\ell)!}{(4 \pi n \operatorname{Im}(V \tau))^{2 M-\ell+1}}
$$

and

$$
U(A+1 ; 2 M+2 ; 4 \pi n \operatorname{Im}(V \tau))=\frac{1}{A!} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(2 M-\ell)!}{(4 \pi n \operatorname{Im}(V \tau))^{2 M-\ell+1}}
$$

Thus we have

$$
\begin{aligned}
& \sum_{k=1}^{N-1} \chi(k) \mathbf{H}_{N}(V \tau, V \bar{\tau}, A+1, B+1 ; \mathbf{r}, \mathbf{h}) \\
& =\frac{2}{A!B!} \sum_{\ell=0}^{A}\binom{A}{\ell} \frac{(2 M-\ell)!}{(4 \pi \operatorname{Im}(V \tau))^{2 M-\ell+1}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell+1}} \zeta_{N}^{n} \sigma_{2 M+1}(\bar{\chi}, n) e\left(\frac{-n z^{-1}}{N}\right) \\
& \quad+\frac{2}{A!B!} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(2 M-\ell)!}{(4 \pi \operatorname{Im}(V \tau))^{2 M-\ell+1}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell+1}} \zeta_{N}^{-n} \sigma_{2 M+1}(\bar{\chi}, n) e\left(\frac{n \bar{z}^{-1}}{N}\right)
\end{aligned}
$$

By the similar way, we also have

$$
\begin{aligned}
& \sum_{k=1}^{N-1} \chi(k) \mathbf{H}_{N}(\tau, \bar{\tau}, A+1, B+1 ; \mathfrak{R}, \mathfrak{H}) \\
& =\frac{2}{A!B!} \sum_{\ell=0}^{A}\binom{A}{\ell} \frac{(2 M-\ell)!}{(4 \pi \operatorname{Im}(\tau))^{2 M-\ell+1}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell+1}} \zeta_{N}^{-n} \sigma_{2 M+1}(\bar{\chi}, n) e\left(\frac{n z}{N}\right) \\
& \quad+\frac{2}{A!B!} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(2 M-\ell)!}{(4 \pi \operatorname{Im}(\tau))^{2 M-\ell+1}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell+1}} \zeta_{N}^{n} \sigma_{2 M+1}(\bar{\chi}, n) e\left(\frac{-n \bar{z}}{N}\right)
\end{aligned}
$$

Use $\operatorname{Im}(V \tau)=\operatorname{Im}\left(\frac{-z^{-1}}{N}\right)$ and $\operatorname{Im}(\tau)=\operatorname{Im}\left(\frac{z}{N}\right)$ to complete the proof.
Theorem 3.2. Let $\chi$ be even and let $\alpha, \beta>0$ with $\alpha \beta=\pi^{2}$. For $A, B, M \in \mathbb{Z}$, let $A \geq 0, B \geq 0, M \geq 1$ with $A+B=2 M$. Then

$$
\begin{aligned}
& (-1)^{B} \alpha^{-M} \sum_{\ell=0}^{A}\binom{A}{\ell} \frac{(2 M-\ell)!}{(4 \alpha / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell+1}} \zeta_{N}^{n} \sigma_{2 M+1}(\bar{\chi}, n) e^{-2 \alpha n / N} \\
& +(-1)^{B} \alpha^{-M} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(2 M-\ell)!}{(4 \alpha / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell+1}} \zeta_{N}^{-n} \sigma_{2 M+1}(\bar{\chi}, n) e^{-2 \alpha n / N} \\
& =(-1)^{M} \beta^{-M} \sum_{\ell=0}^{A}\binom{A}{\ell} \frac{(2 M-\ell)!}{(4 \beta / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell+1}} \zeta_{N}^{-n} \sigma_{2 M+1}(\bar{\chi}, n) e^{-2 \beta n / N} \\
& \quad+(-1)^{M} \beta^{-M} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(2 M-\ell)!}{(4 \beta / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell+1}} \zeta_{N}^{n} \sigma_{2 M+1}(\bar{\chi}, n) e^{-2 \beta n / N} \\
& \quad+\nu_{\chi}(B, M, \alpha, \beta)
\end{aligned}
$$

where

$$
\nu_{\chi}(B, M, \alpha, \beta)= \begin{cases}(2 M)!\left((-1)^{M} \beta^{-M}-(-1)^{B} \alpha^{-M}\right) \zeta(2 M+1) \varphi(N), & \chi=\chi_{0}, \\ 0, & \chi \neq \chi_{0}\end{cases}
$$

Proof. Put $z=\frac{\pi}{\alpha} i$ in Theorem 3.1. Apply

$$
e\left(\frac{-n z^{-1}}{N}\right)=e\left(\frac{n \bar{z}^{-1}}{N}\right)=e^{-2 \alpha n / N}, e\left(\frac{n z}{N}\right)=e\left(\frac{-n \bar{z}}{N}\right)=e^{-2 \beta n / N}
$$

and

$$
z^{-A-1} \bar{z}^{-B-1}=(-1)^{B+M} \alpha^{M+1} \beta^{-M-1}, z^{B} \bar{z}^{A}=(-1)^{B+M} \alpha^{-M} \beta^{M} .
$$

Multiplying both sides of the identity in Theorem 3.1 by $(-1)^{M}\left(\frac{4}{M}\right)^{2 M+1} \beta^{M+1}$, we obtain the desired result.

Corollary 3.3. Let $\chi$ be even with $\chi \neq \chi_{\mathrm{o}}$. Let $\alpha, \beta>0$ with $\alpha \beta=\pi^{2}$. For any integer $M \geq 1$,

$$
\begin{aligned}
& \alpha^{-M} \sum_{\ell=0}^{M}\binom{M}{\ell} \frac{(2 M-\ell)!}{(4 \alpha / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell+1}} \cos \left(\frac{2 \pi n}{N}\right) \sigma_{2 M+1}(\bar{\chi}, n) e^{-2 \alpha n / N} \\
& =\beta^{-M} \sum_{\ell=0}^{M}\binom{M}{\ell} \frac{(2 M-\ell)!}{(4 \beta / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell+1}} \cos \left(\frac{2 \pi n}{N}\right) \sigma_{2 M+1}(\bar{\chi}, n) e^{-2 \beta n / N} .
\end{aligned}
$$

Proof. Let $A=B$ in Theorem 3.2 and use $\zeta_{N}^{n}+\zeta_{N}^{-n}=2 \cos \left(\frac{2 \pi n}{N}\right)$.
Corollary 3.3 shows a fairly good symmetric identity for $\alpha$ and $\beta$. If we put $M=1$ in Corollary 3.3, then

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{3}} \cos \left(\frac{2 \pi n}{N}\right) \sigma_{3}(\bar{\chi}, n)\left(\frac{1}{\alpha} e^{-2 \alpha n / N}-\frac{1}{\beta} e^{-2 \beta n / N}\right) \\
& =-\frac{2}{N} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2}} \cos \left(\frac{2 \pi n}{N}\right) \sigma_{3}(\bar{\chi}, n)\left(e^{-2 \alpha n / N}-e^{-2 \beta n / N}\right) .
\end{aligned}
$$

Corollary 3.4. Let $\chi$ be even. For $A, B, M \in \mathbb{Z}$, let $A \geq 0, B \geq 0, M \geq 1$ with $A+B=2 M$. If $B$ and $M$ have the same parity, then

$$
\begin{aligned}
& \sum_{\ell=0}^{A}\binom{A}{\ell} \frac{(2 M-\ell)!}{(4 \pi / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell+1}} \sin \left(\frac{2 \pi n}{N}\right) \sigma_{2 M+1}(\bar{\chi}, n) e^{-2 \pi n / N} \\
& =\sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(2 M-\ell)!}{(4 \pi / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell+1}} \sin \left(\frac{2 \pi n}{N}\right) \sigma_{2 M+1}(\bar{\chi}, n) e^{-2 \pi n / N}
\end{aligned}
$$

Proof. Put $\alpha=\beta=\pi$ in Theorem 3.2. Then $\nu_{\chi}(B, M, \alpha, \beta)=0$ for any $\chi$. Apply $\zeta_{N}^{n}-\zeta_{N}^{-n}=2 i \sin \left(\frac{2 \pi n}{N}\right),(-1)^{B}=(-1)^{M}$.
Corollary 3.4 also gives an elegant symmetric identity for $A$ and $B$.
Corollary 3.5. Let $\chi$ be even. For $A, B, M \in \mathbb{Z}$, let $A \geq 0, B \geq 0, M \geq 1$ with $A+B=2 M$. If $B$ and $M$ have the different parity, then

$$
\sum_{\ell=0}^{A}\binom{A}{\ell} \frac{(2 M-\ell)!}{(4 \pi / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell+1}} \cos \left(\frac{2 \pi n}{N}\right) \sigma_{2 M+1}(\bar{\chi}, n) e^{-2 \pi n / N}
$$

$$
=-\sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(2 M-\ell)!}{(4 \pi / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell+1}} \cos \left(\frac{2 \pi n}{N}\right) \sigma_{2 M+1}(\bar{\chi}, n) e^{-2 \pi n / N}+\nu_{\chi}(M),
$$

where

$$
\nu_{\chi}(M)= \begin{cases}-2(2 M)!\zeta(2 M+1) \varphi(N), & \chi=\chi_{0}, \\ 0, & \chi \neq \chi_{0} .\end{cases}
$$

Proof. Put $\alpha=\beta=\pi$ in Theorem 3.2. Use $\zeta_{N}^{n}+\zeta_{N}^{-n}=2 \cos \left(\frac{2 \pi n}{N}\right),(-1)^{B}=$ $-(-1)^{M}$.

Corollary 3.6. Let $\chi$ be even. For any integer $M \geq 1$,

$$
\sum_{\ell=1}^{4 M} \frac{(4 \pi / N)^{\ell}}{\ell!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{4 M-\ell+1}} \sin \left(\frac{2 \pi n}{N}\right) \sigma_{4 M+1}(\bar{\chi}, n) e^{-2 \pi n / N}=0
$$

Proof. Put $B=0$ in Corollary 3.4 and replace $M$ by $2 M$.
Corollary 3.7. Let $\chi$ be even. For any integer $M \geq 1$,

$$
\begin{aligned}
& \sum_{\ell=1}^{4 M-2} \frac{(4 \pi / N)^{\ell}}{\ell!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{4 M-\ell-1}} \cos \left(\frac{2 \pi n}{N}\right) \sigma_{4 M-1}(\bar{\chi}, n) e^{-2 \pi n / N} \\
& =-2 \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{4 M-1}} \cos \left(\frac{2 \pi n}{N}\right) \sigma_{4 M-1}(\bar{\chi}, n) e^{-2 \pi n / N}+\nu_{\chi}(2 M-1) .
\end{aligned}
$$

Proof. Put $B=0$ in Corollary 3.5 and replace $M$ by $2 M-1$.
For a prime $p$ with $p \equiv 1(\bmod 4)$, we can put $\chi=(\dot{\bar{p}})$ in Theorem 3.1, Theorem 3.2, Corollary 3.3 - Corollary 3.7.

Next we find character analogues of infinite series identities for an odd character $\chi$. In this case, we shall let $s$ be any odd integer greater than 2 . The process to obtain the results is similar to the case of $\chi$ even.

Theorem 3.8. Let $\chi$ be odd. For $A, B, M \in \mathbb{Z}$, let $A \geq 0, B \geq 0, M \geq 1$ with $A+B=2 M-1$. Then, for $z \in \mathbb{H}$,

$$
\begin{aligned}
& z^{-A-1} \bar{z}^{-B-1} \sum_{\ell=0}^{A}\binom{A}{\ell} \frac{(2 M-\ell-1)!}{\left(-4 \pi \operatorname{Im}\left(z^{-1}\right) / N\right)^{2 M-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell}} \zeta_{N}^{n} \sigma_{2 M}(\bar{\chi}, n) e\left(\frac{-n z^{-1}}{N}\right) \\
& +z^{-A-1} \bar{z}^{-B-1} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(2 M-\ell-1)!}{\left(-4 \pi \operatorname{Im}\left(z^{-1}\right) / N\right)^{2 M-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell}} \zeta_{N}^{-n} \sigma_{2 M}(\bar{\chi}, n) e\left(\frac{n \bar{z}^{-1}}{N}\right) \\
& =\sum_{\ell=0}^{A}\binom{A}{\ell} \frac{(2 M-\ell-1)!}{(4 \pi \operatorname{Im}(z) / N)^{2 M-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell}} \zeta_{N}^{-n} \sigma_{2 M}(\bar{\chi}, n) e\left(\frac{n z}{N}\right) \\
& \quad+\sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(2 M-\ell-1)!}{(4 \pi \operatorname{Im}(z) / N)^{2 M-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell}} \zeta_{N}^{n} \sigma_{2 M}(\bar{\chi}, n) e\left(\frac{-n \bar{z}}{N}\right) .
\end{aligned}
$$

Proof. Let $s_{1}=A+1 \geq 1, s_{2}=B+1 \geq 1$ and $s=2 M+1 \geq 3$ with $A, B, M \in \mathbb{Z}$. Put $\mathbf{r}=(k, 0)$ for any integer $k$ with $1 \leq k<N$ and put $\mathbf{h}=(0,0)$ in Theorem 1.1. The basic process of the proof is similar to the proof of Theorem 3.1. The only
noticeable difference arise from the terms with $\lambda\left(h_{2}\right)$ and $\lambda\left(H_{2}\right)$. Direct calculations show that they are vanished by using

$$
\begin{aligned}
\Psi_{-1}\left(0, R_{1}, s\right) & =\psi(0, k, 2 M)+e^{\pi i(2 M+1)} \psi(0,-k, 2 M) \\
& =\sum_{n=1}^{\infty} \frac{e(n k)}{n^{2 M}}-\sum_{n=1}^{\infty} \frac{e(-n k)}{n^{2 M}}=0
\end{aligned}
$$

Theorem 3.9. Let $\chi$ be odd and let $\alpha, \beta>0$ with $\alpha \beta=\pi^{2}$. For $A, B, M \in \mathbb{Z}$, let $A \geq 0, B \geq 0, M \geq 1$ with $A+B=2 M-1$. Then

$$
\begin{aligned}
& (-1)^{A} \alpha^{-M+1 / 2} \sum_{\ell=0}^{A}\binom{A}{\ell} \frac{(2 M-\ell-1)!}{(4 \alpha / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell}} \zeta_{N}^{n} \sigma_{2 M}(\bar{\chi}, n) e^{-2 \alpha n / N} \\
& +(-1)^{A} \alpha^{-M+1 / 2} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(2 M-\ell-1)!}{(4 \alpha / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell}} \zeta_{N}^{-n} \sigma_{2 M}(\bar{\chi}, n) e^{-2 \alpha n / N} \\
& =(-\beta)^{-M+1 / 2} \sum_{\ell=0}^{A}\binom{A}{\ell} \frac{(2 M-\ell-1)!}{(4 \beta / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell}} \zeta_{N}^{-n} \sigma_{2 M}(\bar{\chi}, n) e^{-2 \beta n / N} \\
& \quad+(-\beta)^{-M+1 / 2} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(2 M-\ell-1)!}{(4 \beta / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell}} \zeta_{N}^{n} \sigma_{2 M}(\bar{\chi}, n) e^{-2 \beta n / N} .
\end{aligned}
$$

Proof. Put $z=\frac{\pi}{\alpha} i$ in Theorem 3.8.

$$
z^{-A-1} \bar{z}^{-B-1}=(-1)^{B+1} \alpha^{M+1 / 2}(-\beta)^{-M-1 / 2}
$$

Multiplying both sides of the identity in Theorem 3.8 by $\left(\frac{4}{N}\right)^{2 M}(-\beta)^{M+1 / 2}$, we obtain the desired result.

If we put $s_{1}=B+1, s_{2}=A+1$ in the proof of Theorem 3.8 , then the associated Theorem 3.9 is changed to the following identity;

$$
\begin{align*}
& (-1)^{B} \alpha^{-M+1 / 2} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(2 M-\ell-1)!}{(4 \alpha / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell}} \zeta_{N}^{n} \sigma_{2 M}(\bar{\chi}, n) e^{-2 \alpha n / N} \\
& +(-1)^{B} \alpha^{-M+1 / 2} \sum_{\ell=0}^{A}\binom{A}{\ell} \frac{(2 M-\ell-1)!}{(4 \alpha / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell}} \zeta_{N}^{n} \sigma_{2 M}(\bar{\chi}, n) e^{-2 \alpha n / N} \\
& =(-\beta)^{-M+1 / 2} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(2 M-\ell-1)!}{(4 \beta / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell}} \zeta_{N}^{-n} \sigma_{2 M}(\bar{\chi}, n) e^{-2 \beta n / N} \\
& \quad+(-\beta)^{-M+1 / 2} \sum_{\ell=0}^{A}\binom{A}{\ell} \frac{(2 M-\ell-1)!}{(4 \beta / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell}} \zeta_{N}^{n} \sigma_{2 M}(\bar{\chi}, n) e^{-2 \beta n / N} . \tag{3.3}
\end{align*}
$$

Note that $A$ and $B$ have the different parity. Adding the identity in Theorem 3.9 and (3.3), we obtain the following theorem.

Theorem 3.10. Let $\chi$ be odd and let $\alpha, \beta>0$ with $\alpha \beta=\pi^{2}$. For $A, B, M \in \mathbb{Z}$, let $A \geq 0, B \geq 0, M \geq 1$ with $A+B=2 M-1$. Then

$$
(-1)^{A} \alpha^{-M+1 / 2} \sum_{\ell=0}^{A}\binom{A}{\ell} \frac{(2 M-\ell-1)!}{(4 \alpha / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell}} \sin \left(\frac{2 \pi n}{N}\right) \sigma_{2 M}(\bar{\chi}, n) e^{-2 \alpha n / N}
$$

$$
\begin{aligned}
& -(-1)^{A} \alpha^{-M+1 / 2} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(2 M-\ell-1)!}{(4 \alpha / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell}} \sin \left(\frac{2 \pi n}{N}\right) \sigma_{2 M}(\bar{\chi}, n) e^{-2 \alpha n / N} \\
& =(-1)^{M} \beta^{-M+1 / 2} \sum_{\ell=0}^{A}\binom{A}{\ell} \frac{(2 M-\ell-1)!}{(4 \beta / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell}} \cos \left(\frac{2 \pi n}{N}\right) \sigma_{2 M}(\bar{\chi}, n) e^{-2 \beta n / N} \\
& \quad+(-1)^{M} \beta^{-M+1 / 2} \sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(2 M-\ell-1)!}{(4 \beta / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell}} \cos \left(\frac{2 \pi n}{N}\right) \sigma_{2 M}(\bar{\chi}, n) e^{-2 \beta n / N} .
\end{aligned}
$$

Corollary 3.11. Let $\chi$ be odd. For $A, B, M \in \mathbb{Z}$, let $A \geq 0, B \geq 0, M \geq 1$ with $A+B=2 M-1$ and $A-B \equiv 1(\bmod 4)$. Then

$$
\begin{aligned}
& \sum_{\ell=0}^{A}\binom{A}{\ell} \frac{(2 M-\ell-1)!}{(4 \pi / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell}} \sin \left(\frac{2 \pi n}{N}-\frac{\pi}{4}\right) \sigma_{2 M}(\bar{\chi}, n) e^{-2 \pi n / N} \\
& =\sum_{\ell=0}^{B}\binom{B}{\ell} \frac{(2 M-\ell-1)!}{(4 \pi / N)^{-\ell}} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell}} \sin \left(\frac{2 \pi n}{N}+\frac{\pi}{4}\right) \sigma_{2 M}(\bar{\chi}, n) e^{-2 \pi n / N} .
\end{aligned}
$$

Proof. Let $\alpha=\beta=\pi$ in Theorem 3.10. Use the fact that $A-B \equiv 1(\bmod 4)$ is equivalent to that $A$ and $M$ have the same parity.

Corollary 3.12. Let $\chi$ be odd. For any integer $M \geq 1$,

$$
\begin{aligned}
& \sum_{\ell=1}^{4 M-3} \frac{(4 \pi / N)^{\ell}}{\ell!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{4 M-\ell-2}} \sin \left(\frac{2 \pi n}{N}-\frac{\pi}{4}\right) \sigma_{4 M-2}(\bar{\chi}, n) e^{-2 \pi n / N} \\
& =\sqrt{2} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{4 M-2}} \cos \left(\frac{2 \pi n}{N}\right) \sigma_{4 M-2}(\bar{\chi}, n) e^{-2 \pi n / N}
\end{aligned}
$$

Proof. Let $\alpha=\beta=\pi$. Put $A=0$ and $B=2 M-1$ in Theorem 3.10. Then

$$
\begin{aligned}
& \sum_{\ell=0}^{2 M-1} \frac{(4 \pi / N)^{\ell}}{\ell!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M-\ell}}\left(\sin \left(\frac{2 \pi n}{N}\right)+(-1)^{M} \cos \left(\frac{2 \pi n}{N}\right)\right) \sigma_{2 M}(\bar{\chi}, n) e^{-2 \pi n / N} \\
& =\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2 M}}\left(\sin \left(\frac{2 \pi n}{N}\right)-(-1)^{M} \cos \left(\frac{2 \pi n}{N}\right)\right) \sigma_{2 M}(\bar{\chi}, n) e^{-2 \pi n / N}
\end{aligned}
$$

Replace $M$ by $2 M-1$ and pull out the term with $\ell=0$ to complete the proof.
Let $M=1$ in Corollary 3.12. Then we have

$$
\begin{aligned}
& \frac{4 \pi}{N} \sum_{n=1}^{\infty} \frac{\chi(n)}{n} \sin \left(\frac{2 \pi n}{N}-\frac{\pi}{4}\right) \sigma_{2}(\bar{\chi}, n) e^{-2 \pi n / N} \\
& =\sqrt{2} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{2}} \cos \left(\frac{2 \pi n}{N}\right) \sigma_{2}(\bar{\chi}, n) e^{-2 \pi n / N}
\end{aligned}
$$

Corollary 3.13. Let $\chi$ be odd. For any integer $M \geq 1$,

$$
\begin{aligned}
& \sum_{\ell=1}^{4 M-1} \frac{(4 \pi / N)^{\ell}}{\ell!} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{4 M-\ell}} \sin \left(\frac{2 \pi n}{N}+\frac{\pi}{4}\right) \sigma_{4 M}(\bar{\chi}, n) e^{-2 \pi n / N} \\
& =-\sqrt{2} \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{4 M}} \cos \left(\frac{2 \pi n}{N}\right) \sigma_{4 M}(\bar{\chi}, n) e^{-2 \pi n / N}
\end{aligned}
$$

Proof. Let $\alpha=\beta=\pi$. Put $A=0$ and $B=2 M-1$ in Theorem 3.10. Replace $M$ by $2 M$ and pull out the term with $\ell=0$.
For a prime $p$ with $p \equiv 3(\bmod 4)$, we can put $\chi=(\dot{\bar{p}})$ in Theorem 3.8 - Theorem 3.10, Corollary 3.11 - Corollary 3.13.

## References

[1] G. E. Andrews, R. Askey, R. Roy, Special functions, Cambridge University Press, 1999.
[2] B. C. Berndt, A. Dixit, J. Sohn Character analogues of theorems of Ramanujan, Koshliakov and Guinand, Adv. in Appl. Math. 46 (1) (2011), 54-70.
[3] S. Lim, Character analogues of infinite series from a certain modular transformation formula, J. Korean. Math. Soc. 48 (1) (2011), 169-178.
[4] S. Lim, Analytic continuation of generalized non-holomorphic Eisenstein series, Korean J. Math. 21 (3) (2013) 285-292.
[5] S. Lim, Infinite series identities which stem from generalized non-holomorphic Eisenstein series, J. Chungcheong Math. Soc. 32 (4) (2019), 421-440.
[6] L. J. Slater, Confluent hypergeometric functions, Cambridge University Press, 1960.

Sung Geun Lim<br>Department of Mathematics Education, Mokwon University, Daejun 35349, Korea<br>E-mail: sglimj@mokwon.ac.kr


[^0]:    Received May 4, 2021. Revised January 4, 2022. Accepted January 4, 2022.
    2010 Mathematics Subject Classification: 11F12, 34A25.
    Key words and phrases: Character analogues, Infinite series identities, Modular transformation.
    (C) The Kangwon-Kyungki Mathematical Society, 2022.

    This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

