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CHARACTER ANALOGUES OF INFINITE SERIES IDENTITIES
RELATED TO GENERALIZED NON-HOLOMORPHIC EISENSTEIN
SERIES

SuNG GEUN LiMm

ABSTRACT. In this paper, we derive analogues of a couple of classes of infinite series
identities with the confluent hypergeometric functions involving Dirichlet characters.

1. Introduction

In [3], the author found character analogues of infinite series identities which orig-
inally come from modular transformation formula for generalized Eisenstein series.
One of them shows the following symmetric identity( [3], Corollary 3.4);

Let o, 8 > 0 with o8 = 72 and let (5) be the Legendre symbol modulo p, where p is
a prime with p =1 (mod 4). Then, for any integer M > 0,

oM g (g) Oania (]3) 1) cos(2mn/p)e=2n
=g g (%) ouni-1 (]3) 1) cos(2mn/p)e= 2,

m((?) ,n) = dZIn: <§> s

The study to find this type of character analogues was motivated by the works of B. C.
Berndt, A. Dixit and J. Sohn in [2]. For example, a character analogue of Guinand’s
formula shows the following elegant symmetric identity (Corollary 3.2 in [2]);

@g (%) omatmpe el = ﬂg (5) rsmpezo

where o4(n) is the sum of the s-th powers of the positive divisors of n.

In this paper, we establish character analogues of certain classes of infinite series
identities which stem from a modular transformation formula for a class of functions
related to generalized non-holomorphic Eisenstein series. We start with introducing

where
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necessary notations and then shall state the principal theorem which shows a modular
transformation formula for a large class of functions coming from generalized non-
holomorphic Eisenstein series. In fact, the theorem that we shall use in this paper is
a twisted version of the theorem in [4] and so some notations are twisted versions of
those in [4].

Let Z, R and C denote the set of integers, real numbers and complex numbers,
respectively. Throughout this paper, let the branch of the argument of z € C be
defined by —7 < arg z < 7. For any non-negative integer n, the rising factorial (z),
is defined by

()p=z(x+1)---(x+n—-1), n>0and (x)y = 1.
Let I'(s) denote the gamma function. It is easy to see that

(1.1) (@), = %

The confluent hypergeometric function of the first kind | F («; §; 2) is defined by

1F1(a; B 2) :Z (@)s 2"

n=0 (ﬁ)nn‘
and the confluent hypergeometric function of the second kind U(«, 3, 2) is defined by
ra- INGE!
Ula,B,2) = M 1B (o B5 2) + %Zlﬁ 1Fi(l+a—=52-p5;2).

The function U(q, 3, z) can be analytically continued to all values of o, 3, z € C [6].
Let H={r € C | Im 7 > 0} be the upper half-plane. For ry, hy € R (k = 1,2), let
r = (r,ry) and h = (hy, hy). Let e(x) = €*™@ and let N be a positive integer. For
7 € H and sy, $o € C with s = 51 + s9, define

e (Nmhy + ((Nm +71)7 + r9)(n — hy))
Z Z (n — h2)1—s

XU (s9; 8;4m(Nm ~+r1)(n — ho)Im(7))

An(T, s1,89;1,h)
Nm~+r1>0n—ho>0

and
_ e(Nmhy — (Nm + 1) 4+ r2)(n + hs))
An(7, 51, 52;1, ) N Z Z (n+ hy)l—s
m~+r1>0 n+ha>0
x Ul(sy;s;4m(Nm +r1)(n + ho)Im(7)).
Let
Hn (7,51, 80;1,h) = An(T, 51, 8957, h) + €™ AN (T, 51, S9; —1, —h)
and
Hy (T, 51, 59T, h) = AN(T, s1,89;7, h) + ™S An (T, 51, 59; —1, —h).
Let
Hy(r, 7 h) —17-[,( h)—i——lﬁ(ssrh)
r _ r ) .
N\T,T,S81,82;T, F(Sl) N\T, 81, S2; T, F(Sg) N\T, 81,82, T,

The functions Ay, Ay, Hy, Hy and Hy are twisted versions of those in [4]. In fact,
the function Hy comes from generalized non-holomorphic Eisenstein series and the
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relation between Hy and the generalized non-holomorphic Eisenstein series is given
in [4]. For z, « € R and ¢t € C with Re ¢ > 1, let

e(nx)

U(z,a,t) = Z oy

n+a>0
and let
U(z,a,t) =z, a,t) + emtw(—x, —a,t),
Uy (2, a,t) = (z, o, t — 1) + ™Pp(—z, —a, t — 1).
Let Ay denote the characteristic function of the integers modulo N. For z € R, [z]
denotes the greatest integer less than or equal to z and {z} = x — [z]. Let
at +0b
cT +d
denote a modular transformation with ¢ > 0 and ¢ =0 (mod N) for 7 € C. Let

R = (Rl, Rg) = (CL7’1 + Cra, b7’1 + d?“g)

Vr =

and
f) = (Hl, H2> = (dhl — bhg, —Ch1 + CLhQ).
Put

ox = c{Ra} —Nd{%}.

We now state a twisted version of Theorem 3.4 in [4] which we shall use to obtain our
results.

THEOREM 1.1. [4]. Let Q = {r €e H|Re 7 > —d/c}. Let 51,59 € C with s = 51459
and assume that s is not an integer less than or equal to 1. Then, for T € @),

27 Z72HN(VT, VT, 51, 82,1, h) A
= HN(T, ’7', S1, 59, 9%, fj) + )\N(Rl)e(—RlHl)(QWi)_Se_ﬂZSQ\I’(—HQ, —RQ, S)
—An(ry)e(=rihy)(2mi) €™ 271 272U (hg, 19, S)

+AN<H2)(mm(ﬂ)ks%ml(ﬂl, Ry, s)
—AN(h2>(47r1m(7))1—s—rzf); (13)2) 227 T (B, )

(27?2’)_86_”52
['(s1)T(s2)
where z = ¢t + d and

LN(Ty 77-’ 51, 52; myﬁ)

[

= Ze(—Hl(Nj + N[R,/N] — ¢) — Hy([Ro] + 1 + [(Njd + on)/c] — d))

1 , . . e—(zv-{—E(l—v))(Nj—N{Rl/N})u/C e{(de+QN)/c}u dud
X si—1(1 — p)%2™ - =

where C' is a loop beginning at +o0, proceeding in the upper half-plane, encircling
the origin in a counterclockwise direction so that u = 0 is the only zero of

(e’(“’”(l’”))“ —e(cHy + dHy))(e* — e(—H>))

LN(T7 ’fa S1, S2; maﬁ)a
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lying inside the loop, and then returning to +oo in the lower half plane. Here, we
choose the branch of u® with 0 < arg u < 27.

Let B,(x) denote the n-th Bernoulli polynomial defined by

n

tet N t
‘ =" Bula)— (It] < 2m).

The n-th Bernoulli number B,, n > 0, is defined by B, = B,(0). Put B,(z) =
B,({z}), n>0. Let oFi(a, 8;7; z) be a hypergeometric function defined by

= (@B

Fi(a, By 2) =
o —~ (7)and

n

The function ﬁ 2 Fi(«, 8;7; z) can be analytically continued to all a, 3, v € C and

all z € C with |z| <1 ( [1]).

REMARK 1.2. Let s = s1 + s9 be an integer and let h; = hy = 0. By the residue
theorem, we find that

e~ (zv+2(1-0))(Nj—N{R1/N})u/c {(Njd+on)/c}u
usl du
o e—(zv+z(1-v))u _ | et — 1
—s42 . — .
Br.((Nj — N{Ry/N B_io 1((Njd
Coni 3 BN = NURNDIOB s s N+ 0)/0) oy i
— kl(—s+2—k)!
Then
1 o (z0+2(1=0))(Nj=N{R1/N})u/e {(Njd+on)/c}u
/ (A - v)”l/ u st e dudv
0 c e~ ZVTz(1l—v))u _ 1 eu _ 1
—s+2 . = .
o "= Bi((Nj = N{Ri/N})/€)B_sps k((Njd+ on)/0) oy
= 27 Z (—2)
— kl(—s+2—k)!

! z—z !
X / (1 — o) ty=t (1 - v) dv
0 z

T(s0)T(s3) o~ Be((Nj = N{R1/N})/¢) B s 1 (Njd + on)/c)
I'(s) kZ:O Kl (—s+2—k)!

X(—Z)kil 2F1 (82, 1-— ]{Z,S, S 2) .

z

The last equality holds due to the integral representation of the hypergeometric func-
tion. Hence we obtain

1
[(s1)T(s2) )
_ 2mi 5N Bl(N] = NUR/ND/E)Bosio-sl (Njd + o)

I(s) kl(—s+2—k)!

k=0

LN(T,%,Sl, 82;9:{,.6)

x(—2)*1 LR <S2,1 — ks s; u) :
z



Character analogues of infinite series 29

We now see that o )r( )LN(T,?,sl,sg;D%,ﬁ) vanishes for s > 2. Let s = 2 and

s9 = —B be a non-positive integer. Then, applying

n__ B!
(s) = 4 "V @ s B
0, n>B

and using the binomial expansion
B
B
1 B _ n
(1+2) ;(n)x
z2—Zz & z—2\"
F: 1;2; =
o (n2) =2 (1) ()
1 P z\ B+1 ]
_B+1z—z(<2> _)'

Thus, for s = 2 and s, a non-positive integer, after the evaluation of Ly (7, 7, s1, $2; R, 9),
the relevant formula will be valid for all z € H by analytic continuation.

we find

2. A class of character analogues of infinite series identities

In this section, let x be a Dirichlet character of modulus N and x, be the principal
Dirichlet character of modulus N. From now on, we set

T—1
Nt —N+1
The function ¢ denotes Euler’s phi function, i.e., ¢(N) is the number of positive
integers up to N that is relatively prime to N. Let (y = e*™/" and let

n) = x(d)d".
din

THEOREM 2.1. Let x be even. For any integers B > 0, M > 1 and for z € H,

Vr =

-1

o () S (5)

Z( ) 24]1\;1?;_1 Z;fl eCN gon—1(X,n)e <%> +§5M(B,Z)I/X(N),

_1\B+1 =\ B+1
( 1) ! — <E> —1 ) M = )
Im(B,z) =< 2n(B+1)z—Zz \\z
0, M>1

where

and
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Proof. Let s1 = A > 1, ss = —B < 0and s =2M > 2 for A,B,M € Z. Put
r = (k,0) for any integer £ with 1 < k£ < N and put h = (0,0) in Theorem 1.1.
Then R = (k,—k) and $ = (0,0). We see that Ay(r1) = An(R1) = Ay(k) = 0. Put
z= N1 — N+ 1. Using Remark 1.2, we have

: (—=1)BL 1 z\ B+t
7Y 1=8 g5z <_> 1), M=1,
(2mi) e IZTZ) Fe Ly(7, 7, 51,850, 9) = 2n(B+ 1)z — 2 ( z )
(s1)0(s2) 0, M > 1.
Note that F(S) = ﬁ = 0. Thus, in Theorem 1.1, the terms with Ay(hy) and

An(Hz) are equal to 0. Thus we have
(2.1) 2 AZPHN(VT, VT, A, —B;r,h) = Hy(1, 7, A, —B; R, ) + 0p(B, 2).
Multiplying both sides in (2.1) by x(k) and summing over k, we find that

N-1
27 X (k)Hy(VT, VF, A, =B, h)
N—-1 = N—-1
(2.2) =) x(k)Hn(r,7, A, —B;R, H) + Y x(k)om(B, 2).
k=1 k=1
. _ 1 _
Since o) e = O
_ 1
Hy(Vr, V7, A, —B;r, h) F(A)H (V1,A,—B;r,h)
It is easy to see that
AN(VT A, —B;r,h)
e((Nm+ k)nVr)
(2.3) = Z o U(=B;2M;4n(Nm + k)nIm(V'1))

Anx(V T, A, —B; —r,—h)
24) =Y % ((Nm + N = K)nVT) 1 poong e (N + N — k)nIm (V7).

n172M

N—-1
X(k)Hy(V7,V7, A —B;r, h)
= ;| Nl
= T(4) xX(k) (Ay(Vr, A, —B;r,h)+ Ay(V1, A, —B; —r, —h))
k=1
N-1 o oo
= oS AN ) ;20 (N 4+ Kyl (V)
k=1 m=0 n=1
2 &1 &
- I'(A) Z nl—2M Z x(m)e(mnV7)U(—B;2M; 4rmnIm(V 1))
n=1 m=1
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F(iz) = F(—lB) = 0 and apply (1.1) to obtain

B
—4rnIm(VT))*
B;2M:;4mnl —1)! '

U(— mnlm(V7)) = ZO( ) S
Since z = N7 — N + 1,
— 1 1
V= R —(1—2Y,

NTr—N+1 N

—1
e(nVr) = p2mi(n(1—="1)/N) _ (e <—”Z )

and
1
Im(VrT) = —Nlm(z_l).

Hence we obtain

N-1
X(k)HN(VTa V7T> Av _Ba r, h)
k=1
B
B\ (47Im(z~ x(n —nz"t
_o(_1\B
~2007 ) (§) G S G e ().

=0
By the same way, we also obtain

N-1

Z X(k)HN(T, 7, A, —B;R, Sj)

& —47Im(2)/N)E <= x(n) ., _ nz
e ) G S e ()

Put the last two identities into (2.2) and use

N-1
_Je(N), X = Xo,
X(k)_{O, X # Xo-

to complete the proof. O

THEOREM 2.2. Let x be even and let o, 3 > 0 with a8 = 7%. For any integers
B>0and M > 1,

—4a/N)* x(n .
B M 2na/N
Z( ) 2M + 0 — 12 ggNazM 1(x,n)e

B

N)
N MﬁMZ( ) 2M45é— 1) 'ZXJ (" Tarr-1 (X, n)e PN — %5M(B)VX(N)7

where

ou(B) =4 AB+ 1)
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Proof. Put z = Zi in Theorem 2.1. Then

_ -1
2 = ()P (=), < ~ )ze—%aﬂv and ¢ (50 ) = 7N,

A short calculation shows that
-1)P+1
5 (5.5 = GO
a 46(B+1)
Multiplying both sides of the identity in Theorem 2.1 by (—3)™, we complete the
proof. O]

Let B =0 in Theorem 2.2. If M > 2 or x # X,, then we have

MZX n)Choan—1(x,n)e >N = ZX n)(y"oanr-1(x, n)e >N,

which is given as Corollary 3.3 in [3].
Let x = Xo, M =1 and o = 8 = 7 in Theorem 2.2. If B is even, then

B

3 (B) 47r/N Z xo (2]nv7r) o1 (x5, ) 2N = % _

=0
Put B =0. Then

2nm 1
oty (7 ) e 7 =~ o),

Let x = x and let M > 2 or x # X, in Theorem 2.2. Then, equating the real part
and the imaginary part, respectively, we have

E 40z/N x(n 2m™n - -
B M 2na/N
( ) 2M +0—1) lZ ( )02M_1(X,n)e

o

and

B
4a/N)* x(n) . [(2mn N
B M 2na/N
@ EZ( ) 2M+g_1lz ( )UQM—1<X7n>€

MHBMZ( . Y ) R

Thus we obtain the following two corollaries which include elegant symmetric identities
for o and f3.

COROLLARY 2.3. Let x be even and x = . Let a, 8 > 0 with a3 = 72 and let
B, M be integers with B > 0 and M > 1. Suppose that M =1 and x = x, cannot
be considered simultaneously. If B and M have the same parity, then

§ : 40é/N 2rn
M —2na/N
( ) 2M + £ —1)! 4 ( ) oonr—1(x, n)e
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B
= 5M Z (tz) (2M4f2]\1 1)! Z xn <27Tn) 02M—1<X7n)6_2n6/N7

B
B 4a/N x(n) . [2mn B
M 2no/N
: Z(f>(2M+E—1'Z ( )02M—1(x,n)e

B
==Y (?) (2M4f2]\1 1! Z X (27rn> oons—1(x, n)e 2",

If B and M have the different parity, then

oM da/N)* x(n 27rn oy
Z( ) 2M+€—1|Z gonr—1(x,n)e

B
==Y (f) (QMAféji 1)! Z xe (2m> aanr—1(x, n)e 2,
£=0

Q

B
B 4a/N x(n) . [2mn B
M 2na/N
Z<é>(2M+£—1lZ ( >U2M—1(X7n)€

=0
B /g 45/
=7 Z <€> (2M —fé —1)! Z xtn) (27m) Tonr—1(x, m)e 2PN
=0

Corollary 2.3 contains generalizations of Corollary 3.4 and 3.5 in [3].

COROLLARY 2.4. Let x be even and x = x. Let B, M be integers with B > 0 and
M > 1. Suppose that M =1 and x = x, cannot be considered simultaneously. If B
and M have the same parity, then

B
b 4m/N) . [2mn .
Z<£>(2M+Q—I'ZX ( >U2M—1(X7n)€ /N — ),

=0
If B and M have the different parity, then
B

B 47 /N ) 21n
Z (ﬁ) 2M+é —1) l ( ) ooni—1(x,n)e N = 0.

Proof. Let « = = in Corollary 2.3. m
Let B =0 and replace M by 2M in the first equation in Corollary 2.4. Then

2
ZX ) sin ( 7m) oan—10x, n)e_%”/N =0.
Let B = 0 and replace M by 2M — 1 in the second equation in Corollary 2.4. Then
2
ZX Cos ( 7m) ouni—s(x, n)e N = .

Let p be a prime with p = 1 (mod 4) and let (5) be the Legendre symbol. Then
(1—)) is an even character with real values. Thus we can put y = (1—)) in Theorem 2.1,
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Theorem 2.2, Corollary 2.3 and Corollary 2.4. For example, if y = (5) in the first
identity in Corollary 2.3, we obtain

MZ < > oM iag/P_ 1)l 4 ( > - cos (?) 02M1(<;> ,n)e e/

R S 0o () e

which gives a generalization of Corollary 3.4 in [3].
For an odd character yx, applying the similar method, we obtain the following
theorems and corollaries.

THEOREM 2.5. Let x be odd. For any integers B > 0, M > 1 and for z € H,

-1

,—B- 2MlBZ< >47TI;nM+k ZX—eCN oot (%, n)e (—7;5 )
& —4rIm(z x(n nz
Z( ) 2M+k Z L’CN o2 (X, m)e (N)

Proof. Let s =A>1, ss=—B<0and s=2M +1> 3 for A, B, M € 7Z. Since
s > 3, we have, by using Remark 1.2,

1
— L T R =0.
F(Sl)r(82> N(T7Ta 51, 52, 75)
For the other parts of the proof, apply the similar method in the proof of Theorem
2.1. ]

THEOREM 2.6. Let x be odd and let o, 3 > 0 with a8 = 2. For any integers

B>0and M > 1,
4o/ N & x(n) ., _ ona
e e

B _M+1/2 (
(—1)%a /Z( )(MH)' >
M+1/2 —48/N)" & n).—n - —2nB/N

COROLLARY 2.7. Let x be odd and x = X. Let o, 3 > 0 with a8 = w2. Let B, M
be integers with B > 0, M > 1. If B and M have the same parity, then

B
B 4a/N x(n 2mn _
M+1/2 2na/N
@ ;(g> 2M+glz ( )@M(X,n)@
B

48/N) . [ 2mn —on
:5M+1/22(g) QMifl ( )UQM(Xan)G mBIN
=0 n=1

If B and M have the different parity, then

B
B 4a/N) 2mn e
aMH/QZ(g) 2]\/[—/1—@' ( )UZM(X7TL)€ 2na/N
=0
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o 48/N)*
= —pMH/2 Z <g) 2]\f_/’_ 0)! Z xn) (27m> oant (X, n)e N,

(=0

COROLLARY 2.8. Let x be odd and x = x. Let B, M be integers with B > 0,
M > 1. If B and M have the same parity, then

B
B Am/N) . 2t 7 .
Z<€> QMZLE'ZX (__Z>02M(X7n)€ /N — (),

=0

If B and M have the different parity, then

- B 2mn T
2 (7 arss Z Din (2 + T ) owrbme Y <o,
Proof. Let & = 8 = 7 in Corollary 2.7. -

Put B=0in Corollary 2.8. Then

2
and

2
ZX sin < mn + Z) 04M_2(x,n)e_2"”/N =0.

Let p be a prime with p = 3 (mod 4). Then <5> is an odd character with real values.

Thus we also put x = <5> in Theorem 2.5, Theorem 2.6, Corollary 2.7 and Corollary
2.8.

3. Another class of character analogue of infinite series identities

In this section, we obtain another type of character analogue of infinite series
identities. We shall let s; > 1, s > 1 and let s > 3 or s > 4 for s = s1 + so. Thus,
by Remark 1.2, we see that

1
['(s1)0(s2)

THEOREM 3.1. Let x be even. For A,B,M € Z, let A >0, B> 0, M > 1 with
A+ B =2M. Then, for z € H,

e [A (2M — ¢)! < y(n) —nz
Y Z(g)(_4wlm(z—1)/N)2M—é+1 n;](” v (X, ne < N

=0 n=1

Ly(7, 7, s1,52;R,9) = 0.

-1

)

5—1

B 0o

CA—B- B (2M — 0)! x(n) nz
A-1z-B-1

T2 & % (g) (—4wIm(z 1) /N )M~ L 20 - Z+1<N oan+1(X,n)e N

A [ee)
ZO (?) 471'11112]\)4/]\7)62)1\4”1 n2>z<\4( g)ﬂ (" oanr1 (3, n)e (W)

)
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+ ; (f) (4nIm(z)/N)2M—L+1 — n2>J<\/[ z+1(N0'2M+1(X, n)e ( N )
+uy (A, B, M, z),

where

NX(A’BaM’Z) = {

Mn&%(l - ngA)C@M +1)e(N), X = Xo
0, X 7 Xo-

Proof. Let s1=A+12>1, ss=B+1>1and s=2M+2 >4 with A, B, M € Z.
Put r = (k,0) for any integer k£ with 1 < k < N and put h = (0,0) in Theorem 1.1.

Then R = (k,—k) and $ = (0,0). We see that Ay (r;) = An(R1) = Ay(k) = 0 and
Ahy) = AN(Hy) = 1. Put z = N7 — N + 1. Since

U_y(0,k,2M +2) = QZHQMH = 2¢(2M + 1),
we have
AT B (Vi VA, A+ 1, B + 1;1,h)
(31)  —Hy(r7A+1, B+ 1% )+ G 1= G C(2M +1).

AlB! (4rTm(7))2M+1
Note that, for any b € C,

N-1
bo(N ) — Xo»
X(k)b:{ p(N), x=x
o : X 7 Xo-
Thus, multiplying both sides in (3.1) by x(k) and summing over k, we find that
N-1
AT PN (k) HN (VT VE, A+ 1, B+ 11, h)
N-1 =
(3.2) = x(B)Hy (1,7, A+ 1, B+ 1;R,9) + 2u, (A, B, M, z),
k=1
where

! ZBZA
(31]!\?!' (47rIri(z/N Y2M+1 C2M +1)p(N), X = Xo,
0, X # Xo-

To compute Zg:_ll x(k)Hy(VT, VT, A+1, B+1;r, h), we shall apply the same method
in the proof of Theorem 2.1. Then

N-1
> x(kyHn(VT, A+1,B+ L;1,h)

k=1

MX(A,B,M,Z) = {

o0 _ -1
QZx(n)g@agMH(){,n)e < Zb\i ) U(B+ 1;2M + 2; 4mnlm(V'7))

n=1

and

=

1
X(k)?-_[N(VT, A+1,B+1;—r,—h)

1

e
Il
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- -1
=23 x(n)("o2nri1(X, n)e (nf\, ) U(A + 1;2M + 2; 4nTm(V7)).
n=1

Apply Lemma 2.1 in [5] to obtain

A
U(B + 1;2M + 2;4xnlm(V7)) = — Z ( ) ( 4m1<i](wv;)f§i”“

(=0
and

— N
U(A+ 1;2M + 2; 47nIm(V 7)) % Z (f) (2M —0)!
T =0

(47nIm(V7))2M—t+1"

Thus we have
N-1
Z X(k)HN(VT, V7_', A+ 1, B+ 1; r, h)
k=1

A o0
—2 (2M — 1) x(n) —nzt
'Z( ) ArIm(V7))2M—+1 n2M- €+1CN‘72M+1(X7 n)e
2 (= B n=1

B M -0 &K x(n) nz”!
T (e) (V)7 O N o (X m)e '
£=0 n=1
By the similar way, we also have

N-1

x(K)Hy(1,7,A+1,B +1; 9%, 9)

2 (A M- & x(n)
_A!B!Z<€>(
2

47TIH1(T))2M—Z+1 n2M— g+1CN 02M+1(X7 ) ( )
n=1
B oo _
B\  (2M - ) x(n) —nz
B Z (€> (4rlm(r))2M 641 £ p2M- e+1<N‘72M+1(X nje N )
=0 n=1
Use Im(V'7) = Im <’j\; ) and Im(7) = Im(5) to complete the proof.

THEOREM 3.2. Let x be even and let o, 3 > 0 with a3 = w2. For A,B,M € Z,
let A>0,B>0, M >1with A+ B =2M. Then

_1)Ba_Mi(21) (2M — 0)!

(da/N)~* Z n2M- E+1<N‘72M+1(x n)e~2en/N

2|§

[un

]

B

)Ba MZ@) (2M = 0)! x(n)

(4a/N)~* n2M Z+1<N oani+1(X, n)e*%m/N

_pyMgm i (121) (2M — 0)!

4ﬁ/N —L ZnQM €+1CN 02M+1<X7 ) —20n/N
=0

+(—1)Mﬁ‘Mg (f) (M — 0!

(48/N) 5Zn2M g+1<NU2M+1(X, n)e 2n/N
vy (B, M, o, 5)

37
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where

VX<B,M,a,5)_{éQM)!“‘l)Mﬁ‘M (=1)Ba~M)¢(2M + 1)p(N), ;(?;

Proof. Put z = Zi in Theorem 3.1. Apply
a1 =1 .
() () e (R = ()

Z_A_IZ_B_I — (—1)B+MCYM+16_M_1, ZBE

A — (—1)B+M04_M6M.

Multiplying both sides of the identity in Theorem 3.1 by (—1) ( )2M+1 BMHL we
obtain the desired result. O]

COROLLARY 3.3. Let x be even with x # x,. Let o, 3 > 0 with a3 = w%. For any
integer M > 1,

M
M\ (2M — 0)! 2,
M —_— Y, —2an/N
) Z ( ) 4CY/N —¢ Z n2M f+1 < N ) 02M+1<X7n)€ /

2M—€ 2mn B otm
MZ< ) (48/N) fznzM o1 © (N >02M+1(X7”)6 26n/N.

Proof. Let A = B in Theorem 3.2 and use (% + (3" = 2 cos(%2). O

Corollary 3.3 shows a fairly good symmetric identity for o and 5. If we put M =1
in Corollary 3.3, then

- 2 1 1
Xégl) cos ( an) a3(X,n) (ae_Qo‘”/N — Be_gﬁn/N)

2mn = —2an —20n
< )Ug(x,n) (e 2an/N-_ =28 /N).

COROLLARY 3.4. Let x be even. For A,B,M € Z, let A>0, B> 0, M > 1 with
A+ B =2M. If B and M have the same parity, then

A
A\ (2M - 0)! . (21 - .
( ) (4w /N)~¢ Zn2M o415 ( N )02M+1(X7n)6 2mm/N
=0

B
(2M — 0)! . [ 2mn - .
( ) (47 /N) ZZnzM o410 (T) oo (X, n)e” N,
(=0

Proof. Put o = 8 = 7 in Theorem 3.2. Then v, (B, M, «, ) = 0 for any yx. Apply
R — ¢y = 2isin (2]’{,"), (=1)P = (-1)M. O
Corollary 3.4 also gives an elegant symmetric identity for A and B.

COROLLARY 3.5. Let x be even. For A,B,M € Z, let A>0, B>0, M > 1 with

A+ B =2M. If B and M have the different parity, then
A

A\ 2M —0)! 2mn - o
Z( ) (4w /N)~* anw 1 © <T) oanr1(X; e 2mn/N

=0

n=1
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B
Z B\ (2M —0)! 2mn B Comn

- (f> (4w /N)~¢ ZnQM 1 © ( N )02M+1(X’n)e N v (M),
=0

where
—2(2M 'C(2M+ 1 @(N)a X = Xo»
(M) = (2M) )
0, X 7 Xo-
Proof. Put & = # = 7 in Theorem 3.2. Use (& + (3" = 2cos (&%), (-1)% =
—(=1)M. O

COROLLARY 3.6. Let x be even. For any integer M > 1,

AM 0o
dm/N)* x(n) . (2mn I
Z ( él ) Z n4M(—£)+1 Sl < N ) oam+1(X,n)e 2mn/N _ (.

(=1 ’ n=1
Proof. Put B = 0 in Corollary 3.4 and replace M by 2M. m
COROLLARY 3.7. Let x be even. For any integer M > 1,
AM—2 [e%S)
(47 /N)* x(n) 2mn o\ 2
3 U § X0 (250 g5 2o
/=1 n=1

2mn c —27n/N
- _22 n4M 1 ( N ) oan-1(X, n)e + v, (2M —1).
Proof. Put B = 0 in Corollary 3.5 and replace M by 2M — 1. O

For a prime p with p = 1 (mod 4), we can put y = (2—7> in Theorem 3.1, Theorem

3.2, Corollary 3.3 — Corollary 3.7.

Next we find character analogues of infinite series identities for an odd character y.
In this case, we shall let s be any odd integer greater than 2. The process to obtain
the results is similar to the case of y even.

THEOREM 3.8. Let x be odd. For A,B,M € Z, let A> 0, B> 0, M > 1 with
A+ B =2M — 1. Then, for z € H,

A -1

A (2M 6—1 —nz
—A-1-—B—
< 12312(£>( AnTm(z N)2M— zz n2M— eCN ngn)e( N )

=0

a1 pa~—(B oM — 6—1 -1

+27 AP 1;:; (5)( 47(rIm N)2M— zznzM gCN oar (X, n)e (njv >
/A =) & x( ) o (nz

:; (E) Arlm(z)/N)2M—t = p2M= V"o, ne <W>

B

—

+3(7) o >ff§>21ﬂ)” - o ve ()

0 n=1

Proof. Let s;=A+1>1, ss=B+1>1and s=2M+1> 3 with A, B,M € Z.
Put r = (k,0) for any integer k with 1 < k < N and put h = (0,0) in Theorem
1.1. The basic process of the proof is similar to the proof of Theorem 3.1. The only
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noticeable difference arise from the terms with A(hs) and A\(H,). Direct calculations
show that they are vanished by using

U_1(0,Ry,5) = ¢(o k: 2M) + e™CMADY (0, —k, 2M)

> e(—nk
_Z nQM Z (n2M):O'

n=1

]
THEOREM 3.9. Let x be odd and let o, B > 0 with a8 = 2. For A, B, M € 7Z, let
A>0,B>0, M >1with A+ B=2M —1. Then

7M+12A A\ (2M - ¢ —1)! - x(n) —2an/N
(—1)Aa /;(6) (da/N) ¢ 2 oM 7CNO oan (X, n)e /

M — (- 1) &
+( A o~ M+1/2 Z ( ) ) 7321(\4 )g CN U2M(X> n)e—Qan/N

(4da/N)~* —
M+12A A\ (2M —(—1 n sy
e ;(» BT nﬁye@v 7an (X, m)e”
_ a\—M+1/2 ° (B (2M — 6—1) x(n) —26n/N
+(=p)"MF ;(€> (4BJN) T 2o i SCnoan (X, n)e :

Proof. Put z = Zi in Theorem 3.8.
Z_A_IZ_B_I _ (—1)B+ICYM+1/2(—6)_M_1/2.

Multiplying both sides of the identity in Theorem 3.8 by (%)QM (—B)M+1/2 we obtain
the desired result. O

If we put s = B+ 1, ss = A+ 1 in the proof of Theorem 3.8, then the associated
Theorem 3.9 is changed to the following identity;

B [
(—1)Pa+1/ <B) (2M — ¢ —1)! n>§§4 >€ ot (3, m)e =2/

=] 0) " (4a/N)*
+(-1)" _MH/ZZ( ) 2]\44a/]f[)_1) nﬁ;)gC&”azM(x,n)e—m”/N
—M+1/2 Z 2M g_ 1 —26Bn/N
"3 () S ;;EV,L@V ot
s (A @M~ - I () o
 a\—M+1/2 28n/N
(83)  +(=h) ;(6) AN 2 - Chom (T me Y

Note that A and B have the different parity. Adding the identity in Theorem 3.9 and
(3.3), we obtain the following theorem.

THEOREM 3.10. Let x be odd and let o, 8 > 0 with a3 = n%. For A,B,M € Z,
let A>0, B>0, M>1W1thA+B—2M—1 Then

- M —t-1)! x(n) . (2mn ~ B
A M 2an/N
=t Z ( ) (4a/N)~t £ v M Ty ogam (X, n)e
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ey () B i () st

£=0 n=1
- A A M — 0 — 1)1 S 9 o
= (—1)Mp~M+L/2 ; (£> ( BN ) 2 nég‘?—)é cos <%) oo (%, n)e 2N
B BB\ M — 0 — 1) & 9 o
HoDME S <€>< (M/N)_Z> > An) cos( ]7;") o (X, m)e 2N,

COROLLARY 3.11. Let x be odd. For A,B,M € Z, let A>0, B> 0, M > 1 with
A+B=2M —1and A— B =1 (mod 4). Then

A 1y
(A) (2M — ¢ —1)! x(n) sin <27m 7r> onr (%, n)e~ 2™/
=0

) (4m/N)~* n2M—t N 4

n=1

B
2M -1 n) . 2mn T ~ .
:Z( ) (4 /N)~t ! négvf)z Sin (T‘Fz) oanr (X, n)e 2N,

Proof. Let a = f = 7 in Theorem 3.10. Use the fact that A — B =1 (mod 4) is
equivalent to that A and M have the same parity. O

COROLLARY 3.12. Let x be odd. For any integer M > 1,

4M—-3 o0
47 /N)¢ 2
3 (/N g X Sm( m_z) S ——

Vil n4M—€—2 N 4

=1 ’ n—l
2mn - —2mn/N
\/_Zn4M 2 ( N )U4M—2(X7n)e .

Proof. Let « =3 =m. Put A=0and B =2M — 1 in Theorem 3.10. Then

Qgg nf2) i;: An) (sin (2%") (=)™ cos <2”T”)) oant (7, m)e=2/

- 2 2
= nz:l >TCL<27]\Z4) (sin (%n) — (=1)” cos (%n)) oo (X, n)e 2N,
Replace M by 2M — 1 and pull out the term with £ = 0 to complete the proof. [
Let M =1 in Corollary 3.12. Then we have

AT 2m s
Z X ( : 4) 2(;(7”)6_2””/]\[
2m
\/_z : X < ’n/) 0_2(>_<7 n)€—27rn/N.

COROLLARY 3.13. Let x be odd. For any integer M > 1,
AM—1

(47T/N>£ . X( ) : 2mn ™ - —2mn/N

= —\/_Z x(n (2m) oan (. n)e N,
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Proof. Let a = 3 =m. Put A=0and B =2M — 1 in Theorem 3.10. Replace M
by 2M and pull out the term with ¢ = 0. m

For a prime p with p = 3 (mod 4), we can put xy = (5) in Theorem 3.8 — Theorem
3.10, Corollary 3.11 — Corollary 3.13.
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