
Korean J. Math. 30 (2022), No. 2, pp. 187–198
http://dx.doi.org/10.11568/kjm.2022.30.2.187

ON ζ´FACTORS AND COMPUTING STRUCTURES IN CYCLIC

n´ROOTS

Rostam Sabeti

Abstract. In this paper, we introduce a new concept in number theory called
ζ´factors associated with a positive integer n. Applications of ζ´factors are in the
arrangement of the defining polynomials in cyclic n´roots algebraic system and are
thoroughly investigated. More precisely, ζ´factors arise in the proofs of vanishing
theorems in regard to associated prime factors of the system. Exact computations
through concrete examples of positive dimensions for n “ 16, 18 support the results.

1. Introduction

This research addresses a solid relationship between a novel concept in number
theory and a structural arrangement of the indices in the defining polynomials of
cyclic n´roots algebraic system. Let n be a positive integer and j “ 0, 1, ¨ ¨ ¨ , n ´ 1
and rjs be the set of positive integers whose remainder on division by n is j. For
i P N, an important integer-valued function is defined by

(1) ϕnpiq :“

"

j if i P rjs, Dj “ 1, ¨ ¨ ¨ , n´ 1,
n otherwise.

Let R “ CrX1, ¨ ¨ ¨ , Xns be the ring of polynomials of n variables X1, ¨ ¨ ¨ , Xn with
complex coefficients. Generally, for f1, ¨ ¨ ¨ , fk P R, I “ Ipf1, ¨ ¨ ¨ , fkq denotes the
ideal generated by fi’s in R and R{I “ RI is the associated residue class ring. RI

has a structure of vector space over C. To get a precise definition of the members
of RI , we need to fix a monomial order ą on R, say lexicographic order (i.e.; lex-
order) with X1 ą X2 ą ¨ ¨ ¨ ą Xn. The set of all monomials in the representation of
a polynomial f P R is called the support of f . The lex-order largest monomial in the
support of f is called the initial of f or inpfq. For an ideal I Ă R, the initial ideal is
inpIq :“ Iptinpfq : f P Iuq. See [1] on page 32. If GpIq is the reduced Gröbner basis
of I, then every polynomial f P R has a unique remainder f̄ on division by GpIq.
The reader is referred to [1] for an excellent introduction about Gröbner bases. For
f, g P R, let’s define an equivalence relation „ on R by f „ g if and only if f ´ g “ 0
(equivalently f ´ g P I). Now we define RI by RI “ trf s : f P Ru where rf s is the
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equivalence class corresponding to f . Since inpIq “ inpGpIqq, then evidently all the
monomials that are not in inpGpIqq form a basis for RI . Now suppose n ě 3. We
define n polynomials hi P R (1 ď i ď n) by

hi “
n
ÿ

j“1

j`i´1
ź

k“j

Xϕnpkq, pX1, ¨ ¨ ¨ , Xnq P Cn.

Cyclic n´roots is the solution set of the system of polynomial equations h1 “ 0, ¨ ¨ ¨ , hn´1
“ 0, hn “ n. A simplified notation as Hi “ hi, for i “ 1, ¨ ¨ ¨ , n´ 1 with Hn “

1
n
hn´ 1

will be used. Let ICn “ IpH1, ¨ ¨ ¨ , Hnq be the ideal generated by the defining poly-
nomials H1, ¨ ¨ ¨ , Hn of cyclic n´roots. For a detailed history about cyclic n´roots
and applications see [3,4] and references therein. In section 2, we introduce ζ´factors
associated with a given positive integer n. In reality, the size of our algebraic system
n is decomposed as a product of two of its divisors λ and µ. Intuitively speaking,
a ζ´factor can be referred to a triplet pλ,µ, ζq, where ζ is another positive integer
such that λ ă ζ ă n, µ ă ζ ă n, λ � ζ and µ � ζ. We study some conditions
under which the existence of a ζ´factor associated with a given positive integer n
is guaranteed. Certain basic definitions and notions in number theory can be found
in [2]. In particular, we refer to the fundamental theorem of arithmetic and an evident
notation n “ pr11 p

r2
2 ¨ ¨ ¨ p

rk
k . Section three is devoted to our main computational results

about the structures of prime ideals of
?
ICn. Of particular importance, the most

effective result that targets the core structure of the system is in lemma 3.6. The
proof of lemma 3.6 is in the appendix. For the sake of clarity, in this paper, some of
the equations are given via expanded notations.

2. ζ´Factors

Suppose n is a positive integer and Divpnq :“ tk : k � n, k ‰ 1; k ă nu denotes the
set of all divisors of n except 1 and n. Also, let ppnq be the set of prime factors of
n. A pair λ,µ P Divpnq with n “ λµ (in which we discard 1 and n as divisors of n) is
called a split of n and is denoted by pλ,µqn. A split is pure if we further have λ ď µ
and we denote it by pλ ď µqn. For a pure split pλ ď µqn of n, if there exists a positive
integer ζ such that λ ă ζ ă n and µ ă ζ ă n where λ � ζ and µ � ζ, we say that the
triplet of integers pλ ď µ, ζqn is a ζ´factor of n.

Example 2.1. Let n “ 1000. The triplet pλ ď µ, ζqn “ p4 ď 250, 500q1000 is a
500´factor for 1000 while for λ “ 8 and µ “ 125, no ζ exists. As the reader observes,
λ does not have to divide µ as in p4 ď 250, 500q1000. As another example, consider
p4 ď 14, 28q56.

If for every pure split pλ ď µqn of n, no such ζ exists, then we say n does not admit
any ζ´factor. n “ 20 is an example. The problem of determining whether a given
positive integer n admits a ζ´factor seems to be a far-reaching one.

Example 2.2. The following table shows all possible integers n ď 45 with their
corresponding ζ´factors. Those integers n ď 45 that are not in the table do not
admit any ζ´factor.
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n pλ ď µ, ζqn n pλ ď µ, ζqn n pλ ď µ, ζqn
18 p3 ď 6, 12q18 24 p4 ď 6, 12q24 27 p3 ď 9, 18q27
32 p4 ď 8, 16q32 32 p4 ď 8, 24q32 36 p3 ď 12, 24q36
40 p4 ď 10, 20q40 45 p3 ď 15, 30q45

Lemma 2.3. For a given positive integer n, let pλ ď µqn be a pure split for n.
pλ ď µqn does not admit any ζ´factor if and only if ppnq “ A Y B where the union
is disjoint, ppλq “ A and ppµq “ B.

Proof. Let n “ pr11 p
r2
2 ¨ ¨ ¨ p

rk
k . Set A “ ppλq and B “ ppnqzA. Suppose pλ ď µqn

does not admit any ζ´factor. We shall show that B “ ppµq. For q P B, since q R A
we must have q P ppµq which implies B Ă ppµq. With no loss of generality we may
assume that ∅ ‰ F “ ppµqzB “ tfu. The general case where F might have more
than one element can be discussed similarly. Let 1 ď j0 ď k be the integer with
f “ pj0 . We may consider ppλq “ tp1, ¨ ¨ ¨ , pj0´1, fu and ppµq “ tf, pj0`1, ¨ ¨ ¨ , pku.
Since n “ λµ “ pr11 ¨ ¨ ¨ p

rj0´1

j0´1
¨ fαj0 ¨ fβj0 ¨ p

rj0`1

j0`1
¨ ¨ ¨ prkk for some integers αj0 , βj0 ě 1,

as a result, rj0 “ αj0 ` βj0 ě 2. With γj0 “ maxtαj0 , βj0u, now we define ζ “
pr11 ¨ ¨ ¨ p

rj0´1

j0´1
¨ fγj0 ¨ p

rj0`1

j0`1
¨ ¨ ¨ prkk ă n and evidently λ � ζ and µ � ζ. So, pλ ď µ, ζqn is

a ζ´factor for n. From these facts, a detailed proof can be set up.

Corollary 2.4. A positive integer in the form n “ p1 ¨ ¨ ¨ pk does not admit any
ζ´factor.

Example 2.5. To illustrate the construction in the proof of lemma 2.3, let n “
p1p2p

2
3 with p1 ă p2 ă p3. Then pp1p3 ď p2p3, p1p2p3qp1p2p23 is a ζ´factor. In this

situation, λ “ p1p3 and µ “ p2p3 where apparently A “ tp1, p3u and B “ tp2, p3u and
they are not disjoint.

The following is another applicable corollary of lemma 2.3.

Corollary 2.6. Let pλ ď µqn be a pure split of n. If pλ ď µ, ζqn is a ζ´factor of
n, then ppλq X ppµq ‰ ∅.

Remark 2.7. I planned to continue presenting more results in conjunction with the
combinatorics of the problem of determination of ζ´factors. Since the main theme
of this research is on certain structural properties of cyclic n´roots, they will be
postponed to another time.

3. Computing structures in cyclic n´roots

For fixed n ě 3, in various situations we will have combinations of a series of
assumptions among which: paq pλ ď µqn is a pure split for n pbq λ � µ and let κ “ n´λ
and so. Primitive µth roots of unity (generally denoted by ωµ) play important role in
the formation of the generators of the prime decomposition of

?
ICn. In this regard,

extensive computation with rigorous proofs was presented in [3,4]. In those proofs, the
given forms of the linear generators of a prime helped me to determine the dimension of
the prime. In this paper, we only deal with some structural computations in regard to
the positive-dimensional prime ideals of

?
ICn. Consider the following linear binomial

polynomials

(2) δj “ ωµXj ´Xλ`j, j “ 1, ¨ ¨ ¨ , κ.
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The generators of the prime ideals (of the minimal prime decomposition of
?
ICn)

in two main examples in this paper are given in different forms than (2). For these
examples, we will show that the form (2) can be derived. General arguments in this
regard are given in lemmas 3.11 and 3.13 where we will show that the equations
(2) constitute linear binomial generators in a prime ideal of higher dimension in the
minimal prime decomposition of

?
ICn. The notations B “ tδ1, ¨ ¨ ¨ , δκu and B “

Ipδ1, ¨ ¨ ¨ , δκq will be used interchangeably. Lemma 3.1 below shows the advantage of
the form (2), where we may simply convert it into a more convenient form (3) (i.e.; lex-
order Gröbner basis). The form (3) plays a central role in the rational parametrization
of the system as in lemma 2 in [3].

Lemma 3.1. For a given integer n ě 3, let pλ ď µqn be a pure split with κ “ n´λ.
Then

(3) rB “
 

δ̃tλ`j “ Xtλ`j ´ pωµq
t`1Xκ`j : j “ 1, ¨ ¨ ¨ , λ, t “ 0, 1, ¨ ¨ ¨ ,µ´ 2

(

is the reduced Gröbner basis of B “ Ipδ1, ¨ ¨ ¨ , δκq, where δr’s and Xs’s are related via
(2).

Proof. By considering the row-reduced echelon form of the coefficient matrix in the
equations (2), the result follows.

Example 3.2. Let n “ 16 “ 4 ˆ 4, λ “ 4, µ “ 4 and k̄ “ 16 ´ 4 “ 12. In this
case, with the form we introduced in [4], let ω4 “ i as a primitive 4th root of unity, a
set of generators of the ideal IC16 “ Ipρ1, ¨ ¨ ¨ , ρ13q is given by

ρi “ Xi ` iX4`i, i “ 1, ¨ ¨ ¨ , 4; ρi “ Xi´4 `X4`i, i “ 5, ¨ ¨ ¨ , 8;
ρi “ Xi´8 ´ iX4`i, i “ 9, ¨ ¨ ¨ , 12; ρ13 “ X1X2X3X4 ´ 1.

We may easily write

IC16 “ I

ˆ

iρ1, iρ2, iρ3, iρ4, ρ1 ´ ρ5, ρ2 ´ ρ6, ρ3 ´ ρ7, ρ4 ´ ρ8,
ipρ5 ´ ρ9q, ipρ6 ´ ρ10q, ipρ7 ´ ρ11q, ipρ8 ´ ρ12q, ρ13

˙

“ Ipδ1, ¨ ¨ ¨ , δ12, X13X14X15X16 ´ 1q

where ρ13 can be written as

ρ13 “ pρ9 `ω4X13qpρ10 `ω4X14qpρ11 `ω4X15qpρ12 `ω4X16q ´ 1
“ X13X14X15X16 ´ 1` Σ

and Σ is a combination of ρi’s. The reader should notice that δi’s in B “ Ipδ1, ¨ ¨ ¨ , δ12q
are in the form (2).

Example 3.3. For n “ 18 “ 3ˆ 6 where λ “ 3 and µ “ 6, the only two primitive

6th roots of unity are ω
p˘qp˘qp˘q

6 “ 1
2
˘ i

?
3
2

. Let ω “ 1
2
´ i

?
3
2

. The following generators for
IC18 “ Ipτ1, ¨ ¨ ¨ , τ16q can also be found in [4].

(4)
τi “ Xi ´ωXi`3, i “ 1, 2, 3; τi “ Xi´3 `ωXi`3, i “ 4, 5, 6;
τi “ Xi´6 `Xi`3, i “ 7, 8, 9; τi “ Xi´9 `ωXi`3, i “ 10, 11, 12;
τi “ Xi´12 ´ωXi`3, i “ 13, 14, 15; τ16 “ X1X2X3 ´ω
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where the bars denote complex conjugates. Thus, we may write the following

IC18 “ I

¨

˚

˚

˝

ωτ1,ωτ2,ωτ3,ωpτ1 ´ τ4q,ωpτ2 ´ τ5q,
ωpτ3 ´ τ6q, τ4 ´ τ7, τ5 ´ τ8, τ6 ´ τ9,
ωpτ7 ´ τ10q,ωpτ8 ´ τ11q,ωpτ9 ´ τ12q,

´ωpτ10 ´ τ13q,´ωpτ11 ´ τ14q,´ωpτ12 ´ τ15q, τ16

˛

‹

‹

‚

“ Ipδ1, ¨ ¨ ¨ , δ15, X16X17X18 `ωq

where δi’s are in the form of (2). From (4) we get the equations for τ13, τ14 and τ15.
After substitution of X1, X2 and X3 in τ16, it can be written as

τ16 “ pτ13 `ωX16qpτ14 `ωX17qpτ15 `ωX18q ´ω
“ ´pX16X17X18 `ωq ` Σ

and Σ is a combination of τi’s.

Remark 3.4. By lemma 3.1, based on a well-known property of Gröbner bases,

inp rBq “ inpBq. In particular, using lemma 3.1, inp rBq “ IpX1, ¨ ¨ ¨ , Xκq. In order to
get a basis for R

rB, it is inevitable to consider an identification of the form Xi Ñ rXis

where r¨s is the notation for the equivalence classes in R
rB. Using defining polynomials

of rB in (3) consider

(5) rXtλ`js “ pωµq
t`1
rXκ`js , j “ 1, ¨ ¨ ¨ , λ, t “ 0, 1, ¨ ¨ ¨ ,µ´ 2.

Example 3.5. In (5), let n “ 16 “ 4ˆ4 with λ “ 4 and µ “ 4. Thus, κ “ n´λ “
12. As the reader observes in [4], the linear part of IC16 can be considered as

rB “

$

&

%

X1 ´ iX13, X2 ´ iX14, X3 ´ iX15, X4 ´ iX16, X5 `X13,
X6 `X14, X7 `X15, X8 `X16, X9 ` iX13, X10 ` iX14,
X11 ` iX15, X12 ` iX16

,

.

-

.

The above set rB is the lex-order reduced Gröbner basis. In this example, the set of
equations in (5) turn into rX4t`js “ i

t`1 rX12`js , j “ 1, 2, 3, 4; t “ 0, 1, 2.

The long proof of the following is given in the appendix.

Lemma 3.6. For a given positive integer n ě 3, let pλ ď µqn be a pure split. For
0 ď t ď µ´ 1 and any positive integer j,

(6)
“

Xϕnpj`tλq

‰

“ pωµq
t
“

Xϕnpjq

‰

,

where Xr’s satisfy (2).

From this point to the end of the paper, the reader should notice that, due to the
complicated form of the expressions, compact notations for sums and products will
only be used in some parts of the context. By (1), for 1 ď i ď n and 1 ď j consider

(7) mpn,i,jq “

i
ź

l“1

Xϕnpj`l´1q “ XϕnpjqXϕnpj`1q ¨ ¨ ¨Xϕnpj`i´1q.

A simple lemma follows. It can be applied in example 3.9.

Lemma 3.7. For a given integer n ě 3 and 1 ď i ď n, 1 ď j; mpn,i,jq “ mpn,i,ϕnpjqq.
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Proof. Following the definition (7) we write

(8) mpn,i,ϕnpjqq “

i
ź

l“1

Xϕnpϕnpjq`l´1q “ XϕnpϕnpjqqXϕnpϕnpjq`1q ¨ ¨ ¨Xϕnpϕnpjq`i´1q.

Let j “ kn ` u where 0 ď u ă n and k is a non-negative integer. The proof follows
by considering two cases. Case 1: u “ 0. In this case, since ϕnpjq “ n, (8) becomes

mpn,i,ϕnpjqq “ mpn,i,nq “

i
ź

l“1

Xϕnpn`l´1q “ XϕnpnqXϕnpn`1q ¨ ¨ ¨Xϕnpn`i´1q

“ XϕnpknqXϕnpkn`1q ¨ ¨ ¨Xϕnpkn`i´1q “ mpn,i,jq.

Case 2: u ą 0. This implies ϕnpjq “ u and in turn

mpn,i,ϕnpjqq “ mpn,i,uq “

i
ź

l“1

Xϕnpu`l´1q “

i
ź

l“1

Xϕnpkn`u`l´1q “ mpn,i,jq.

Clearly, mpn,i,jq is a square-free monomial of total degree j starting with Xϕnpjq.

Example 3.8. Some instances of mpn,i,jq’s can be written as

mp4,3,3q “ Xϕ4p3qXϕ4p4qXϕ4p5q “ X3X4X1

mp9,7,6q “

12
ź

i“6

Xϕ9piq “ X6X7X8X9X1X2X3

mp16,8,8q “

15
ź

i“8

Xϕ16piq “ X8X9X10X11X12X13X14X15

mp18,8,12q “

8
ź

l“1

Xϕ18p12`l´1q “

19
ź

u“12

Xϕ18puq

“ Xϕ18p12qXϕ18p13qXϕ18p14qXϕ18p15qXϕ18p16q

ˆXϕ18p17qXϕ18p18qXϕ18p19q

“ X12X13X14X15X16X17X18X1.

In case where j ą n modular calculations must be performed. For 1 ď i ă n, Hi can
be written as

Hi “

n
ÿ

j“1

mpn,i,jq “ X1X2 ¨ ¨ ¨Xi `X2X3 ¨ ¨ ¨Xi`1 ` ¨ ¨ ¨ `XnX1 ¨ ¨ ¨Xi´1

and Hn “
1
n

řn
j“1mpn,n,jq ´ 1. Next let 1 ď i ă n, 1 ď j ď λ and

(9) αpn,j,iq “

µ´1
ÿ

l“0

mpn,i,j`λlq “ mpn,i,jq `mpn,i,j`λq ` ¨ ¨ ¨ `mpn,i,j`λpµ´1qq.

Also, let

(10) βpn,j,iq “

µ´1
ÿ

l“0

mpn,i,µj`lq “ mpn,i,µjq `mpn,i,µj`1q ` ¨ ¨ ¨ `mpn,i,µpj`1q´1q.
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Example 3.9. Let n “ 16 “ 4 ˆ 4, λ “ 4 and µ “ 4. To clarify the notations in
(9) and (10), the following can be written

βp16,1,3q “ mp16,3,4q `mp16,3,5q `mp16,3,6q `mp16,3,7q

“

3
ź

l“1

Xϕ16p3`lq `

3
ź

l“1

Xϕ16pl`4q `

3
ź

l“1

Xϕ16pl`5q `

3
ź

l“1

Xϕ16pl`6q

“ X4X5X6 `X5X6X7 `X6X7X8 `X7X8X9

βp16,2,3q “ mp16,3,8q `mp16,3,9q `mp16,3,10q `mp16,3,11q

“

3
ź

l“1

Xϕ16pl`7q `

3
ź

l“1

Xϕ16pl`8q `

3
ź

l“1

Xϕ16pl`9q `

3
ź

l“1

Xϕ16pl`10q

“ X8X9X10 `X9X10X11 `X10X11X12 `X11X12X13

βp16,3,3q “ mp16,3,12q `mp16,3,13q `mp16,3,14q `mp16,3,15q

“

3
ź

l“1

Xϕ16pl`11q `

3
ź

l“1

Xϕ16pl`12q `

3
ź

l“1

Xϕ16pl`13q `

3
ź

l“1

Xϕ16pl`14q

“ X12X13X14 `X13X14X15 `X14X15X16 `X15X16X17

βp16,4,3q “ mp16,3,16q `mp16,3,17q `mp16,3,18q `mp16,3,19q

“

3
ź

l“1

Xϕ16pl`15q `

3
ź

l“1

Xϕ16pl`16q `

3
ź

l“1

Xϕ16pl`17q `

3
ź

l“1

Xϕ16pl`18q

“ Xϕ16p16qXϕ16p17qXϕ16p18q `Xϕ16p17qXϕ16p18qXϕ16p19q`

Xϕ16p18qXϕ16p19qXϕ16p20q `Xϕ16p19qXϕ16p20qXϕ16p21q

“ X16X1X2 `X1X2X3 `X2X3X4 `X3X4X5.

Thus, H3 “ βp16,1,3q`βp16,2,3q`βp16,3,3q`βp16,4,3q. The same can be established for
αp16,1,3q,αp16,2,3q,αp16,3,3q and αp16,4,3q.

In the calculation of βp16,4,3q, we see the third indices in the items mp16,3,17q, mp16,3,18q
and mp16,3,19q are higher than n “ 16. In such cases, we may efficiently use lemma
3.7.

Lemma 3.10. For a given integer n ě 3, let pλ ď µqn be a pure split. Then

Hi “ αpn,1,iq ` ¨ ¨ ¨ ` αpn,λ,iq “ βpn,1,iq ` ¨ ¨ ¨ ` βpn,λ,iq

where 1 ď i ă n.

Proof. For α´sum

λ
ÿ

j“1

αpn,j,iq “

λ
ÿ

j“1

µ´1
ÿ

l“0

mpn,i,j`λlq “

µ´1
ÿ

l“0

pmpn,i,1`λlq ` ¨ ¨ ¨ `mpn,i,λ`λlqq

“ pmpn,i,1q ` ¨ ¨ ¨ `mpn,i,λqq ` pmpn,i,λ`1q ` ¨ ¨ ¨ `mpn,i,2λqq

` ¨ ¨ ¨ ` pmpn,i,1`λpµ´1qq ` ¨ ¨ ¨ `mpn,i,λµ´1qq

“ Hi.

Likewise, for β´sum

(11) βpn,`,iq “

µ´1
ÿ

t“0

mpn,i,`µ`tq; ` “ 1, ¨ ¨ ¨ , λ´ 1

The last row, after some modular calculations, can be written as

βpn,λ,iq “ mpn,i,nq `mpn,i,1q ` ¨ ¨ ¨ `mpn,i,µ´1q.
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This modified form with the rest of the equations in (11) gives the conclusion.

Lemma 3.11. For a given integer n ě 3, let pλ ď µqn be a pure split. If 1 ď i ă n
and 1 ď j ď λ, then in RB
paq

“

αpn,j,iq

‰

“ Ωµ
i ¨

“

mpn,i,jq

‰

where Ωµ
i “

řµ´1
s“0 pωµq

si.

pbq For positive integer q, let Γq,µ
j “

řµpj`1q´2
s“jµ´1 pωµq

qs.

Then
“

βpn,j,iq

‰

“ Γq,µ
j ¨

“

mpn,i,1q

‰

if and only if i “ qλ pi.e.; λ � iq.

pcq λ � i if and only if
“

βpn,j,iq

‰

“ r0s pi.e.; βpn,j,iq P Bq.

Proof. paq By lemma 3.6, for 0 ď t ď µ´ 1
“

mpn,i,j`tλq

‰

“
“

Xϕnpj`tλqXϕnpj`tλ`1q ¨ ¨ ¨Xϕnpj`tλ`i´1q

‰

“
“

Xϕnpj`tλq

‰

¨
“

Xϕnpj`tλ`1q

‰

¨ ¨ ¨
“

Xϕnpj`tλ`i´1q

‰

“
`

pωµq
t
“

Xϕnpjq

‰˘

¨
`

pωµq
t
“

Xϕnpj`1q

‰˘

¨ ¨ ¨
`

pωµq
t
“

Xϕnpj`i´1q

‰˘

“ pωµq
it ¨

“

XϕnpjqXϕnpj`1q ¨ ¨ ¨Xϕnpj`i´1q

‰

“ pωµq
it ¨

“

mpn,i,jq

‰

.

Therefore,
“

αpn,j,iq

‰

“
“

mpn,i,jq

‰

`
“

mpn,i,j`λq

‰

` ¨ ¨ ¨ `
“

mpn,i,j`λpµ´1qq

‰

“
“

mpn,i,jq

‰

` pωµq
i ¨
“

mpn,i,jq

‰

` ¨ ¨ ¨ ` pωµq
pµ´1qi ¨

“

mpn,i,jq

‰

“ p1` pωµq
i ` ¨ ¨ ¨ ` pωµq

pµ´1qiq ¨
“

mpn,i,jq

‰

“ Ωµ
i ¨

“

mpn,i,jq

‰

.

pbq Set i “ λq` t where t is a non-negative integer and t ă λ. In this case, 1 ď l ă n,
as a backward recurrence relation for mpn,i,l`1q and by lemma 3.6 consider

“

mpn,i,l`1q

‰

“
“

Xϕnpl`1qXϕnpl`2q ¨ ¨ ¨Xϕnpl`i´1qXϕnpl`λq`tq

‰

“
“

Xϕnpl`1qXϕnpl`2q ¨ ¨ ¨Xϕnpl`i´1q

‰

¨
“

Xϕnpl`λq`tq

‰

“
“

Xϕnpl`1qXϕnpl`2q ¨ ¨ ¨Xϕnpl`i´1q

‰

¨
`

pωµq
q
“

Xϕnpl`tq

‰˘

.

The last equality can be written in terms of mpn,i,lq if and only if t “ 0. Thus,
“

mpn,i,l`1q

‰

“ pωµq
q ¨

“

mpn,i,lq

‰

if and only if λ � i. Then for 1 ď j ď λ,
“

βpn,j,iq

‰

can
be written as

“

βpn,j,iq

‰

“
“

mpn,i,jµq

‰

`
“

mpn,i,jµ`1q

‰

` ¨ ¨ ¨ `
“

mpn,i,µpj`1q´1q

‰

“ ppωµq
pjµ´1qq ` pωµq

jµq ` ¨ ¨ ¨ ` pωµq
qpµpj`1q´2qq ¨

“

mpn,i,1q

‰

“ Γq,µ
j ¨

“

mpn,i,1q

‰

if and only if λ � i.
pcq If i “ qλ, then pbq implies that

“

βpn,j,iq

‰

“ Γq,µ
j ¨

“

mpn,i,1q

‰

. On the other hand,

(12) pωµq
q
¨ Γq,µ

j “ Γq,µ
j ´ pωµq

qpµj´1q
` pωµq

qpµpj`1q´1q.

Since in (12),

´pωµq
qpµj´1q ` pωµq

qpµpj`1q´1q “ ´pωµq
qµj ¨ pωµq

´q ` pωµq
qµpj`1q ¨ pωµq

´q

“ 0,

therefore pωµq
q ¨ Γq,µ

j “ Γq,µ
j . Thus, λq “ i ă n “ λµ implies q ă µ and in turn

Γq,µ
j “ 0. Therefore,

“

βpn,j,iq

‰

“ r0s. For the other side, suppose λ ffl i. By (10), for
1 ď j ď λ, βpn,j,iq is a sum of the following square-free monomials of total degree i

(13) mpn,i,µj`lq, 0 ď l ď µ´ 1.

All the i variables (all of degree one) in each of the monomials in (13), have been ar-
ranged with successive indices (mod n based on ϕn in (1)). Now considering

“

βpn,j,iq

‰
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in R
rB, where all of its terms are written as a combination of monomials not in inp rBq.

For 0 ď l ď µ´1, since λ ffl i each
“

mpn,i,µj`lq

‰

contains different pattern of exponents
for each element in the list rXκ`1s , ¨ ¨ ¨ , rXns. It means no cancellation occurs. Thus,
“

βpn,j,iq

‰

‰ r0s .

Example 3.12. In this example, we repeatedly use the form of the generators
in (2) and the forms in example 3.2. To simulate parts paq and pbq of lemma 3.11,
calculations in RB̃ show

“

βp16,1,4q
‰

“

«

3
ÿ

l“0

mp16,4,4`lq

ff

“
“

mp16,4,4q `mp16,4,5q `mp16,4,6q `mp16,4,7q
‰

“ rX4s rX5s rX6s rX7s ` rX5s rX6s rX7s rX8s

` rX6s rX7s rX8s rX9s ` rX7s rX8s rX9s rX10s

“ pi3 ¨ rX4s rX1s rX2s rX3sq ` pi
4 ¨ rX1s rX2s rX3s rX4sq`

pi5 ¨ rX2s rX3s rX4s rX1sq ` pi
6 ¨ rX1s rX2s rX3s rX4sq

“ pi3 ` i4 ` i5 ` i6q ¨ rX1s rX2s rX3s rX4s

“ Γ1,4
1 ¨

“

mp16,4,1q
‰

“ r0s

where i “ ω4.
To see the functionality of the proof of lemma 3.11 (in case where λ ffl i), with

almost the same strategy of calculations as above, it is not hard to see that

“

βp16,1,3q
‰

“

«

3
ÿ

l“0

mp16,3,4`lq

ff

“ rX4s rX5s rX6s ` rX5s rX6s rX7s ` rX6s rX7s rX8s

` rX7s rX8s rX9s

“ i
7
rX13s rX14s rX16s ` i

6
rX13s rX14s rX15s

`i
6
rX14s rX15s rX16s ` i

5
rX13s rX15s rX16s

“ i prX13s rX14s rX16s ´ rX13s rX15s rX16sq

´ prX13s rX14s rX15s ` rX14s rX15s rX16sq

where the reader can easily see that no cancellation occurs. For various examples of
αp16,¨,¨q’s consider the following table.

i j rαp16,j,iqs Ω4
i

2 1 Ω4
2 ¨

“

mp16,2,1q
‰

“ r0s 1` i2 ` i4 ` i6

4 1 Ω4
4 ¨

“

mp16,4,1q
‰

“ 4
“

mp16,4,1q
‰

1` i4 ` i8 ` i12

5 1 Ω4
5 ¨

“

mp16,5,1q
‰

“ r0s 1` i5 ` i10 ` i15

2 2 Ω4
2 ¨

“

mp16,2,2q
‰

“ r0s 1` i2 ` i4 ` i6

4 2 Ω4
4 ¨

“

mp16,4,2q
‰

“ 4
“

mp16,4,2q
‰

1` i4 ` i8 ` i12

Lemma 3.13. For a given integer n ě 3, let pλ ď µqn be a pure split. If 1 ă i ă n
and 1 ď j ď λ, then in RB
paq µ ffl i if and only if

“

αpn,j,iq

‰

“ r0s.

pbq If µ � i and λ � µ, then
“

βpn,j,iq

‰

“ r0s. In other words, if pλ ď µ, iqn is a

ζ´factor associated with n, then
“

βpn,j,iq

‰

“ r0s.

pcq If µ � i and
“

βpn,j,iq

‰

“ r0s, then ppλq X ppµq ‰ ∅.
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Proof. paq By lemma 3.11 paq, pωµq
i ¨Ωµ

i “ pωµq
i`¨ ¨ ¨`pωµq

µi “ Ωµ
i ´1`pωµq

µi “

Ωµ
i since ωµ is a primitive µth root of unity. And this implies Ωµ

i ¨ p1 ´ pωµq
iq “ 0.

Now 1 ´ pωµq
i ‰ 0 if and only if µ ffl i. In other words, Ωµ

i “ 0 if and only if µ ffl i.
By lemma 3.11 paq this is equivalent to say

“

αpn,j,iq

‰

“ r0s if and only if µ ffl i.
pbq Suppose µ � i and λ � µ. Then λ � i and lemma 3.11 pcq give the result.
pcq With µ � i,

“

βpn,j,iq

‰

“ r0s and lemma 3.11 pcq at hand, consider corollary 2.6.

Remark 3.14. Again we assume that n is an integer with n ě 3 and let pλ ď µqn
be a pure split for n where λ � µ. With the aid of lemma 3.1, lemma 3.10 and lemma
3.13 paq, pbq, rHis “ 0 for i “ 1, ¨ ¨ ¨ , n ´ 1, can be concluded. Here, κ “ n ´ λ and

the factors of rHns (in rB) can be considered as follow

rHns “

«

n
ź

i“1

Xi ´ 1

ff

“

«

µ´2
ź

j“0

pXλj`1 ¨ ¨ ¨Xλj`λq

ff

¨ rXκ`1 ¨ ¨ ¨Xns ´ 1

“

«

µ´2
ź

j“0

´

pωµq
λpj`1q

¨Xκ`1 ¨ ¨ ¨Xn

¯

ff

¨ rXκ`1 ¨ ¨ ¨Xns ´ 1

“

µ´2
ź

j“0

´

pωµq
λpj`1q

¯

¨ rXκ`1 ¨ ¨ ¨Xns
µ
´ 1

“ pωµq
µ

λpµ´1q
2 ¨ rXκ`1 ¨ ¨ ¨Xns

µ
´ 1

“ prXκ`1s ¨ ¨ ¨ rXnsq
µ
´ 1 “ rF1s ¨ ¨ ¨ rFµs

where Fk “ Xκ`1 ¨ ¨ ¨Xn ´ω
k´1
µ , k “ 1, ¨ ¨ ¨ ,µ. Let’s consider one of these factors say

F1 “ Xκ`1 ¨ ¨ ¨Xn ´ 1. By defining an ideal J “ Ip rB, F1q, the above discussion shows
that ICn Ă J . As in lemma 3 in [3], one may prove that J is a prime ideal. In that
theorem, a rational parametrization of the underlying ideal has been used. In this
case, the parametrization shows that dimpJq “ λ´ 1. Thus, it is an associated prime
of
?
ICn of positive dimension.

4. Conclusions

In this article, we mainly verified that the binomial polynomials in (2) satisfy the
equations of the system if some conditions on n are satisfied. This is our so-called
vanishing process. In remark 3.14 we considered the case where λ � µ and we presented
the proof of rHns “ 0, and this completes the proofs of the vanishing process for all
defining polynomials of the system. Besides remark 3.14, the other parts of the proofs
go through the following path. For a given 1 ă i ă n, lemma 3.13 paq gives the result
in the case where µ ffl i (even if λ ffl µ). Lemma 3.13 pbq gives the result in the case
where µ � i and λ � µ (in which pλ ď µ, iqn is a ζ´factor associated with n). If µ � i
but λ ffl µ, then the proofs of the same results are still unknown to me. We anticipate
that the concept of ζ´factors plays an important role in the future of this research.

5. Appendix

Proof. (Lemma 3.6) Set j “ ξn ` r where 0 ď r ă n and ξ is a positive integer.
Also, let r “ ηλ` s, where 0 ď s ă λ and η is another positive integer.
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Claim 1: 0 ď η ď µ´ 1. Suppose not and η ě µ. In this case

n ą r “ s` ηλ ě λµ` s ą n` s,

a contradiction. Also, j ` tλ “ ξn` pη` tqλ` s which evidently implies

(14) ϕnpj ` tλq “ ϕnpξn` pη` tqλ` sq “ ϕnppη` tqλ` sq.

(6) is trivially hold for t “ 0. Consider t ą 0.
Case piq : pr “ 0q

In this case, j ` tλ “ ξn` tλ
“

Xϕnpj`tλq

‰

“ rXtλs “
“

Xpt´1qλ`λ
‰

“ pωµq
t rXκ`λs p use (5) with η “ t´ 1 and j “ λq

“ pωµq
t rXns p since κ` λ “ nq

“ pωµq
t
“

Xϕnpjq

‰

where with r “ 0 and j “ ξn, ϕnpjq “ n.
Case piiq : pr ą 0q In this case, since by Claim 1 , 0 ď η ď µ´ 1, then

s ă tλ` s ď pη` tqλ` s ď pµ´ 1` tqλ` s “ n` pt´ 1qλ` s.

On the other hand, by the condition given in the statement of the lemma, 0 ď t´1 ď
µ´ 2 then pt´ 1qλ` s ď λpµ´ 2q` s “ λµ´ 2λ` s ă n´λ “ κ ă n psince n “ λµq.
pii´ 1q : pη` tqλ` s “ n` pt´ 1qλ` s

After simplifying the above condition one gets pη` 1qλ “ n and in turn by (14)

ϕnpj ` tλq “ ϕnppη` tqλ` sq “ ϕnppη` 1qλ` pt´ 1qλ` sq
“ ϕnpn` pt´ 1qλ` sq “ ϕnppt´ 1qλ` sq.

Thus,
“

Xϕnpj`tλq

‰

“
“

Xpt´1qλ`s
‰

“ pωµq
pt´1q`1 rXκ`ss . Since pη ` tqλ “ n ` pt ´ 1qλ,

then ηλ “ n´ λ “ κ. Hence,
“

Xϕnpj`tλq

‰

“ pωµq
t rXκ`ss “ pωµq

t rXηλ`ss “ pωµq
t rXrs “ pωµq

t
“

Xϕnpjq

‰

.

pii´ 2q : pη` tqλ` s “ n

The condition implies pµ´ η´ tqλ “ s ă λ which means s “ 0 or µ “ η` t. Now
“

Xϕnpj`tλq

‰

“
“

Xpη`tqλ`s
‰

“ rXns “ rXκ`λs

“ pωµq
´η

“

Xpη´1qλ`λ
‰

“ pωµq
t´µ rXηλs “ pωµq

t´µ rXrs

“ pωµq
t
“

Xϕnpjq

‰

since pωµq
´µ “ ppωµq

µq´1 “ 1.
pii´ 3q : pη` tqλ` s ă n

In this case, since pη` tqλ` s ă λµ, then η` t ď µ´ 1.
paq If η` t “ µ´ 1, then

“

Xϕnpj`tλq

‰

“
“

Xpη`tqλ`s
‰

“
“

Xpµ´1qλ`s
‰

“ rXκ`ss “ pωµq
´η´1 rXηλ`ss

“ pωµq
t´µ rXrs “ pωµq

t
“

Xϕnpjq

‰

.

pbq If η` t ď µ´ 2, then
“

Xϕnpj`tλq

‰

“
“

Xpη`tqλ`s
‰

“ pωµq
η`t`1 rXκ`ss “ pωµq

t ¨ pωµq
η`1 rXκ`ss

“ pωµq
t ¨ rXηλ`ss “ pωµq

t
“

Xϕnpjq

‰

.

pii´ 4q : n ă pη` tqλ` s ă n` pt´ 1qλ` s
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This case also will be treated similarly. There is an s1 with, 0 ď s1 ă λ, a positive
integer ψ such that pη` tqλ` s “ λµ` ψλ` s1. Notice the above implies s “ s1 and
η` t “ ψ ` µ. Now

“

Xϕnpj`tλq

‰

“
“

Xϕnppη`tqλ`sq

‰

“ rXψλ`ss “ pωµq
ψ`1 rXκ`ss

“ pωµq
t ¨ pωµq

η`1 rXκ`ss “ pωµq
t rXηλ`ss “ pωµq

t rXrs

“ pωµq
t
“

Xϕnpjq

‰

.
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