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ON (—FACTORS AND COMPUTING STRUCTURES IN CYCLIC
n—ROOTS

ROSTAM SABETI

ABSTRACT. In this paper, we introduce a new concept in number theory called
(—factors associated with a positive integer n. Applications of (—factors are in the
arrangement of the defining polynomials in cyclic n—roots algebraic system and are
thoroughly investigated. More precisely, (—factors arise in the proofs of vanishing
theorems in regard to associated prime factors of the system. Exact computations
through concrete examples of positive dimensions for n = 16, 18 support the results.

1. Introduction

This research addresses a solid relationship between a novel concept in number
theory and a structural arrangement of the indices in the defining polynomials of
cyclic n—roots algebraic system. Let n be a positive integer and 7 = 0,1,--- ,;n —1
and [j] be the set of positive integers whose remainder on division by n is j. For
1 € N, an important integer-valued function is defined by

L (if ieljl, =1, ,n—1,
(1) (1) = { n  otherwise. J

Let R = C[Xy, -+, X,] be the ring of polynomials of n variables Xj,--- , X, with
complex coefficients. Generally, for fi,---, fx € R, I = I(f1, -, fr) denotes the
ideal generated by f;’s in R and R/I = Rj is the associated residue class ring. R;
has a structure of vector space over C. To get a precise definition of the members
of Ry, we need to fix a monomial order > on R, say lexicographic order (i.e.; lex-
order) with X; > Xy > --- > X,,. The set of all monomials in the representation of
a polynomial f € R is called the support of f. The lex-order largest monomial in the
support of f is called the initial of f or in(f). For an ideal I < R, the initial ideal is
in(I) :== I({in(f) : fel}). See [1] on page 32. If G(I) is the reduced Grébner basis
of I, then every polynomial f € R has a unique remainder f on division by G(I).
The reader is referred to [1] for an excellent introduction about Grébner bases. For
f,g € R, let’s define an equivalence relation ~ on R by f ~ ¢ if and only if f — g =0
(equivalently f — g € I). Now we define R; by Ry = {[f] : f € R} where [f] is the
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equivalence class corresponding to f. Since in(I) = in(G([)), then evidently all the
monomials that are not in in(G(I)) form a basis for R;. Now suppose n = 3. We
define n polynomials h; € R (1 <i < n) by

n

j+i—1
hi=> T Xeutw: (X1,++,X,) eC™
k=j

J=1

Cyclic n—roots is the solution set of the system of polynomial equations hy = 0,--- , h, 1
=0, h,, = n. A simplified notation as H; = h;, fort =1,--- ,n—1 with H,, = %hn -1
will be used. Let IC, = I(Hy,--- , H,) be the ideal generated by the defining poly-
nomials Hy,--- , H, of cyclic n—roots. For a detailed history about cyclic n—roots
and applications see [3,4] and references therein. In section 2, we introduce {—factors
associated with a given positive integer n. In reality, the size of our algebraic system
n is decomposed as a product of two of its divisors A and p. Intuitively speaking,
a (—factor can be referred to a triplet (A, u, ¢), where ( is another positive integer
such that A < (. < n, u < C <n, A | Cand n | ¢. We study some conditions
under which the existence of a (—factor associated with a given positive integer n
is guaranteed. Certain basic definitions and notions in number theory can be found
in [2]. In particular, we refer to the fundamental theorem of arithmetic and an evident
notation n = pi'py? - - pi¥. Section three is devoted to our main computational results
about the structures of prime ideals of /IC,,. Of particular importance, the most
effective result that targets the core structure of the system is in lemma 3.6. The
proof of lemma 3.6 is in the appendix. For the sake of clarity, in this paper, some of
the equations are given via expanded notations.

2. (—Factors

Suppose n is a positive integer and Div(n) := {k: k | n,k # 1;k < n} denotes the
set of all divisors of n except 1 and n. Also, let p(n) be the set of prime factors of
n. A pair A, p € Div(n) with n = Ap (in which we discard 1 and n as divisors of n) is
called a split of n and is denoted by (A, ),. A split is pure if we further have A < p
and we denote it by (A < p),. For a pure split (A < w),, of n, if there exists a positive
integer ¢ such that A < { <n and u < { <n where A | C and p | ¢, we say that the
triplet of integers (A < W, Q),, is a {—factor of n.

EXAMPLE 2.1. Let n = 1000. The triplet (A < u, (), = (4 < 250,500)1000 is a
500—factor for 1000 while for A = 8 and u = 125, no ( exists. As the reader observes,

A does not have to divide p as in (4 < 250,500)1000. As another example, consider
(4 < 14, 28)56.

If for every pure split (A < n),, of n, no such ( exists, then we say n does not admit
any (—factor. n = 20 is an example. The problem of determining whether a given
positive integer n admits a (—factor seems to be a far-reaching one.

ExaMPLE 2.2. The following table shows all possible integers n < 45 with their
corresponding (—factors. Those integers n < 45 that are not in the table do not
admit any (—factor.
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[n] A< On [n] A< Qn [n] A<, On |
18] (3<6,12)15 [[24] (4<6,12)9 [[27] (3<9,18)y7
32| (4<8,16)3 |[32] (4<8,24)3, |36 (3 <12,24)3
40 | (4 <10,20)49 |[ 45 | (3 < 15,30)45

LEMMA 2.3. For a given positive integer n, let (A < W), be a pure split for n.
(A < W), does not admit any (—factor if and only if p(n) = A U B where the union
is disjoint, p(A) = A and p(n) = B.

Proof. Let n = pi'py?---pi*. Set A = p(A) and B = p(n)\A. Suppose (A < n),
does not admit any (—factor. We shall show that B = p(n). For ¢ € B, since ¢ ¢ A
we must have ¢ € p(p) which implies B < p(n). With no loss of generality we may
assume that & # F = p(u)\B = {f}. The general case where F' might have more
than one element can be discussed similarly. Let 1 < jo < k be the integer with
f = pj- We may consider p(A) = {p1,-- ,pjo-1, f} and p(w) = {f,pjos1," - Pa}-
Since n = Ap = pi' - -p;f)o_‘ll - f%o - fBio -p;;(ff - pF for some integers oy, f;, = 1,

as a result, rj, = a4, + B, = 2. With v;, = max{a;,, )}, now we define { =
P .p;éo_*f . fio .p%(j: - pf < nand evidently A | Cand p | ¢. So, (A < u, (), is
a (—factor for n. From these facts, a detailed proof can be set up. O

COROLLARY 2.4. A positive integer in the form n = p; - - py does not admit any
(—Tfactor.

ExAMPLE 2.5. To illustrate the construction in the proof of lemma 2.3, let n =
p1peps with p; < py < p3. Then (pips < pgpg,plpgpg)plpng is a (—factor. In this
situation, A = p;p3 and n = pops where apparently A = {p;, ps} and B = {ps, p3} and
they are not disjoint.

The following is another applicable corollary of lemma 2.3.

COROLLARY 2.6. Let (A < W), be a pure split of n. If (A < w, (), is a (—factor of
n, then p(A) Nnp(u) # @.

REMARK 2.7. I planned to continue presenting more results in conjunction with the
combinatorics of the problem of determination of (—factors. Since the main theme
of this research is on certain structural properties of cyclic n—roots, they will be
postponed to another time.

3. Computing structures in cyclic n—roots

For fixed n > 3, in various situations we will have combinations of a series of
assumptions among which: (a) (A < w), is a pure split for n (b) A | pand let K = n—A
and so. Primitive p'* roots of unity (generally denoted by w,,) play important role in
the formation of the generators of the prime decomposition of \/IC),. In this regard,
extensive computation with rigorous proofs was presented in [3,4]. In those proofs, the
given forms of the linear generators of a prime helped me to determine the dimension of
the prime. In this paper, we only deal with some structural computations in regard to
the positive-dimensional prime ideals of /1C,,. Consider the following linear binomial
polynomials

(2) 6] = (,Uqu —X)\Jrj, j = 1, cee ,E.
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The generators of the prime ideals (of the minimal prime decomposition of /1C),)
in two main examples in this paper are given in different forms than (2). For these
examples, we will show that the form (2) can be derived. General arguments in this
regard are given in lemmas 3.11 and 3.13 where we will show that the equations
(2) constitute linear binomial generators in a prime ideal of higher dimension in the
minimal prime decomposition of y/IC,,. The notations B = {&;, -+ ,0z} and B =
I(81,- - ,0%) will be used interchangeably. Lemma 3.1 below shows the advantage of
the form (2), where we may simply convert it into a more convenient form (3) (i.e.; lex-
order Grobner basis). The form (3) plays a central role in the rational parametrization
of the system as in lemma 2 in [3].

LEMMA 3.1. For a given integer n = 3, let (A < W), be a pure split with K = n —A.
Then

(3) B ={ 8nuj=Xonwj— (W) Xyt j=1, A t=01,- p-2}

is the reduced Grébner basis of B = I(81,- - ,8%), where §,’s and X’s are related via

(2).

Proof. By considering the row-reduced echelon form of the coefficient matrix in the
equations (2), the result follows. O

EXAMPLE 32. Let n = 16 =4 x4, A\ =4, p = 4 and k = 16 — 4 = 12. In this
case, with the form we introduced in [4], let w, = 4 as a primitive 4" root of unity, a

set of generators of the ideal 1€ = I(py,--- , py3) is given by
Pi =X+ Xy, =1, 4 Pi = Xi—a + Xypi, ©1=0,---.,8;
Pi = Xig —t Xy, 0=9,---,12; P13 = X1 Xo X3 Xy — 1.

We may easily write

_ ?pla ip?a ip3'7 ip47 P1— p57 P2 — Ps, p3 — P7, P4 — Ps,
’L(P5 - 99), ’L(Pﬁ - p10)7 @(97 - 911)»’&(08 - 012), P13
= I(51, -, 012, X13X14 X15X16 — 1)

IC1s

where pi3 can be written as

P13 = (po + wiX13)(p1o + waX14)(P11 + WsXi5) (P12 + WaXi6) — 1
= X3 XuXi5X6—1+X%

and ¥ is a combination of p;’s. The reader should notice that §;’sin B = I(81,--- ,d12)
are in the form (2).

EXAMPLE 3.3. For n = 18 = 3 x 6 where A = 3 and pu = 6, the only two primitive

6" roots of unity are wﬁf) = % + Z\/Tg Let w = % — ,L\/Tg The following generators for
1€ = [(1y, - ,Ti6) can also be found in [4].

T =X, — in+37 1=1,2,3; T = Xi3 +in+37 i =4,5,6;
(4) T, = Xi,(; + Xi+3, 1= 7, 8, 9, T, = Xi,Q + in+37 1= 10, 11, 12,

T = Xi12 — WXjp3, ©=13,14,15; Tig = X1 Xo X3 —w
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where the bars denote complex conjugates. Thus, we may write the following

WTy, WTs, WT3, W(T; — Ty), W (T2 — Ts),
w(T3 — T6), T4 — T7, T5 — T, Tg — Ty,
W(T7 — Tig), W(Ts — T11), D(Tg — T12),
—w(Tlo - T13), —W(Tn - T14), —W(le - T15), T16
= I(81, -, 015, X16X17X15 + W)

Gt — ]

where §;’s are in the form of (2). From (4) we get the equations for Ty3, T4 and Tys5.
After substitution of X, X5 and X3 in Ty, it can be written as

Tig = (Tlg + wX16)(T14 + wX17)(T15 + leg) —
= (X XirXis+w) + X

and X is a combination of T;’s.

REMARK 3.4. By lemma 3.1, based on a well-known property of Grébner bases,

~ ~

in(B) = in(B). In particular, using lemma 3.1, in(B) = I(Xy, -+, X%). In order to
get a basis for Ry, it is inevitable to consider an identification of the form X; — [X;]
where [-] is the notation for the equivalence classes in Rgz. Using defining polynomials

of B in (3) consider
(5) [Xt7\+j] = (w}i)tJrl [Xf+j]7 ] = 17 7A7 t20717 JP'_Q

EXAMPLE 3.5. In (5),let n =16 =4 x4 with A =4 and p =4. Thus, K=n—A =
12. As the reader observes in [4], the linear part of I€16 can be considered as

N X1 —1Xy3, Xo — e Xg, X3 —1X35, Xy — 1X46, X5 + X3,
B = Xo + X, X7+ Xy, Xg + Xig, Xo +1X3, Xig + 2.X14,
X1+t X5, Xig +2.X56

The above set B is the lex-order reduced Grobner basis. In this example, the set of
equations in (5) turn into [Xye ;] = ¢ [X1a44], 7=1,2,3,4; t=0,1,2.

The long proof of the following is given in the appendix.

LEMMA 3.6. For a given positive integer n = 3, let (A < W),, be a pure split. For
0 <t < u—1 and any positive integer 7,

(6) [X(pn(j-i-t?\)] = (wy)' [ann(j)] ’
where X,.’s satisty (2).

From this point to the end of the paper, the reader should notice that, due to the
complicated form of the expressions, compact notations for sums and products will
only be used in some parts of the context. By (1), for 1 <i <n and 1 < j consider

(7) Mnig) = | [ XonG+1-1) = Xou) XonG+1) * Xon(i4iz1)-
=1

A simple lemma follows. It can be applied in example 3.9.

LEMMA 3.7. For a given integern > 3 and1 <t <n,1 < J; M ) = Mn,i,0nG))-
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Proof. Following the definition (7) we write

(8) Mmion) = | [ Xeon@nit1) = Xonton) Xon@n()+1) - Xon(on()+i-1):
=1

Let 5 = kn + u where 0 < u < n and k is a non-negative integer. The proof follows
by considering two cases. Case 1: u = 0. In this case, since @,(j) = n, (8) becomes

Mnispn@) = Mmim) = | | Xontmriot) = Xowm Xonmns1) - Xon(nsiz1)
=1

= Xontkn) Xon(knt1) X, (knti-1) = M(n,i,5)-

Case 2: u > 0. This implies @,(j) = u and in turn

=1 =1

Clearly, m, ;) is a square-free monomial of total degree j starting with X, ;).

EXAMPLE 3.8. Some instances of m,_; j)’s can be written as

M(433) = 952@4<3>X@4(4)X<p4(5> = X3X4 Xy

Mg,7,6) = HX(pg(i) = Xe X7 Xg Xo X1 X5X3
11:56

M(16,8,8) = HX(pm(i) = XgXogX10X11 X12X13X14 X715
i=8

8 19
massi2 = | [ Xewazrn = | | Xoww
=1

u=12
= Xo15(12)X15(13) X015 (14) X 015(15) X 15(16)

X X(P18(17)X(918(18)X<918(19)
= X12X13X14X15X16X17X18X1'

In case where j > n modular calculations must be performed. For 1 < i <n, H; can
be written as

H; = Em(n,i,j) = X1 Xo - Xi+ Xo Xy Xy + -+ X X - X
=1

and H,, = %Z?Zl M(n,n,) — 1. Next let 1 <i<n,1<j<Aand

p—1
(9) K(ngsi) = D, Mg M) = Mmsing) + Mg i2) T+ + Mg 1A-1))-
=0
Also, let
p—1
(10) Blngi) = D Mg 1) = Mmsig) + Mg +1) + ** + Miniou(i+1)-1)-

=0
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EXAMPLE 3.9. Let n =16 =4 x 4, A = 4 and p = 4. To clarify the notations in
(9) and (10), the following can be written

B(16,1,3) = m(16 3,4) + M1, 3 ,5) T M(16,3,6) + M(16,3,7)

3
— HX<P16 @B+ T Hwa I+4) T HXq)lg I+5) HX@M(HG)

=1
= X4X5X6 + X5X6X7 + X6X7X8 + X7 XgXg

ﬁ(16,2,3) = My16,3,8) + M(16,3,9) T M(16,3,10) T M(16,3,11)
3 3 3 3
= HX@M; I+7) + HX(P16 1+8) + HX(PIG(l-‘rg + 1_[ X(p16(l+10)
=1
X8X9X10 + X9X10X11 + X10X11X12 + X1 X12X53
Be,33 = m(16 3,12) T M1, 3 ,13) T M(16,3 14) + M(16,3,15)

= HX@w (1+11) T H Xos(14+12) T HX‘P16 (1+13) T H Xor6(1414)
= X12X13X14 + X13X14X15 + X14X15X16 + X15X16X17

Baea3 = m(16 3,16) T M(1e, 3 ,17) T M16,3 18) + M(16,3,19)
3

= HX(p16 1+15) + HX‘PIG 1+16) + HX<p16 14+17) 1_[ ©16(1+18)

= X¢16<16>X@16<17>X<p16<18>+X@16<17>X<916<18>X 6(19 )+

Xp16(18) X 916(19) X @16(20) T X(P16(19)X(916(20)X(916( 21)
= X16X1X2 + X1X2X3 + X2X3X4 + X3X4X5

Thus, Hs = B(16,1,3) + B(16,2,3) T P(16,3,3) T P(16,4,3)- The same can be established for
X(16,1,3); ©%(16,2,3), X(16,3,3) and X(16,4,3)-

In the calculation of [3(16,4,3), we see the third indices in the items m16,3,17), M(16,3,18)
and m16,3,19) are higher than n = 16. In such cases, we may efficiently use lemma
3.7.

LEMMA 3.10. For a given integer n = 3, let (A < u),, be a pure split. Then
H' = (X(n,l,i) + -+ “(n,?\,i) = B(n,l,i) + -+ B(n,?\,i)
where 1 <i < n.

Proof. For a—sum

A A op—1 u—1
Jj=1 j=11=0 1=0
= (m(n,i,l) + ..+ m(n,i,}\)) + (m(n,i,A+1) + ..+ m(n,i,2}\))
+o (Mg 1ea@-1) + 0 + Mmjiau-1)
Likewise, for —sum
(11) B (n,e,5) Zm(mewt), =1, A1

The last row, after some modular calculatlons, can be written as

f’(n,?\,i) = M(n,i,n) + M(n,i,1) + -+ M(n,i,u—1)-
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This modified form with the rest of the equations in (11) gives the conclusion.
O

LEMMA 3.11. For a given integer n > 3, let (A < W), be a pure split. If 1 <i <mn
and 1 < j <A, then in Rg
(@) [Xmga] = Q- [meyi,5] where @ = Zs o(wu) -
(b)  For positive integer g, let T¢* ZS(];}? (W),
Then [B n,m)] o [m(n,,,l)] if and only if 1 =g\ (i.e; N |1).
(¢) A | if and only if [B(n,j,i)] = [0] (i.e;; Bn,js € B)-
Proof. (a) By lemma 3.6, for 0 <t <p—1

[m(n,i,j-i-t?\)] = X (]+t7\)X n(G+tA+1) * X(pn(j+t)\+z'—1)]

= X (+tk)] [Xw(3+t7\+1)][“'[Xcon(j+t>\+i1)]
= ((wy)’ [X ]) : ((wu)t tin(jﬂ)]) o (<wu)t, [X@n(jﬂel)])
= (W)" [Xou(nXonu(ir1) - XonGirion] = (W) [Me5)] -
Therefore,
[Xnjiy] = [m(n,i,j>]+[m<n,¢,j+h)]+'“+[mm,i,m(u 1))]
= [M(n,i) +(wu)“[m(n,i,j>1li+-‘~+(w B T

(14 (W) + -+ (W) * ) - [ ] = Q- [Mig ] -
(b) Set © = Aq + t where ¢ is a non-negative integer and ¢ < A. In thls case, 1 <[ < n,
as a backward recurrence relation for m, ;1) and by lemma 3.6 consider

[m(n,i,l+1)] = chn(l+1)chn(l+2) e ’X@n(l+i—1)X<pn(l+7\q+t)]
= [ Xont+1)Xgn+2) ** Xon(+i-1) | * | Xon(+rg+)
= [ Xon+1)Xou+2)  Xonri-n] - (W) [Xo,a10]) -
The last equality can be written in terms of m, ;) if and only if £ = 0. Thus,
[m(n’i,lﬂ)] = (wy)?- [m(n’i,l)] if and only if A | . Then for 1 < j <A, [B(n’jﬂ-)] can
be written as
[Brgiy] = [Mmigw] + [Meigen ]+ + [Meiugen-1)]
()00 4 (@ )M 4 () =2)) [m(nﬂ.,l)]
= I [mei]
if and only if A | 7.
(¢) If i = gA, then (b) implies that [B(, ;4] = T - [Mn,i,1)]- On the other hand,

(12) (w,) Fqu I“”L (w u)q(”j_l) + (wu)q(u(jﬂ)—l)‘
Since in (12),

_(wu)q(uj—l) + (wu)q(u(ﬁrl)—l) = —(w)™ - (w,)" 7+ (wu)qu(jﬂ) (W)
therefore (w,)? - T9* = TT¥. Thus, Ag = i < n = An implies ¢ < p and in turn
['Y" = 0. Therefore, [B(n’j,i)] = [0]. For the other side, suppose A } i. By (10), for
1<j<A Bngys is asum of the following square-free monomials of total degree

(13) Mngui+), 0<I<p—1

All the i variables (all of degree one) in each of the monomials in (13), have been ar-
ranged with successive indices (mod n based on @, in (1)). Now considering [B, ;4 |
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in Rz, where all of its terms are written as a combination of monomials not in in(B).
For 0 <1< pu—1, since A } i each [m(n,i,pﬂl)] contains different pattern of exponents
for each element in the list [Xz. 1], -+, [X,]- It means no cancellation occurs. Thus,

[Bn.giy] # [0]. 0

ExaMPLE 3.12. In this example, we repeatedly use the form of the generators
in (2) and the forms in example 3.2. To simulate parts (a) and (b) of lemma 3.11,
calculations in Rz show

3
[6(16,1,4)] = Z m(16’4’4+l)

= m(1644)+m(1645)+m(1646) (1647)]
= [Xa] [Xs5] [Xe] [X7] + [X5] [Xe] [X7] [Xs]
[ Xo] [X7] [Xs] [Xo] + [X7] [Xs] [Xo] [Xoo]
= (8% [Xa] [X0] [Xo] [X35]) + (30 - [X0] [X2] [Xa] [Xa])+
(2 [X ][ ][X4][X1]) (2 - [X1] [Xo] [X5] [Xa])
(@ i+ 4 10)- 0] [Xa] [Xa] 1)
Ly [ (1641)]:[0]

where 1 = wy.
To see the functionality of the proof of lemma 3.11 (in case where A\ } i), with
almost the same strategy of calculations as above, it is not hard to see that

[6(16,1,3)] = [;}m(lﬁ,3,4+l)]
= [Xa] [X5][Xe] + [X5] [X6] [X7] + [Xe] [X7] [Xs]
+ [ X7] [Xs] [Xo] L
= 1 _[5(13] [ X14] [Xi6] + 2 _[E:Xl:a] [ X14] [X15]
+2 [ Xua] [Xis] [Xu6] + 3 [Xis] [X15] [Xie]
= 4 ([Xu3] [Xua] [Xa6] — [Xua] [Xas5] [Xu6])
— ([X1s] [ X1a] [Xas] + [X1a] [Xa5] [X16])

where the reader can easily see that no cancellation occurs. For various examples of
X(16,.,)'s consider the following table.

Lilj] [X(16,5.1)] | Q; |
2|1 Q- [maez,n] = [0] 1+ 42+ 44 +4°
A11]9 - [maean] = 4[maean] | 1+3" +4° +
o1 Q; - M(16,5,1)| = [0 1+3° 430 4¢P
2|2 Q] - [mae2.2)| = [0 1+ +3 +4°
4129 [mueaz] = 4[maeaz] | 1+ +4° +i

LEMMA 3.13. For a given integer n > 3, let (A < W), be a pure split. If 1 <i <n
and 1 < j <A, then in Rp
(a) wfiif and only if X4 ] = [0].
(b) Ifuw | i and A | W, then [B(n’jﬂ-)] = [0]. In other words, if (A < w,i), is a
(—factor associated with n, then [B, ;] = [0].
(¢) Ifw|iand|By,, ] =I[0], then p(A) np(n) # @.
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Proof. (a) By lemma 3.11 (a), (w,)"-Q = (W) +- -+ (w )" = QF =1+ (w, )" =
Q! since w, is a primitive u™ root of unity. And this implies Q! - (1 — (w,)") = 0.
Now 1 — (wy)* # 0 if and only if p f i. In other words, Q! = 0 if and only if u } 4.
By lemma 3.11 (a) this is equivalent to say [@(n,j,5] = [0] if and only if p f i.

(b) Suppose w | i and A | w. Then A | ¢ and lemma 3.11 (¢) give the result.
(¢) With w | 4, [B(n,j.] = [0] and lemma 3.11 (c) at hand, consider corollary 2.6. [

REMARK 3.14. Again we assume that n is an integer with n > 3 and let (A < p),
be a pure split for n where A | . With the aid of lemma 3.1, lemma 3.10 and lemma
3.13 (a), (b), [Hi] =0 for i =1,--- ,n — 1, can be concluded. Here, K = n — A and
the factors of [H,] (in B) can be considered as follow

[Ha] = ﬁXi - 1] = [HQ (Xnjg1 - X)\jH\)] [ X Xn] -1

n
= ((wu))\(ﬁl)) X XM -1
7= uh(ufl) n
= (wy)" 2 [Xfﬁl Xt -1
([Xew] - (XD 1= [R] - [F]
where Iy, = Xgiq - X, — wﬁ_l, k=1,---,u Let’s consider one of these factors say

Fy = X¢.1--- X, — 1. By defining an ideal J = I(BN, F}), the above discussion shows
that IC,, < J. As in lemma 3 in [3], one may prove that .J is a prime ideal. In that
theorem, a rational parametrization of the underlying ideal has been used. In this
case, the parametrization shows that dim(J) = A — 1. Thus, it is an associated prime

of /IC,, of positive dimension.

4. Conclusions

In this article, we mainly verified that the binomial polynomials in (2) satisfy the
equations of the system if some conditions on n are satisfied. This is our so-called
vanishing process. In remark 3.14 we considered the case where A | p and we presented
the proof of [H,| = 0, and this completes the proofs of the vanishing process for all
defining polynomials of the system. Besides remark 3.14, the other parts of the proofs
go through the following path. For a given 1 < i < n, lemma 3.13 (a) gives the result
in the case where pn f i (even if A f ). Lemma 3.13 (b) gives the result in the case
where @ | 2 and A | p (in which (A < w, i), is a (—factor associated with n). If u |
but A J w, then the proofs of the same results are still unknown to me. We anticipate
that the concept of (—factors plays an important role in the future of this research.

5. Appendix

Proof. (Lemma 3.6) Set j = {n + r where 0 < r < n and ¢ is a positive integer.
Also, let r =nA + s, where 0 < s < A and 1 is another positive integer.
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Claim 1: 0 <1 < pn— 1. Suppose not and n > p. In this case

n>r=s+MNA=AL+s>n+s,
a contradiction. Also, j + tA = &n + (n + t)A + s which evidently implies

(14) ©n(j +1A) = @u(En+ M+ DA+ 5) = @u((N + A + 5).

(6) is trivially hold for ¢ = 0. Consider ¢ > 0.

Case () : (r =0)

In this case, j +tA = &{n + A

[chn(j+t7\)] = [Xal= [Xt 1 >\+)\]

= (wy)"[Xzsa] (use (5) withn=t—1and j =A)
= (wu)t X,] (since K+ A =n)
= t [X(Pn(])]

where with r = 0 and j = §n, (pn(j) =n.

Case (41) : (r > 0) In this case, since by Claim 1,0 <mn < p— 1, then

/_|

s<tA+s<M+tA+s<(L—14+tA+s=n+(t— 1A +s.
On the other hand, by the condition given in the statement of the lemma, 0 <t—1 <
p—2then (t—DA+s < A(L—2)+s=Ap—2A+s<n—A=K<n (sincen=Ap).
(ii—1): M+t A+s=n+({t—1)A+s
After simplifying the above condition one gets ( + 1)A = n and in turn by (14)
Cu(j +1A) = @M+ A +5) =@M+ A+ (t = 1A+ 5)
= @u(n+({t—1A+3) =@, ((t— 1A+ s).

Thus, [X(pn(jth}\)] = [X(t,l)MS] = (W) [ X ]. Since (M + A = n + (t — DA,
then NA = n — A = K. Hence,

[chn(jth?\)] = (wu>t [Xis| = (wu>t [Xn7\+3] = (wu)t [X] = (wu)t [X%(j)] .
(it—2):M+t)A+s=n
The condition implies (L —1 — t)A = s < A which means s = 0 or 0 =1 + t. Now

[an(j—i-t)\)] = [X(n+t)>\+s] = [Xn] = [XEH]
= (wy)™" [X(n—l)wr)\] = (W) M [ X ] = (w)" ™ [X,]
= (W) [Xp, ()]
since (w,)™ = (w,)*) ™ = 1.
(i—3): M+t)A+s<n
In this case, since (N +t)A + s < Ay, thenn +t < pu— 1.
(a) If n+t=pn—1, then

[X@n(j+t7\)] = [X(T]+t)?\+s =
= (wu)t_u[Xr]

(b) If n +t < p—2, then

[ Xonem] = [Xmsones] = ()" [ Xy o] = ()" - ()" [Xeys]
= ()" [Xipnss] = (wy)’ [tin(j)] :

(ii—4):n<M+t)A+s<n+(t—1A+s
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This case also will be treated similarly. There is an s; with, 0 < s; < A, a positive
integer ¥ such that (N + t)A + s = Ap + A + s1. Notice the above implies s = s; and
n+t=1v+u Now
[X(Pn(j+t?‘):| = [X
= (wy
w

(

— (@0,)" [Xew]
Sl e = (@) D = (@, [

]
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