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INTUITIONISTIC FUZZY PMS-SUBALGEBRA OF A

PMS-ALGEBRA

Beza Lamesgin Derseh∗, Berhanu Assaye Alaba, and
Yohannes Gedamu Wondifraw

Abstract. In this paper, we introduce the notion of intuitionistic fuzzy PMS-
subalgebra of a PMS-algebra. The idea of level subsets of an intuitionistic fuzzy
PMS-subalgebra of a PMS-algebra is introduced. The relation between intuitionistic
fuzzy sets and their level sets in a PMS-algebra is examined, and some interesting
results are obtained.

1. Introduction

In 1966, Y. Imai and K. Iseki [7] and in 1980, Iseki [8] introduced the two classes
of abstract algebras, BCK-algebra and BCI-algebra respectively. In 2016, Sithar Sel-
vam and Nagalakshmi [12] introduced a new algebraic structure called PMS-algebra.
Zadeh [15] first introduced the concept of a fuzzy set in 1965. After the invention of
fuzzy sets, Rosenfeld [10] pioneered the study of fuzzy algebraic structures. In 2016,
Sithar Selvam and Nagalakshmi [11] fuzzified PMS-subalgebra and PMS-ideal. K.T.
Atanassov [2, 4] developed the concept of intuitionistic fuzzy set as a generalization
of Zadeh’s fuzzy set. Since then, many researches have been done by mathematicians
to extend fuzzy mathematical concepts to intuitionistic fuzzy concepts.
A. Zarandi and A. Borumand Saied [16] studied the intuitionistic fuzzy ideal of BG-
algebras in 2005. Mohamed Akram [1] discussed the Bifuzzy structure in K-algebras.
Senapati et al. [13,14] investigated intuitionistic fuzzification of subalgebras and ideals
of BG-algebras. In 2010, M. Chandramouleeswaran and P. Muralikrishna discussed
intuitionistic L-Fuzzy subalgebras of BG and BF algebras. Intuitionistic fuzzy struc-
tures of B-algebras were studied by Y. H. Kim and T. E. Jeong [9].
In this paper, we introduced the notion of intuitionistic fuzzy PMS-subalgebras of
PMS-algebras and investigate some of their properties. The idea of level subsets of
an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra is introduced. The relation
between intuitionistic fuzzy sets and their level sets in a PMS-algebra is examined,
and some interesting results are obtained.
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2. Preliminaries

In this section, we recall some basic definitions and results that are used in the
study of this paper

Definition 2.1. [12] A nonempty set X with a constant 0 and a binary operation
′∗′ is called PMS-algebra if it satisfies the following axioms.

1. 0 ∗ x = x
2. (y ∗ x) ∗ (z ∗ x) = z ∗ y, for all x, y, z ∈ X.
In X, we define a binary relation ≤ by x ≤ y if and only if x ∗ y = 0.

Definition 2.2. [12] Let S be a nonempty subset of a PMS-algebra X, then S is
called a PMS-sub algebra of X if x ∗ y ∈ S, for all x, y ∈ S.

Example 2.3. [12] Let Z be the set of all integers, and let ∗ be a binary relation
on Z defined by x ∗ y = y − x, for all x, y ∈ Z, where ’-’ the usual subtraction of
integers. Then (Z, ∗, 0) is a PMS-algebra since

1. 0 ∗ x = x− 0 = x
2. (y ∗ x) ∗ (z ∗ x) = (z ∗ x)− (y ∗ x) = (x− z)− (x− y) = y − z = z ∗ y.

Clearly, the set E of all even integers is a PMS-subalgebra of a PMS-algebra Z, since
x ∗ y = y − x ∈ E for all x, y ∈ E.

Proposition 2.4. [12] In any PMS-algebra (X, ∗, 0) the following properties hold
for all x, y, z ∈ X.

1. x ∗ x = 0
2. (y ∗ x) ∗ x = y
3. x ∗ (y ∗ x) = y ∗ 0
4. (y ∗ x) ∗ z = (z ∗ x) ∗ y
5. (x ∗ y) ∗ 0 = y ∗ x = (0 ∗ y) ∗ (0 ∗ x)

Definition 2.5. [15] Let X be a nonempty set. A fuzzy subset A of the set X is
defined as A = {〈x, µA(x)〉|x ∈ X} where the mapping µA : X → [0, 1] defines the
degree of membership

Definition 2.6. [11] A fuzzy set A in a PMS-algebra X is called fuzzy PMS-
subalgebra of X if µA(x ∗ y) ≥ min{µA(x), µA(y)} for all x, y ∈ X

Definition 2.7. [2, 4] An intuitionistic fuzzy set (IFS) A in a nonempty set X
is an object having the form A = {〈x, µA(x), νA(x)〉|x ∈ X}, where the functions
µA : X → [0, 1] and νA : X → [0, 1] define the degree of membership and the degree
of non membership, respectively, satisfying the condition 0 ≤ µA(x) + νA(x) ≤ 1, for
all x ∈ X.

Remark 2.8. Ordinary fuzzy sets over X may be viewed as special intuitionistic
fuzzy sets with the non membership function νA(x) = 1 − µA(x). So each Ordinary
fuzzy set may be written as {〈x, µA(x), 1− µA(x)〉|x ∈ X} to define an intuitionistic
fuzzy set. For the sake of simplicity we write A = (µA, νA) for an intuitionistic fuzzy
set A = {〈x, µA(x), νA(x)〉|x ∈ X}.

Definition 2.9. [2–4] Let A and B be two intuitionistic fuzzy subsets of the set
X, where A = (µA, νA) and B = (µB, νB) , then
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1. A ∩B = {〈x,min(µA(x), µB(x)),max(νA(x), νB(x))〉 |x ∈ X}
2. A ∪B = {〈x,max(µA(x), µB(x)), min(νA(x), νB(x))〉 |x ∈ X}
3. Ā = {〈x, νA(x), µA(x)〉 |x ∈ X}
4. �A = {〈x, µA(x), 1− µA(x)〉 |x ∈ X}
5. ♦A = {〈x, 1− νA(x), νA(x)〉 |x ∈ X}

3. Intuitionistic Fuzzy PMS-subalgebra

In this section we introduce the notion of intuitionistic fuzzy PMS-subalgebra and
investigated some of its properties. Throughout this and the next section X denotes
a PMS-algebra, unless otherwise specified.

Definition 3.1. An intuitionistic fuzzy subset A = (µA, νA) of a PMS-algebra X
is called an intuitionistic fuzzy PMS-subalgebra of X if

1. µA(x ∗ y) ≥ min{µA(x), µA(y)} and
2. νA(x ∗ y) ≤ max{νA(x), νA(y)} for all x, y ∈ X

Example 3.2. Let X = {01, 1, 2, 3} be a set with the following table.

* 0 1 2 3
0 0 1 2 3
1 2 0 1 2
2 1 2 0 1
3 3 1 2 0

Then (X, ∗, 0) is a PMS-algebra and S = {0, 1, 2} is a PMS-subalgebra X.
Let A = (µA, νA) be an intuitionistic fuzzy set in X defined by

µA(x) =


1 if x = 0

0.5 if x = 1, 2

0 if x = 3

and νA(x) =


0 if x = 0

0.4 if x = 1, 2

1 if x = 3

For intuitionistic fuzzy set A in a PMS-algebra X with membership values µA(x) and
non membership values νA(x) as defined above, definition 3.1 is satisfied. Therefore
A = (µA, νA) is an intuitionistic fuzzy PMS- subalgebra of the PMS-algebra X.

Lemma 3.3. If A = (µA, νA)is an intuitionistic fuzzy PMS-subalgebra of X, then
µA(0) ≥ µA(x) and νA(0) ≤ νA(x) for all x ∈ X

Proof. Suppose A = (µA, νA)is an11 intuitionistic fuzzy PMS-subalgebra of X. Since
x ∗ x = 0 for every x ∈ X by proposition 2.1(1), we have
µA(0) = µA(x ∗ x) ≥ min{µA(x), µA(x)} = µA(x) and
νA(0) = νA(x ∗ x) ≤ max{νA(x), νA(x)} = νA(x)
Hence µA(0) ≥ µA(x) and νA(0) ≤ νA(x) for all x ∈ X

Lemma 3.4. Let A = (µA, νA) be an intuitionistic fuzzy PMS-subalgebra of X, if
x ∗ y ≤ z, then µA(x) ≥ min{1µA(y), µA(z)} and νA(x) ≤ max{νA(y), νA(z)}.

Proof. Suppose A = (µA, νA) be an intuitionistic fuzzy PMS-subalgebra of X. Let
x, y, z ∈ X such that x ∗ y ≤ z. Then by the binary relation ≤ defined in X, we have
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(x ∗ y) ∗ z = 0. Thus by definition 2.1 and proposition 2.4 (4), we have
µA(x) = µA(0 ∗ x) = µA(((x ∗ y) ∗ z) ∗ x)

= µA(((z ∗ y) ∗ x) ∗ x)

= µA((x ∗ x) ∗ (z ∗ y))

= µA(0 ∗ (z ∗ y))

= µA(z ∗ y) ≥ min{µA(z), µA(y)}
HenceµA(x) ≥ min{µA(z), µA(y)}

Similarly, νA(x) ≤ max{νA(z), νA(y)}

Theorem 3.5. Let A = (µA, νA) be an intuitionistic fuzzy PMS-subalgebra of a
PMS-algebra X and let x ∈ X, then µA(x ∗ y) = µA(y) and νA(x ∗ y) = νA(y) for each
y ∈ X if and only if µA(x) = µA(0) and νA(x) = νA(0), where 0 is a constant in X.

Proof. Suppose µA(x ∗ y) = µA(y) and νA(x ∗ y) = νA(y) for each y ∈ X. Then we
need to show that µA(x) = µA(0) and νA(x) = νA(0), where 0 is a constant in X. By
lemma 3.3, µA(0) ≥ µA(x) and νA(0) ≤ νA(x) for each x ∈ X. By proposition 2.4 (2)
(x ∗ 0) ∗ 0 = x. Then µA(x) = µA((x ∗ 0) ∗ 0) ≥ min{µA(x ∗ 0), µA(0)} = µA(0).
Also, νA(x) = νA((x ∗ 0) ∗ 0) ≤ max{νA(x ∗ 0), νA(0)} = νA(0).
Hence µA(x) ≥ µA(0) and νA(x) ≤ νA(0).
Therefore µA(x) = µA(0) and νA(x) = νA(0)
Conversely, Suppose µA(x) = µA(0) and νA(x) = νA(0). Then we need to prove that
µA(x ∗ y) = µA(y) and νA(x ∗ y) = νA(y), for each y ∈ X.
By lemma 3.3 µA(x) ≥ µA(y) and νA(x) ≤ νA(y) for each y ∈ X. Since A is an
intuitionistic fuzzy PMS-subalgebra of X, Then µA(x ∗ y) ≥ min{µA(x), µA(y)} =
µA(y) and νA(x ∗ y) ≤ max{νA(x), νA(y)} = νA(y). Thus µA(x ∗ y) ≥ µA(y) and
νA(x ∗ y) ≤ νA(y) for each y ∈ X.
But, using Proposition 2.4 (2) and 2.4 (5) it follws that

µA(y) = µA((y ∗ x) ∗ x) ≥ min{µA(y ∗ x), µA(x)}
= min{µA((x ∗ y) ∗ 0), µA(x)}
≥ min{min{µA(x ∗ y), µA(0)}, µA(x)}
= min{µA(x ∗ y), µA(x)} = µA(x ∗ y)

and

νA(y) = νA((y ∗ x) ∗ x) ≤ max{νA(y ∗ x), νA(x)}
= max{νA((x ∗ y) ∗ 0), νA(x)}
≤ max{max{νA(x ∗ y), νA(0)}, νA(x)}
= max{νA(x ∗ y), νA(x)} = νA(x ∗ y)

Hence µA(x ∗ y) = µA(y) and νA(x ∗ y) = νA(y) for each y ∈ X.

Theorem 3.6. Let A = (µA, νA) be an intuitionistic fuzzy PMS-subalgebra of a
PMS-algebra X. If µA(x ∗ y) = µA(0) and νA(x ∗ y) = νA(0) for all x, y ∈ X, then
µA(x) = µA(y) and νA(x) = νA(y)
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Proof. Let x, y ∈ X such that µA(x ∗ y) = µA(0) and νA(x ∗ y) = νA(0).
Claim µA(x) = µA(y) and νA(x) = νA(y)

Now, µA(x) = µA((y ∗ y) ∗ x)

= µA((x ∗ y) ∗ y)

≥ min{µA(x ∗ y), µA(y)}
= min{µA(0), µA(y)} = µA(y)

Conversely, µA(y) = µA((x ∗ x) ∗ y)

= µA((y ∗ x) ∗ x)

≥ min{µA(y ∗ x), µA(y)}
= min{µA((x ∗ y) ∗ 0), µA(y)}
≥ min{min{µA(x ∗ y), µA(0)}, µA(x)}
= min{µA(0), µA(x)} = µA(x)

Thus µA(x) = µA(y)
By similar argument we have νA(x) = νA(y)

Theorem 3.7. The intersection of any two intuitionistic fuzzy PMS-sub algebras
of X is also an intuitionistic fuzzy PMS-subalgebra of X.

Proof. Let A = (µA, νA) and B = (µB, νB) be any two intuitionistic fuzzy PMS-
subalgebras of a PMS-algebra X.
Claim: A ∩ B is an intuitionistic fuzzy PMS-subalgebra of X.Then for x, y ∈ X, we
have

µA∩B(x ∗ y) = min{µA(x ∗ y), µB(x ∗ y)}
≥ min{min{µA(x), µA(y)},min{µB(x), µB(y)}}
= min{min{µA(x), µB(x)},min{µA(y), µB(y)}}
= min{µA∩B(x), µA∩B(y)}

and

νA∩B(x ∗ y) = max{νA(x ∗ y), νB(x ∗ y)}
≤ max{max{νA(x), νA(y)},max{νB(x), νB(y)}}
= max{max{νA(x), νB(x)},max{νA(y), νB(y)}}
= max{νA∩B(x), νA∩B(y)}

Hence A ∩B is an intuitionistic fuzzy PMS-subalgebra of X

The above theorem proves that the intersection of any two intuitionistic fuzzy PMS-
subalgebras of X is again an intuitionistic fuzzy subalgebra of X. It can also be
generalized to any family of intuitionistic fuzzy PMS-subalgebra of X as follows:

Corollary 3.8. If {Ai : i ∈ I} be a family of intuitionistic fuzzy PMS-subalgebra
of X, then ∩i∈I is also an intuitionistic fuzzy PMS-subalgebra of X,where ∩i∈IµAi

(x)
= inf

i∈I
µAi

(x) and ∩i∈IνAi
(x) = sup

i∈I
µAi

(x)

Remark 3.9. The union of any two intutionistic fuzzy PMS-subalgebras of a PMS-
algebra X is not necassarily an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra
X.
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Example 3.10. Let X={0,1,2,3} be a set with the table as in example 3.2 and
A = (µA, µA) is an intuitionistic fuzzy set in X as defind in example 3.2. Let
B = (µB, νB) be an intuitionistic fuzzy set in X defined by

µB(x) =


1 if x = 0

0.6 if x = 1, 3

0 if x = 2

and νB(x) =


0 if x = 0

0.2 if x = 1, 3

1 if x = 2

Now, µA∪B(1∗0) = µA∪B(2) = max{µA(2), µB(2)} = max{0.5, 0} = 0.5 (i)
min{µA∪B(1), µA∪B(0)} = min{max{µA(1), µB(1)},max{µA(0), µB(0)}}

= min{max{0.5, 0.6},max{1, 1}}
= min{0.6, 1} = 0.6 (ii)

and

also, νA∪B(1∗0) = νA∪B(2) = min{νA(2), νB(2)} = min{0.4, 1} = 0.4 (iii)
max{νA∪B(1), νA∪B(0)} = max{min{µA(1), νB(1)},min{νA(0), νB(0)}}

= max{min{0.4, 0.2},min{0, 0}}
= max{0.2, 0} = 0.2 (iv)

From (i) and (ii) we see that µA∪B(1 ∗ 0) = 0.5 < 0.6 = min{µA∪B(1), µA∪B(0)}
and from (iii) and (iv) we see that νA∪B(1 ∗ 0) = 0.4 > 0.2 = max{νA∪B(1), νA∪B(0)}
which is a contradiction.This shows that the union of any two intuitionistic fuzzy PMS-
subalgebras of a PMS-algebra X may not be an intutionistic fuzzy PMS-subalgebra.

Lemma 3.11. Let A = (µA, νA) be an intutionistic fuzzy set in X. Then the
following statements hold for any x, y ∈ X.

1. 1−max{µA(x), µA(y)} = min{1− µA(x), 1− µA(y)}
2. 1−min{µA(x), µA(y)} = max{1− µA(x), 1− µA(y)}.
3. 1−max{νA(x), νA(y)} = min{1− νA(x), 1− νA(y)}
4. 1−min{νA(x), νA(y)} = max{1− νA(x), 1− νA(y)}.

Now, we can prove the next two theorems using the above Lemma.

Theorem 3.12. An intuitionistic fuzzy subset A = (µA, νA) of a PMS-algebra X
is an intuitionistic fuzzy PMS-subalgebra of X if and only if the fuzzy subsets µA and
ν̄A are fuzzy subalgebras of X.

Proof. Suppose A = (µA, νA) is an intuitionistic fuzzy PMS-subalgebra of X.
Claim: The fuzzy subsets µA and ν̄A of X are fuzzy subalgebras of X. Clearly, µA is
a fuzzy PMS-subalgebra of X directly follows from the fact that A = (µA, νA) is an
intuitionistic fuzzy PMS-subalgebra of X. Now for all x, y ∈ X,

ν̄A(x ∗ y) = 1− νA(x ∗ y) ≥ 1−max{νA(x), νA(y)}
= min{1− νA(x), 1− νA(y)} (By Lemma 3.11(3))

= min{ν̄A(x), ν̄A(y)}
Therefore ν̄A is a fuzzyPMS -subalgebra ofX

Conversely, Suppose µA and ν̄A are fuzzy PMS-subalgebras of X. So, we need to show
that A = (µA, νA) is an intuitionistic fuzzy PMS-subalgebra of X. Since µA and
ν̄A are fuzzy PMS-subalgebras of X, we have that µA(x ∗ y) ≥ min{µA(x), µA(y)}
and ν̄A(x ∗ y) ≥ min{ν̄A(x), ν̄A(y)}, for all x, y ∈ X. Now it suffices to show that
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νA(x ∗ y) ≤ max{νA(x), νA(y)} for all x, y ∈ X.
1− νA(x ∗ y) = ν̄A(x ∗ y) ≥ min{ν̄A(x), ν̄A(y)}

= min{1− νA(x), 1− νA(y)}
= 1−max{νA(x), νA(y)} (By Lemma 3.11(3))

⇒ νA(x ∗ y) ≤ max{νA(x), νA(y)}, for allx, y ∈ X.
Hence A = (µA, νA) is an intuitionistic fuzzy PMS-subalgebra of X.

Corollary 3.13. If µA is a fuzzy PMS-subalgebra of X, then A = (µA, µ̄A) is an
intuitionistic fuzzy PMS-subalgebra of X.

Proof. Suppose µA is a fuzzy PMS-subalgebra of X. Then we want to show that
A = (µA, µ̄A) is an intuitionistic fuzzy PMS-subalgebra of X. Since µA is a fuzzy
PMS-subalgebra of X, it follows that µA(x∗y) ≥ min{µA(x), µA(y)} .Then it suffices
to show that µ̄A(x ∗ y) ≤ max{µ̄A(x), µ̄A(y)}.

µ̄A(x ∗ y) = 1− µA(x ∗ y) ≤ 1−min{µA(x), µA(x)}
= max{1− µA(x), 1− µA(x)}
= max{µ̄A(x), µ̄A(x)}

⇒ µ̄A(x ∗ y) ≤max{µ̄A(x), µ̄A(y)}
Hence A = (µA, µ̄A) is an intuitionistic fuzzy PMS-subalgebra of X.

Corollary 3.14. If ν̄A is a fuzzy PMS-subalgebra of X, then A = (ν̄A, νA) is an
intuitionistic fuzzy PMS-subalgebra of X.

Proof. Similar to corollary 3.13

Theorem 3.15. An intuitionistic fuzzy subset A = (µA, νA) of X is an intuitionistic
fuzzy PMS-subalgebra of X if and only if �A = (µA, µ̄A) and ♦A = (ν̄A, νA) are
intuitionistic fuzzy PMS-subalgebra of X.

Proof. Assume that an intuitionistic fuzzy subset A = (µA, νA) of X is an intu-
itionistic fuzzy PMS-subalgebra of X, then

µA(x ∗ y) ≥ min{µA(x), µA(y)} and νA(x ∗ y) ≤ max{νA(x), νA(y)}.
Claim: �A = (µA, µ̄A) and ♦A = (ν̄A, νA) are intuitionistic fuzzy PMS-subalgebras
of X.

(i) To show that �A is an intuitionistic fuzzy PMS-subalgebra of X, it suffices to
show that µ̄A(x ∗ y) ≤ max{µ̄A(x), µ̄A(y)},for all x, y ∈ X. Let x, y ∈ X, then

µ̄A(x ∗ y) = 1− µA(x ∗ y) ≤ 1−min{µA(x), µA(y)}
= max{1− µA(x), 1− µA(y)}
= max{µ̄A(x), µ̄A(y)}

⇒ µ̄A(x ∗ y) ≤ max{µ̄A(x), µ̄A(y)},∀x, y ∈ X.
Hence �A is an intuitionistic fuzzy PMS-subalgebra of X

(ii) To show that ♦A is an intuitionistic fuzzy PMS-subalgebra of X, it suffices to
show that ν̄A(x ∗ y) ≥ min{ν̄A(x), ν̄A(y)}, for all x, y ∈ X. Let x, y ∈ X, then

ν̄A(x ∗ y) = 1− νA(x ∗ y) ≥ 1−max{ν̄A(x), ν̄A(y)}
= min{1− νA(x), 1− νA(y)}
= min{ν̄A(x), µ̄A(y)}

⇒ ν̄A(x ∗ y) ≥ min{ν̄A(x), ν̄A(y)},∀x, y ∈ X.
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Hence ♦A is an intuitionistic fuzzy PMS-subalgebra of X.
The proof of the converse of this theorem is trivial.

4. Level Subsets of Intuitionistic Fuzzy PMS-subalgebras

In this section, the idea of level subsets of an intuitionistic fuzzy PMS-subalgebra
of a PMS-algebra is introduced. Characterizations of level subsets of a fuzzy PMS-
subalgebra of a PMS-algebra are given.

Theorem 4.1. If A = (µA, νA) be an intuitionistic fuzzy PMS-subalgebra of X,
then the sets XµA = {x ∈ X|µA(x) = µA(0)} and XνA = {x ∈ X|νA(x) = νA(0)} are
PMS -subalgebra of X

Proof. Suppose A = (µA, νA) is an intuitionistic fuzzy PMS-subalgebra of X and
let x, y ∈ XµA . Then µA(x) = µA(0) = µA(y). So, µA(x ∗ y) ≥ min{µA(x), µA(y)}
= min{µA(0), µA(0)} = µA(0). ⇒ µA(x ∗ y) ≥ µA(0). By Lemma 3.3, we get that
µA(x ∗ y) = µA(0) which imply that x ∗ y ∈ XµA . Also, Let x, y ∈ XνA . Then νA(x) =
νA(0) = νA(y) and so νA(x ∗ y) ≤ max{νA(x), νA(y)} = max{νA(0), νA(0)} = νA(0).
⇒ νA(x ∗ y) ≤ νA(0). By Lemma 3.3, we get that νA(x ∗ y) = νA(0) which imply that
x ∗ y ∈ XνA .
Hence, the sets XµA and XνA are PMS-subalgebras of X.

Theorem 4.2. Let S be a nonempty subset of a PMS-algebra X and A = (µA, νA)
be an intuitionistic fuzzy set in X defined by

µA(x) =

{
p if x ∈ S
q if x /∈ S

and νA(x) =

{
r if x ∈ S
s if x /∈ S

for all p, q, r, s ∈ [0, 1] with p ≥ q, r ≤ s and 0 ≤ p + r ≤ 1, 0 ≤ q + s ≤ 1. Then A is
an intuitionistic fuzzy PMS-subalgebra of X if and only if S is a PMS-subalgebra of
X. Furthermore, in this situation, XµA = S = XνA .

Proof. Let A be an intuitionistic fuzzy PMS-subalgebra of X.Then we want to show
that S is a PMS-subalgebra of X. Let x, y ∈ X such that x, y ∈ S.
Since A = (µA, νA) is an intuitionistic fuzzy PMS-subalgebra of X, we have

µA(x ∗ y) ≥ min{µA(x), µA(y)} = min{p, p} = p and
νA(x ∗ y) ≤ max{νA(x), νA(y)} = max{r, r} = r.
Hence x ∗ y ∈ S. So, S is a PMS-subalgebra of X.

Conversely, suppose that S is a PMS-subalgebra of X. We claim to show that A =
(µA, νA) is an intuitionistic fuzzy PMS-subalgebra of X.
Let x, y ∈ X. Now consider the following cases

case (i). 1If x, y ∈ S, then x ∗ y ∈ S, since S is a PMS-subalgebra of X. Thus,
µA(x ∗ y) = p = min{µA(x), µA(y)} and νA(x ∗ y) = r = max{νA(x), νA(y)}

case (ii). If x ∈ S, y /∈ S, then µA(x) = p, µA(y) = q and νA(x) = r, νA(y) = s.
Thus, µA(x ∗ y) ≥ q1 = min{p, q} = min{µA(x), µA(y)} implies µA(x ∗ y) ≥
min{µA(x)µA(y)} and νA(x ∗ y) ≤ s = max{r, s} = max{νA(x), νA(y)} implies
νA(x ∗ y) ≤ max{νA(x), νA(y)}

case (iii). If x /∈ S, y ∈ S, then interchanging the roles of x and y in Case (ii), yields similar
results µA(x ∗ y) ≥ min{µA(x), µ(y)} and νA(x ∗ y) ≤ max{νA(x), νA(y)}
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case (iv). If x, y /∈ S, then µA(x) = q = µA(y) and νA(x) = s = νA, this implies that
µA(x ∗ y) ≥ q = min{µA(x), µA(y)} and νA(x ∗ y) ≤ s = max{νA(x), νA(y)}
Hence A = (µA, νA) is an intuitionistic fuzzy PMS-subalgebra of X.

Furthermore, we have
XµA = {x ∈ X|µA(x)=µA(0)} = {x ∈ X|µA(x) = p} = S and
XνA = {x ∈ X|νA(x) = νA(0)} = {x ∈ X|νA(x) = r} = S.

Hence XµA = S = XνA .

Definition 4.3. Let A = (µA, νA) be any intuitionistic fuzzy subset of a PMS-
algebra X such that t, s ∈ [0, 1], then the set U(µA, t) = {x ∈ X : µA(x) ≥ t}
is called an upper t-level set of an intuitionistic fuzzy subset A of X and the set
L(µA, s) = {x ∈ X : νA(x) ≤ s} is called a lower s-level set of an intuitionistic fuzzy
subset A of X

Theorem 4.4. An intuitionistic fuzzy subset A = (µA, νA) of a PMS-algebra X
is an intuitionistic fuzzy PMS-subalgebra of X if and only if the the nonempty level
subsets U(µA, t) and L(νA, s) of A are PMS-subalgebras of X for all t, s ∈ [0, 1] with
0 ≤ t+ s ≤ 1.

Proof. Assume that A = (µA, νA) is an intuitionistic fuzzy PMS-subalgebra of a
PMS-algebra X such that U(µA, t) 6= φ and L(νA, s) 6= φ. Now we claim that U(µA, t)
and L(νA, t) are PMS-subalgebras of X for all t, s ∈ [0, 1] with 0 ≤ t + s ≤ 1.
Let x, y ∈ U(µA, t), then we have µA(x) ≥ t and µA(y) ≥ t. Thus µA(x ∗ y) ≥
min{µA(x), µA(y)} ≥ min{t, t} = t

⇒ x ∗ y ∈ U(µA, t)
Hence U(µA, t) is a PMS-subalgebra of X.

Also, let x, y ∈ L(νA, s), then νA(x) ≤ s and νA(y) ≤ s
So, νA(x ∗ y) ≤ max{νA(x), νA(y)} ≤ max{t, t} = t ⇒ x ∗ y ∈ L(νA, s)

Hence L(νA, s) is a PMS-subalgebra of X.
Conversely, Suppose that U(µA, t) and L(νA, s) are PMS-subalgebra of X for all t, s ∈
[0, 1] with 0 ≤ t+ s ≤ 1
Claim: A is an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra X.
Let x, y ∈ X such that µA(x) = t1 and µA(y) = t2 for t1, t2 ∈ [0, 1]. Then x ∈ U(µA, t1)
and y ∈ U(µA, t2).
Choose t = min{t1, t2} , then t ≤ t1 and t ≤ t2

⇒ U(µA, t1) ⊆ U(µA, t) and U(µA, t2) ⊆ U(µA, t).
⇒ x, y ∈ U(µA, t),

Since U(µA, t) is a PMS-Subalgebra of X, it follows that x ∗ y ∈ U(µA, t).
Thus µA(x ∗ y) ≥ t = min{t1, t2} = min{µA(x), µA(y)}.
Hence µA(x ∗ y) ≥ min{µA(x), µA(y)} for all x, y ∈ X.
And also, let x, y ∈ X such that νA(x) = s1 and νA(y) = s2 for s1, s2 ∈ [0, 1].
Then x ∈ L(νA, s1) and y ∈ L(νA, s2).
Choose s = max{s1, s2} , then s1 ≤ s and s2 ≤ s

⇒ L(νA, s1) ⊆ L(νA, s) and L(νA, s2) ⊆ L(νA, s).
⇒ x, y ∈ U(νA, s),

Since L(νA, s) is a PMS-subalgebra of X, it follows that x ∗ y ∈ L(νA, s).
Thus νA(x ∗ y) ≤ s = max{s1, s2} = max{νA(x), νA(y)}.
Hence νA(x ∗ y) ≤ max{νA(x), νA(y)} for all x, y ∈ X.
Hence A is an intuitionistic fuzzy PMS-subalgebra of a PMS -algebra X.



572 Beza Lamesgin Derseh, Berhanu Assaye Alaba, and Yohannes Gedamu Wondifraw

Remark 4.5. The PMS-subalgebras U(µA, t) and L(νA, s) of X for all t, s ∈ [0, 1]
obtained in the above theorem are called level PMS-subalgebras of X.

Corollary 4.6. An intuitionistic fuzzy subset A = (µA, νA) of a PMS-algebra X
is an intuitionistic fuzzy PMS-subalgebra of X if and only if the level subsets U(µA, t)
and L(νA, s) of A are PMS-subalgebras of X for all t ∈ Im(µA) and s ∈ Im(νA) with
0 ≤ t+ s ≤ 1

Theorem 4.7. Let S be a subset of X and A = (µA, νA) be an intuitionistic fuzzy
set in X defined by

µA(x) =

{
t if x ∈ S
0 if x /∈ S

and νA(x) =

{
s if x ∈ S
1 if x /∈ S

for all t, s ∈ [0, 1] such that 0 ≤ t + s ≤ 1. If A = (µA, νA) is an intuitionistic fuzzy
PMS-subalgebra of X, then S is a level PMS-subalgebra of X.

Proof. Let A = (µA, νA) be an intuitionistic fuzzy PMS-subalgebra of X. Then we
need to show that S is a level PMS-subalgebra of X. Let x, y ∈ S, then µA(x) = t =
µA(y) and νA(x) = s = νA(y). So, µA(x ∗ y) ≥ min{µA(x), µA(y)} = min{t, t} = t
and νA(x ∗ y) ≤ max{µA(x), νA(y)} = max{s, s} = s which implies that x ∗ y ∈ S.
Hence S is a PMS-subalgebra of X. Also, by theorem 4.4, U(µA, t) is a level subalgebra
of X, and
U(µA, t) = {x ∈ X : µA(x) ≥ t} = S = {x ∈ X : νA(x) ≤ s}.
Thus, S is a level PMS-Subalgebra of X corresponding to the intuitionistic fuzzy
PMS-subalgebra A = (µA, νA) of X.

Theorem 4.8. If S is any PMS-subalgebra of X, then there exists an intuitionistic
fuzzy PMS-subalgebra A of X, in which S satisfies both the upper level and lower
level PMS-subalgebra of A in X.

Proof. Let S be a PMS-subalgebra of a PMS-algebra X and A = (µA, νA) be an
intuitionistic fuzzy set in X defined by

µA(x) =

{
t if x ∈ S
0 if x /∈ S

and νA(x) =

{
s if x ∈ S
1 if x /∈ S

for all t, s ∈ [0, 1] such that 0 ≤ t+ s ≤ 1.
Clearly, U(µA, t) = {x ∈ X : µA(x) ≥ t} = S. Let x, y ∈ X. To prove that A =
(µA, νA) is an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra X, we consider
the following cases:

case(i). If x, y ∈ S, then x ∗ y ∈ S. Since S is a PMS-subalgebra of a PMS-algebra X.
µA(x) = µA(y) = µA(x ∗ y) = t and νA(x) = νA(y) = νA(x ∗ y) = s.
Therefore µA(x ∗ y) = min{µA(x), µA(y)} and νA(x ∗ y) = max{νA(x), νA(y)}

case(ii). If x ∈ S, y /∈ S, then we have µA(x) = t, µA(y) = 0 and νA(x) = s, νA(y) = 1.
Thus, µA(x∗y) ≥ 0 = min{t, 0} = min{µA(x), µA(y)} which implies that µA(x∗
y) ≥ min{µA(x), µA(y)} and νA(x ∗ y) ≤ 1 = max{s, 1} = max{νA(x), νA, (y)}
implies νA(x ∗ y) ≤ max{νA(x), νA(y)}

case(iii). If x /∈ S, y ∈ S , then interchanging the roles of x and y in Case (ii), yields similar
results µA(x ∗ y) ≥ min{µA(x), µ(y)} and νA(x ∗ y) ≤ max{νA(x), νA(y)}

case(iv). If x, y /∈ S then µA(x) = 0 = µA(y) and νA(x) = 1 = νA(y).Then
µA(x ∗ y) ≥ 0 = min{µA(x), µA(y)} and νA(x ∗ y) ≤ 1 = max{νA(x), νA(y)}.
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So, in all cases we get µA(x∗y) ≥ min{µA(x), µA(y)} and νA(x∗y) ≤ max{νA(x), νA(y)},
for all x, y ∈ X.

Thus, A is an intuitionistic fuzzy PMS-subalgebra of X.

We can also prove the following theorem as a generalization of theorem 4.8.

Theorem 4.9. Let {Si} be any family of a PMS-subalgebra of a PMS-algebra X
such that S0 ⊂ S1 ⊂ S2 ⊂ ... ⊂ Sn = X, then there exists an intuitionistic fuzzy
PMS-subalgebra A = (µA, νA) of X whose level PMS-subalgebras are exactly the
PMS-subalgebras {Si}.

Proof. Suppose t0 > t1 > t2 > ... > tn and s0 < s1 < s2... < sn where each
ti, si ∈ [0, 1] with 0 ≤ ti + si ≤ 1. Let A = (µA, νA) be an intuitionistic fuzzy set
defined by

µA(x) =

{
t0 if x ∈ S0
ti if x ∈ Si − Si−1, 0 < i ≤ n.

and νA(x) =

{
s0 if x ∈ S0
si if x ∈ Si − Si−1, 0 < i ≤ n.

Now, We claim that A = (µA, νA) is an intuitionistic fuzzy PMS-subalgebra of X and
U(µA, ti) = Si = L(νA, si) for 0 ≤ i ≤ n.
Let x, y ∈ X Then, we consider the following two cases
Case (i): Let x, y ∈ Si − Si−1. Therefore by the definition of A = (µA, νA), we have
µA(x) = ti = µA(y) and νA(x) = si = νA(y). Since Si is a PMS-subalgebra of X, it
follows that x∗y ∈ Si, and so either x∗y ∈ Si−Si−1 or x∗y ∈ Si−1 or x∗y ∈ Si−1−Si−2.
⇒ µA(x) = ti or µA(x) = ti−1 > ti and νA(x) = si or νA(x) = si−1 > si.

In any case we conclude that
µA(x∗y) ≥ ti = min{µA(x), µA(y)} and νA(x∗y) ≤ si = max{νA(x), νA(y)}.

Case (ii): For i > j, tj > ti, sj < si and Sj ⊂ Si. Let x ∈ Si−Si−1 and y ∈ Sj −Sj−1.
Then, µA(x) = ti, µA(y) = tj > ti, νA(x) = si and νA(y) = sj < si. Then x ∗ y ∈ Si
since Si is a PMS-subalgebra of X and Sj ⊂ Si.
Hence µA(x ∗ y) ≥ ti = min{µA(x), µA(y)} and νA(x ∗ y) ≤ si = max{νA(x), νA(y)}
by case (i). Thus A = (µA, νA) is an intuitionistic fuzzy PMS-subalgebra of X.
Also,from the definition of A = (µA, νA), it follows that Im(µA) = {t0, t1, ..., tn} and
Im(νA) = {s0, s1, ..., sn}. So, U(µA, ti) and L(νA, si) are the level subalgebras of A for
0 ≤ i ≤ n, and form the chains,
U(µA, t0) ⊂ ... ⊂ U(µA, tn) = X and L(νA, s0) ⊂ ... ⊂ L(νA, sn) = X.
Now, U(µA, t0) = {x ∈ X : µA(x) ≥ t0} = S0 = {x ∈ X : νA(x) ≤ s0} = L(νA, s0).
Finally, we prove that U(µA, ti) = Si = L(νA, si) for 0 < i ≤ n.
Now let x ∈ Si, then µA(x) ≥ ti and νA(x) ≤ si. This implies x ∈ (µA, ti) and
x ∈ L(νA, si). Hence Si ⊆ (µA, ti) and Si ⊆ L(νA, si). If x ∈ U(µA, ti) and x ∈
L(νA, si), then µA(x) ≥ ti and νA(x) ≤ si which implies that x /∈ Sj for j > i. For
otherwise, if x ∈ Sj, then µA(x) ≥ tj and νA(x) ≤ sj, which implies ti > µA(x) ≥ tj
and si < νA(x) ≤ sj . This contradicts the assumption that x ∈ U(µA, ti) and
x ∈ L(νA, si). Hence µA(x) ∈ {t0, t1, ..., tn} and νA(x) ∈ {s0, s1, ..., sn}. So x ∈ Sk
for some k ≤ i. As Sk ⊆ Si, it follows that x ∈ Si. Hence U(µA, ti) ⊆ Si and
L(νA, si) ⊆ Si. Therefore U(µA, ti) = Si = L(νA, si) for 0 < i ≤ n.

Note that the number of PMS-subalgebras of a finite PMS–algebra X is finite whereas
the number of level PMS-subalgebras of an intuitionistic fuzzy PMS-subalgebra A
appears to be infinite. However, every level PMS-subalgebra of X is a PMS-subalgebra
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of X, not all of these PMS-subalgebras are unique. The next theorem illustrates this
situation.

Theorem 4.10. Let A = (µA, νA) be an intuitionistic fuzzy PMS-subalgebra of X,
then

(i). The upper level PMS-subalgebras U(µA, t1) and U(µA, t2),(with t1 < t2) of an
intuitionistic fuzzy PMS-subalgebra A are equal if and only if there is no x ∈ X
such that t1 ≤ µA(x) < t2.

(ii). The lower level PMS-sub algebras L(νA, s1) and L(νA, s2),(with s1 > s2) of an
intuitionistic fuzzy PMS-subalgebra A are equal if and only if there is no x ∈ X
such that s1 ≥ νA(x) > s2.

Proof. Let A = (µA, νA) be an intuitionistic fuzzy PMS-subalgebra of X. Since the
proofs for both (i) and (ii) are similar, here we prove for only (ii).
Suppose that L(νA, s1) = L(νA, s2), for s1 > s2 . Then we claim that there is no x ∈ X
such that s1 ≥ νA(x) > s2. Assume that there exists x ∈ X such that s1 ≥ µA(x) < s2.

⇒ x ∈ L(νA, s1) but x /∈ L(νA, s2)
⇒ L(µA, s2) is a proper subset of L(νA, s1).

This contradicts to the assumption that L(νA, s1) = U(νA, s2).
Hence there is no x ∈ X such that s1 ≥ νA(x) > s2.
Conversely, suppose that there is no x ∈ X such that s1 ≥ νA(x) > s2.. Then we
prove that L(νA, s1) = L(νA, s2).
Since s1 > s2, we get L(νA, s2) ⊆ L(νA, s1) (1)
Now, x ∈ L(νA, s1)⇒ νA(x) ≤ s1.

⇒ νA(x) ≤ s2, (Since νA(x) does not lie between s1 and s2).
⇒ x ∈ L(νA, s2).

Hence L(νA, s1) ⊆ L(νA, t2) (2)
From (1) and (2) we get L(νA, s1) = L(νA, s2).

Remark 4.11. As the consequence of Theorem 4.10, the level subalgebras of an
intuitionistic fuzzy PMS-algebra A = (µA, νA) of a finite PMS-algebra X form a
chain,
U(µA, t0) ⊂ U(µA, t1) ⊂ ... ⊂ U(µA, tn) = X and L(νA, s0) ⊂ L(νA, s1) ⊂ ... ⊂
L(νA, sn) = X, where t0 > t1 > ... > tn and s0 < s1 < ... < sn.

Corollary 4.12. Let X be a finite PMS-algebra and A = (µA, νA) be an intu-
itionistic fuzzy PMS-subalgebra of X.

(i). If Im(µA) = {t1, . . . , tn}, then the family of PMS-subalgebras {U(µA, ti)|1 ≤
i ≤ n}, constitutes all the upper level PMS-subalgebras of A in X.

(ii). If Im(νA) = {s1, . . . , sn}, then the family of PMS-subalgebras {L(νA, si)|1 ≤
i ≤ n}, constitutes all the lower level PMS-subalgebras of A in X.

Proof. Let A = (µA, νA) be an intuitionistic fuzzy PMS-subalgebra of X such that
Im(µA) = {t1, t2, . . . , tn} with t1 < t2 < . . . < tn and Im(νA) = {s1, s2, . . . , sn} with
s1 > s2 > . . . < sn.

(i). Let t ∈ [0, 1] and t /∈ Im(µA). Now, we can consider the following cases.
case (1). If t ≤ t1, then U(µA, t1) = X = U(µA, t).
case (2). If t > tn, then U(µA, t) = {x ∈ X|µA(x) ≥ t} = {x ∈ X|µA(x) >
tn} = ∅
case (3). If ti−1 < t < ti, then U(µA, t) = U(µA, ti) by theorem 4.10(i), since
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there is no x ∈ X such that t ≤ µA(x) < ti. Thus for any t ∈ [0, 1], the level
PMS-subalgebra is one of {U(µA, ti)|i = 1, 2, . . . , n}.

(ii). proof of (ii) is similar to (i)

Corollary 4.13. Let A = (µA, νA) be an intuitionistic fuzzy PMS–subalgebra of
X with finite images.

(i). If U(µA, ti) = U(µA, tj) for any ti, tj ∈ Im(µA), then ti = tj .
(ii). If L(νA, si) = L(νA, sj) for any si, sj ∈ Im(νA), then si = sj.

Proof. Let A = (µA, νA) be an intuitionistic fuzzy PMS-subalgebra of X with finite
images. Here we only prove (ii).the prove of (i) can be done similarly. Assume
L(νA, si) = L(νA, tj) for si, sj ∈ Im(νA). So to show that si = sj assume on contrary,
that is, si 6= sj. Without loss of generality assume si > sj.
Let x ∈ L(νA, sj), then νA(x) ≤ sj < si.

⇒ νA(x) < si
⇒ x ∈ L(νA, si)

Let x ∈ X such that si > νA(x) > sj. Then x ∈ L(νA, si) but x /∈ L(νA, sj)
⇒ L(νA, sj) ⊂ L(νA, si)
⇒ L(νA, ti) 6= L(νA, tj) which contradics the hypothesis that

L(νA, si) = L(νA, sj). Therefore, si = sj.

5. Conclusion

In this paper, we introduced the notion of intuitionistic fuzzy PMS-subalgebras
of PMS-algebras and some results are obtained. The idea of level subsets of an
intuitionistic fuzzy PMS-subalgebra of a PMS-algebra is introduced. The relation
between an intuitionistic fuzzy sets in a PMS-algebra and their level sets is discussed
and some interesting results are obtained. The concepts can further be extended to
intuitionistic fuzzy ideals of a PMS-algebra for new results in our future work.
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