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RIGHT-ANGLED ARTIN GROUPS ON PATH GRAPHS,

CYCLE GRAPHS AND COMPLETE BIPARTITE GRAPHS

Eon-Kyung Lee† and Sang-Jin Lee∗‡

Abstract. For a finite simplicial graph Γ, let G(Γ) denote the right-angled Artin
group on the complement graph of Γ. For path graphs Pk, cycle graphs C` and com-
plete bipartite graphs Kn,m, this article characterizes the embeddability of G(Kn,m)
in G(Pk) and in G(C`).

1. Introduction

Throughout this article all graphs are simple. For a graph Γ, let V (Γ) and E(Γ)
denote the vertex set and the edge set of Γ, respectively. For a finite graph Γ, the
right-angled Artin group (RAAG) on Γ is the group presented by

A(Γ) = 〈 a ∈ V (Γ) | [a, b] = 1 if {a, b} ∈ E(Γ) 〉.
It is well-known that two RAAGs A(Γ1) and A(Γ2) are isomorphic as groups if and
only if Γ1 and Γ2 are isomorphic as graphs [4].

The following opposite convention is often used as well.

G(Γ) = 〈 a ∈ V (Γ) | [a, b] = 1 if {a, b} 6∈ E(Γ) 〉
In other words, G(Γ) = A(Γ̄), where Γ̄ denotes the complement graph of Γ. The
present article uses this convention. For example, if Γ is the path graph Pn on n > 2
vertices a1, . . . , an as in Figure 2(a), then

G(Pn) = 〈 a1, . . . , an | [ai, aj] = 1 if |i− j| > 2 〉.
If Γ is the complete bipartite graph Kn,m with vertex set {a1, . . . , an} ∪ {b1, . . . , bm}
as in Figure 1(a), then

G(Kn,m) =

〈
a1, . . . , an,
b1, . . . , bm

∣∣∣∣ [ai, aj] = 1 for i, j ∈ {1, . . . , n},
[bk, b`] = 1 for k, ` ∈ {1, . . . ,m}

〉
∼= Zn ∗ Zm.

Definition 1.1. (i) For a subset A ⊂ V (Γ), the subgraph Λ of Γ with V (Λ) = A
and E(Λ) = {{a, b} ∈ E(Γ) : a, b ∈ A} is called the subgraph of Γ induced by A.
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Figure 1. Complete bipartite graph, cycle graph, tripod

(ii) If a graph Λ embeds into Γ as an induced subgraph, we write Λ 6 Γ.
(iii) If a group H embeds into a group G, i.e. if there exists a monomorphism from

H to G, then we write H 6 G.
(iv) For elements g, h of a group, gh and [g, h] denote the conjugate h−1gh and the

commutator g−1h−1gh, respectively.

It is easy to see that Γ1 6 Γ2 implies G(Γ1) 6 G(Γ2), however, the converse does
not hold. The following is a fundamental question for RAAGs.

[Embeddability Problem] Is there an algorithm to decide whether or not
there exists an embedding between two given RAAGs?

The embeddability problem has been studied in various papers, e.g. [1, 3, 5–11]. In
particular, the following are known for path graphs and cycle graphs. Let Cn denote
the cycle graph on n > 3 vertices as in Figure 1(b).

(i) For m,n > 4, A(Cm) 6 A(Cn) if and only if m = n+k(n−4) for some k > 0 [8];
(ii) G(Pm) 6 G(Pn) (resp. G(Cm) 6 G(Cn)) if and only if n > m [5, 7];

(iii) G(Pm) 6 G(Cn) if and only if n > m + 1 [5];
(iv) G(Cm) 6 G(Pn) if and only if n > 2m− 2 [10];
(v) G(T2) 6 G(P22), where T2 denotes the tripod in Figure 1(c) [11].

This article shows the following embeddability between RAAGs on path graphs,
cycle graphs and complete bipartite graphs.

Theorem 1.2. For n > 2 and n > m, the following hold.

(i) G(Kn,m) ∼= Zn ∗ Zm 6 G(Pk) if and only if k > 2n− 1.

(ii) G(Kn,m) ∼= Zn ∗ Zm 6 G(C`) if and only if ` > 2n.

As a tool to solve the embeddability problem, Sang-hyun Kim and Thomas Koberda [8]
introduced the notion of extension graphs. The extension graph, denoted by ΓE, of Γ
with respect to G(Γ) is defined by

V
(
ΓE

)
= { ag ∈ G(Γ) : a ∈ V (Γ), g ∈ G(Γ) },

E
(
ΓE

)
= { {ag, bh} : ag, bh ∈ V

(
ΓE

)
, [ag, bh] 6= 1 in G(Γ) }.

It is clear that Γ 6 ΓE. Extension graphs are usually infinite and locally infinite.
Our work uses the extension graph theorem [8, Theorem 1.3] which states, under our
convention, that for finite graphs Γ1 and Γ2, if Γ1 6 ΓE

2 then G(Γ1) 6 G(Γ2).
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Figure 2. w = (a1a2 · · · a5)(a4a3a2a1)

2. Proof of Theorem 1.2

For a finite graph Γ and g ∈ G(Γ), the support of g, denoted by supp(g), is defined
as the set of vertices a in Γ such that a or a−1 appears in a reduced word representing
g. It is known that supp(g) is well-defined.

First we show that a complete bipartite graph embeds into the extension graph of
a path graph.

Proposition 2.1. Kn,n 6 PE
2n−1 for n > 2.

Proof. Let a1, . . . , a2n−1 denote the vertices of P2n−1 in this order as in Figure 2(a).
Choose any w ∈ G(P2n−1) such that supp(awi ) = V (P2n−1) for each i ∈ {1, . . . , 2n−

1}. For instance, we may take w = (a1a2 · · · a2n−1)(a2n−2 · · · a2a1).
Let Γ be the subgraph of PE

2n−1 induced by

{a1, a3, . . . , a2n−1} ∪ {aw1 , aw3 , . . . , aw2n−1}.

Now we will show that Γ is isomorphic to Kn,n, which completes the proof.
For distinct i, j ∈ {1, 3, 5, . . . , 2n − 1}, one has [ai, aj] = 1 and hence [awi , a

w
j ] = 1

in G(P2n−1), which implies {ai, aj}, {awi , awj } 6∈ E
(
PE
2n−1

)
. See Figure 2(b).

Meanwhile, it is well-known by the centralizer theorem of Servatius [12] that, for
a finite graph Λ and a ∈ V (Λ), if g ∈ G(Λ) commutes with a, then each element
of supp(g) commutes with a. Thus, for any i, j ∈ {1, 3, 5, . . . , 2n − 1}, one has
[ai, a

w
j ] 6= 1 in G(P2n−1) because supp(awj ) = V (P2n−1). Namely {ai, awj } ∈ E

(
PE
2n−1

)
.

See Figure 2(b).

Using the above proposition, we prove Theorem 1.2.

Proof of Theorem 1.2. (i) Let k > 2n− 1. Since P2n−1 6 Pk, we have G(P2n−1) 6
G(Pk). Since Kn,n 6 PE

2n−1 by Proposition 2.1, we have G(Kn,n) 6 G(P2n−1) by the
extension graph theorem [8, Theorem 1.3]. Meanwhile, the condition m 6 n implies
Kn,m 6 Kn,n and hence G(Kn,m) 6 G(Kn,n). Therefore G(Kn,m) 6 G(Pk).

Conversely, assume that G(Kn,m) 6 G(Pk).
It is well-known (e.g. [2] and [8, Lemma 2.3]) that, for a finite graph Γ, the maximum

rank of a free abelian subgroup of A(Γ) is the clique number of Γ, i.e. the maximum
number of pairwise adjacent vertices in Γ. Since G(Γ) = A(Γ̄), the maximum rank of
a free abelian subgroup of G(Γ) is the independence number of Γ, i.e. the maximum
number of pairwise non-adjacent vertices in Γ.

Thus the maximum rank of a free abelian subgroup of G(Pk) is dk/2e. Since
G(Kn,m) contains a free abelian subgroup of rank n, we have dk/2e > n and hence
k > 2n− 1.
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(ii) Let ` > 2n. Choose any k with 2n 6 k + 1 6 ` (e.g. k = ` − 1). Then
G(Kn,m) 6 G(Pk) by (i), and G(Pk) 6 G(C`) by [5, Theorem1.4(3)]. Therefore
G(Kn,m) 6 G(C`).

Conversely, assume that G(Kn,m) 6 G(C`). Then the proof is similar to (i). More
precisely, the maximum rank of a free abelian subgroup of G(C`) is b`/2c that is the
independence number of C`. Since G(Kn,m) contains a free abelian subgroup of rank
n, we have b`/2c > n and hence ` > 2n.
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