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NEW INEQUALITIES VIA BEREZIN SYMBOLS AND RELATED

QUESTIONS

Ramiz Tapdigoglu, Najla Altwaijry†, and Mubariz Garayev∗

Abstract. The Berezin symbol Ã of an operator A on the reproducing kernel
Hilbert space H (Ω) over some set Ω with the reproducing kernel kλ is defined by

Ã(λ) =

〈
A

kλ
‖kλ‖

,
kλ
‖kλ‖

〉
, λ ∈ Ω.

The Berezin number of an operator A is defined by

ber(A) := sup
λ∈Ω

∣∣∣Ã(λ)
∣∣∣ .

We study some problems of operator theory by using this bounded function Ã,
including estimates for Berezin numbers of some operators, including truncated
Toeplitz operators. We also prove an operator analog of some Young inequality and
use it in proving of some inequalities for Berezin number of operators including the
inequality ber (AB) ≤ ber (A) ber (B) , for some operators A and B on H (Ω). More-
over, we give in terms of the Berezin number a necessary condition for hyponormality
of some operators.

1. Introduction

In this paper, we prove some inequalities for Berezin symbols of operators on the
reproducing kernel Hilbert spaceH (Ω) over some set Ω. By using Berezin symbols, we
estimate numerical radius and so-called Berezin number of some operators, including
truncated Toeplitz operators, positive and some self-adjoint operators (Sections 2 and
3).

Recall that a reproducing kernel Hilbert space (shortly, RKHS) is the Hilbert space
H = H (Ω) of complex-valued functions on some set Ω such that the evaluation func-
tionals ϕλ(f) = f(λ), λ ∈ Ω, are continuous on H. Then, by the Riesz representation
theorem, for each λ ∈ Ω there exists a unique function kλ ∈ H such that f (λ) = 〈f, kλ〉
for all f ∈ H. The family {kλ : λ ∈ Ω} is called the reproducing kernel of the space H.
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The prototypical RKHSs are the Hardy space H2(D), where D = {z ∈ C : |z| < 1}
is the unit disc, the Bergman space L2

a(D), the Dirichlet space D2(D) and the Fock
space F (C). A detailed presentation of the theory of RKHSs and reproducing kernels
is given, for instance, in Aronzajn [1], Bergman [5], Malyshev [24], Halmos [13] and
Saitoh and Sawano [28]. For other applications of operators, [6, 10, 19, 26, 27] studies
can be consulted.

For A a bounded linear operator on H (i.e., for A ∈ B(H), the Banach algebra of
all bounded linear operators on H), its Berezin symbol (also called Berezin transform)
Ã is defined on Ω by (see Berezin [3, 4], and also Englǐs [8])

Ã(λ) :=
〈
Ak̂λ(z), k̂λ(z)

〉
,

where k̂λ := kλ
‖kλ‖

is the normalized reproducing kernel of the space H and the inner

product < , > is taken in the space H. It is obvious that the Berezin symbol Ã is a

bounded function and supλ∈Ω

∣∣∣Ã(λ)
∣∣∣, which is called the Berezin number of operator

A (see Karaev [16,17]), does not exceed ‖A‖, i.e.,

ber(A) := sup
λ∈Ω

∣∣∣Ã(λ)
∣∣∣ ≤ ‖A‖ .

It is also clear from the definition of Berezin symbol that the range of the Berezin
symbol Ã, which is called the Berezin set of operator A (see Karaev [16, 17]), lies in
the numerical range W (A) of operator A, i.e.,

Ber(A) := range(Ã) = {Ã(λ) : λ ∈ Ω} ⊂

⊂ W (A) := {〈Ax, x〉 : x ∈ H and ‖x‖ = 1}
which implies that ber(A) ≤ w(A) := sup {|〈Ax, x〉| : x ∈ H and ‖x‖ = 1} (numerical
radius of operator A). So, many questions, which are well studied for the numerical
radius w(A) of operator A, can be naturally asked for the Berezin number ber(A) of
operator A. For example, is it true, or under which additional conditions the following
are true:

10 ber (A) ≥ 1
2
‖A‖ ;

20 ber (An) ≤ ber (A)n for any integer n ≥ 1; more generally, if A is not nilpotent,
then

C1ber (A)n ≤ ber (An) ≤ C1ber (A)n

for some constants C1, C2 > 0;
30 ber (AB) ≤ ber (A) ber(B), where A,B ∈ B(H);

If A = cI with c 6= 0, then obviously ber (A) = |c| > |c|
2

=
‖A‖

2
. In general,

if Tϕ is a Toeplitz operator on the Hardy-Hilbert space H2 = H2 (D) over the unit
disk D = {z ∈ C : |z| < 1} with ϕ ∈ L∞ (∂D), then by considering the well-known

fact that [8,32] T̃ϕ (λ) = ϕ̃ (λ), ϕ̃ is the harmonic extension of the function ϕ into the

unit disk D, it is easy to see that ber (Tϕ) = ‖ϕ‖∞ = ‖Tϕ‖. Hence ber (Tϕ) ≥ ‖Tϕ‖
2

.

However, it is known that in general the above inequality 10 is not satisfied (see
Karaev [18]).

In the present paper, we investigate some of above mentioned questions 10 − 30.
The related results are obtained in [11,12,31].
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2. Inequalities for Berezin number

Let H (Ω) be a RKHS of complex - valued functions on a set Ω. A subset M(Ω)
in H(Ω) is called multiplier for space H(Ω) if M(Ω) · H(Ω) ⊂ H(Ω), i.e., fg ∈ H(Ω)
for any f ∈ M(Ω) and g ∈ H(Ω). It follows from the closed graph theorem that
the multiplication operator Mf : H(Ω) → H(Ω), M

f
g = fg, is bounded for any

f ∈M(Ω). We set B (Ω) := {g ∈ H(Ω) : g is bounded}.
Our first result gives a lower estimate for the Berezin number of operator A.

Proposition 2.1. Let H ∈ H(Ω) be a RKHS such that B (Ω) is a multiplier of
H. Let θ ∈ B (Ω) be a function such that |θ(z)| ≤ 1 for all z ∈ Ω. Let A ∈ {Mθ}′,
i.e., AMθ = MθA, and let

Nθ,A := Mθ(I − AMθM
∗
θ ).

For every ε ∈ (0, 1), we set Kε,θ := {z ∈ Ω : |θ(z)| ≤ ε} .
Then

(1) ber(A) ≥ sup
0<ε<1

∥∥∥θ − Ñθ,A

∥∥∥
L∞(Kε,θ)

ε−3.

Proof. Indeed, a standard calculus of Berezin symbol of operator Ñθ,A shows that

Ñθ,A(λ) =
〈
Ñθ,Ak̂λ, k̂λ

〉
= 〈Mθ(I − AMθM

∗
θ )k̂λ, k̂λ

〉
= 〈(I − AMθ M

∗
θ )k̂λ, M

∗
θ k̂λ

〉
=
〈
k̂λ − AMθθ(λ)k̂λ, θ(λ)k̂λ

〉
(since Mθ is a multiplication operator on H)

= θ(λ)− |θ(λ)|2
〈
AMθk̂λ, k̂λ

〉
= θ(λ)− |θ(λ)|2 〈MθA k̂λ, k̂λ

〉
(since AMθ = MθA)

= θ(λ)− |θ(λ)|2
〈
Ak̂λ,M

∗
θ k̂λ

〉
= θ(λ)− |θ(λ)|2

〈
Ak̂λ, θ(λ)k̂λ

〉
= θ(λ)− θ(λ) |θ(λ)|2 Ã(λ) for all λ ∈ Ω.

Hence, Ñθ,A(λ) = θ(λ)(1− |θ(λ)|2 Ã(λ)), and therefore∣∣∣θ(λ)− Ñθ,A(λ)
∣∣∣ =

∣∣∣Ã(λ)
∣∣∣ |θ(λ)|3 , ∀λ ∈ Ω.

In particular, we have from the latter for each λ ∈ Kε,θ, that∣∣∣θ(λ)− Ñθ,A(λ)
∣∣∣ ≤ ε3

∣∣∣Ã(λ)
∣∣∣ ,

and hence

‖θ(λ) −Ñθ,A

∥∥∥
L∞(Kε,θ)

ε3
≤ sup

λ∈Kε,θ

∣∣∣Ã(λ)
∣∣∣ ≤ sup

λ∈Ω

∣∣∣Ã(λ)
∣∣∣ = ber(A),

which obviously implies (1).
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The Hardy-Hilbert space H2 = H2(D) is the Hilbert space consisting of the analytic
functions on the unit disc D = {z ∈ C : |z < 1|} satisfying

‖f‖2 :=

 sup
0<r<1

1

2π

2π∫
0

∣∣f(reit)
∣∣2 dt


1
2

< +∞.

The normalized reproducing kernel k̂λ of H2 is the function (1−|λ|2)
1
2

1−λ̄z .

Let θ ∈ H2 be an inner function, i.e., |θ(z)| ≤ 1 for all z ∈ D and |θ(eit)| = 1 for
almost all t ∈ [0, 2π). We set Kθ := H2 	 θH2 = (θH2)⊥ which is called the model
space generated by an inner function θ. Let ϕ ∈ L2 = L2(T), where T = ∂D is the
unit circle, be a function. The truncated Toeplitz operator acting on Kθ is defined by

T θϕf = Pθ(ϕf),

where Pθ : L2 → Kθ is an orthogonal projection operator (see [29], [30] and also [2],
and references therein).

It is easy to show that Pθ = PθP+, where Pθ : H2 → Kθ is an orthogonal projection
and P+ : L2 → H2 is the Riesz projection. Since PθP+L

2 = Kθ and (PθP+)∗ =
(P+PθP+)∗ = P+PθP+ = PθP+, it is enough only to show that (PθP+)2 = PθP+.

Indeed, since θ is inner function, the associated analytic Toeplitz operator Tθ is an
isometry, which implies that TθH

2 = θH2 is a closed subspace. Then PθH2 = TθT
∗
θ =

TθTθ̄, and hence PKθ = I − TθTθ̄. Therefore, by considering that P+Tθ = Tθ, and
T ∗θ Tθ = I, we have:

(PθP+)2 = (I − TθTθ̄)P+(I − TθTθ̄)P+

= P+ − P+TθT
∗
θ P+ − TθT ∗θ P+ + TθT

∗
θ P+TθT

∗
θ P+

= (I − TθT ∗θ )P+ − TθT ∗θ P+ + TθT
∗
θ TθT

∗
θ P+

= (I − TθT ∗θ )P+ − TθT ∗θ P+ + TθT
∗
θ P+ = PθP+,

and hence Pθ = PθP+, as desired.
In general, there is also a very short proof:

(PθP+)2 = PθP+PθP+ = PθPθP+ = P 2
θ P+ = PθPH .

Our next result estimates in terms of Berezin numbers the Berezin number of the
bounded truncated Toeplitz operator with the symbol in L2.

Theorem 2.2. Let θ be a fixed inner function and ϕ ∈ L2 be a function such that
the corresponding truncated Toeplitz operator T θϕ is bounded on Kθ, i.e., T θϕ ∈ B(Kθ).
Then

ber(T θϕ) ≥
ber

(
T|1−θ(λ)θ|2ϕ

)
ber (Pθ)

.

Proof. By condition, for ϕ ∈ L2, the corresponding truncated Toeplitz operator T θϕ
is bounded on Kθ. Then w(T θϕ) < +∞, and we have for any f ∈ Kθ with ‖f‖2 = 1
that 〈

T θϕf, f
〉

= 〈Pθ(ϕf), f〉 = 〈PθP+(ϕf), f〉 = 〈P+(ϕf), f〉 = 〈Tϕf, f〉 ,
hence 〈

T θϕf, f
〉

= 〈Tϕf, f〉 , ∀f ∈ Kθ.
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By considering that the normalized reproducing kernel k̂θ,λ(z) of the subspace Kθ is

k̂θ,λ(z) :=

(
1− |λ|

1− |θ(λ)|2

) 1
2 1− θ(λ)θ(z)

1− λ̄z
, λ ∈ D,

and T̃f = f̃ , where f̃ is the harmonic extension of the function f ∈ L1(T), we get :∣∣∣〈Tϕk̂θ,λ, k̂θ,λ〉∣∣∣ =
1− |λ|2

1− |θ(λ)|2

∣∣∣∣∣
〈
Tϕ

1− θ(λ)θ

1− λ̄z
,
1− θ(λ)θ

1− λ̄z

〉∣∣∣∣∣
=

1− |λ|2

1− |θ(λ)|2

∣∣∣∣〈TϕT1−θ(λ)θ

1

1− λ̄z
, T1−θ(λ)θ

1

1− λ̄z

〉∣∣∣∣
=

1

1− |θ(λ)|2

∣∣∣∣∣
〈
T ∗

1−θ(λ)θ
TϕT1−θ(λ)θ

(1− |λ|2)
1
2

1− λ̄z
,
(1− |λ|2)

1
2

1− λ̄z

〉∣∣∣∣∣
=

1

1− |θ(λ)|2
∣∣∣〈T

1−θ(λ)θϕ(1−θ(λ)θ)
k̂λ, k̂λ

〉∣∣∣
=

1

1− |θ(λ)|2

∣∣∣∣〈T|1−θ(λ)θ|2ϕk̂λ, k̂λ
〉∣∣∣∣

=
1

1− |θ(λ)|2

∣∣∣∣T̃|1−θ(λ)θ|2ϕ(λ)

∣∣∣∣
=

∣∣∣∣(∣∣∣1− θ(λ)θ
∣∣∣2 ϕ)∼ (λ)

∣∣∣∣
1− |θ(λ)|2

,

for all λ ∈ Ω, hence

sup
(
1− |θ(λ)|2

)
ber(T θϕ) ≥ sup

λ∈D

∣∣∣∣(∣∣∣1− θ(λ)θ
∣∣∣2 ϕ)∼ (λ)

∣∣∣∣ = ber

(
T|1−θ(λ)θ|2ϕ

)
,

where

(∣∣∣1− θ(λ)θ
∣∣∣2 ϕ)∼ is the harmonic extension of the function

∣∣∣1− θ(λ)θ
∣∣∣2 ϕ.

Since P̃θ (λ) = 1− |θ(λ)|2 , this proves the theorem.

3. A refinement of Young inequality and its application

The classical Young inequality says that for any two positive real numbers a, b and
0 ≤ ν ≤ 1, we have

aνb1−ν ≤ νa+ (1− ν)b.

Moreover, if a, b > 0 and ν ≤ 0 or ν ≥ 1 then we have the supplementary Young
inequality [9]

aνb1−ν ≥ νa+ (1− ν)b.

There are many refinements of Young’s inequality in the literature, and we refer the
interested reader to [14,15,23,25]. In particular, the following inequality is proved by
Manasrah and Kittaneh [25, formula (2.8)] : for any a, b > 0 and ν ≤ 0 or ν ≥ 1, we
have

(2) aνb1−ν + a1−νbν + 2s0

(√
a−
√
b
)2

≥ a+ b,
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where s0 := min{ν, 1− ν}.
In this section, we give an application of inequality (2) in estimation of Berezin

number of the product of two operators. Namely, we prove the following.

Theorem 3.1. Let f be a bounded continuous function defined on an interval
J ⊂ (0,+∞) and f ≥ 0. If ν ≤ 0 or ν ≥ 1, then

ber (f(T )) ≤ ber (f ν(T )) ber
(
f 1−ν(T )

)
for every self-adjoint operator T on the RKHS H = H(Ω) with spectrum contained
in J .

Proof. The proof essentially uses some general arguments of Kian’s paper [20],
where some Hardy-Hilbert type inequalities for Hilbert space operators are estab-
lished. Let a, b > 0 be arbitrary numbers satisfying the inequality (2). Let x, y ∈ J.
Noticing that f(x) ≥ 0 for all x ∈ J and putting a = f(x) and b = f(y) in (2), we
obtain

(3) f ν(x)f 1−ν(y) + f 1−ν(x)f ν(y) + 2s0

(√
f(x)−

√
f(y)

)2

≥ f(x) + f(y),

for all x, y ∈ J.
Let T ∈ B(H(Ω)) be any self-adjoint operator with spectrum contained in J . Then

passing to the functional calculus in inequality (3), we get for any y ∈ J that

f ν(T )f 1−ν(y) + f 1−ν(T )f ν(y) + 2s0

(√
f(T )−

√
f(y)

)2

≥ f(T ) + f(y).

Now passing to the Berezin symbol in this inequality, we have for any λ ∈ Ω and
y ∈ J that〈
f ν(T )k̂λ, k̂λ

〉
f 1−ν(y) +

〈
f 1−ν(T )k̂λ, k̂λ

〉
f ν(y) + 2s0

〈(√
f(T )−

√
f(y)

)2

k̂λ, k̂λ

〉
≥
〈
f(T )k̂λ, k̂λ

〉
+ f(y),

and hence

f̃ ν(T )(λ)f 1−ν(y) + ˜f 1−ν(T )(λ)f ν(y) + 2s0

(
f̃(T )

1
2 (λ)−

√
f(y)

)2

≥ f̃(T )(λ) + f(y).

Applying the functional calculus once more to the self-adjoint operator T , we get

f̃ ν(T )(λ)f 1−ν(T ) + ˜f 1−ν(T )(λ)f ν(T ) + 2s0

(
f̃(T )

1
2 (λ)−

√
f(T )

)2

≥ f̃(T )(λ) + f(T ).

Again, taking Berezin symbol in this inequality, we have

2f̃ ν(T )(λ) ˜f 1−ν(T )(λ) + 2s0

[
f̃(T )(λ)−

(
˜f(T )1/2(λ)

)2
]
≥ 2f̃(T )(λ),

and hence

f̃ ν(T )(λ) ˜f 1−ν(T ) (λ) + s0f̃(T )(λ)− s0

(
˜f(T )1/2(λ)

)2

≥ f̃(T )(λ).

Therefore

f̃ ν(T )(λ) ˜f 1−ν(T ) (λ)− s0

(
˜f(T )1/2(λ)

)2

≥ (1− s0) f̃(T )(λ).
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Since s0 < 0, we obtain that

(1− s0) f̃(T )(λ) ≤ f̃ ν(T )(λ) ˜f 1−ν(T ) (λ) + |s0|
(

˜f(T )1/2(λ)
)2

for all λ ∈ Ω. Hence

(1− s0) ber (f(T )) ≤ ber (f ν(T )) ber
(
f 1−ν(T )

)
+ |s0| ber

(√
f (T )

)2

,

and thus

ber (f(T )) ≤ 1

1− s0

ber (f ν(T )) ber
(
f 1−ν(T )

)
+
|s0|

1− s0

ber
(√

f (T )
)2

.

By applying McCarthy inequality, we have from the latter that

ber (f(T )) ≤ 1

1− s0

ber (f ν(T )) ber
(
f 1−ν(T )

)
+
|s0|

1− s0

ber (f (T )) ,

and hence

(4)

(
1− |s0|

1− s0

)
ber (f (T )) ≤ 1

1− s0

ber (f ν(T )) ber
(
f 1−ν(T )

)
.

Since s0 = min {ν, 1− ν} < 0, we have 1 − s0 > 1 and s0 + |s0| = 0, and hence it
follows from (4) that

ber (f(T )) ≤ ber (f ν(T )) ber
(
f 1−ν(T )

)
(ν ≤ 0 or ν ≥ 1) ,

which proves the theorem.

Notice that since f(T ) = f ν(T )f 1−ν(T ), Theorem 3.1 partially solves question 30

in Section 1. Also, if f(t) ≡ t on J , then we have

ber(T ) ≤ ber(T ν)ber(T 1−ν).

The well known Lowner-Heins inequality says that if A ≥ B ≥ 0 are two operators
on a Hilbert space H, then Aα ≥ Bα for any α ∈ [0, 1] (see Furuta [9, §3.2]).

The following is an immediate corollary of this inequality.

Proposition 3.2. If A,B ∈ B(H(Ω)) and A ≥ B ≥ 0, then

ber(Aα) ≥ ber(Bα)

for any α ∈ [0, 1].

Proposition 3.3. Let A,B ∈ B(H(Ω)) be two operators such that A ≥ B > 0.
Then we have:

(a) ber(logA) ≥ ber(logB);
(b) If A,B are invertible operators, then

ber(Ar) ≥ ber(A
r
2BpA

r
2 )

r
p+r

for all p ≥ 0 and r ≥ 0.

Proof. (a) Indeed, if A ≥ B > 0, then Aα ≥ Bα > 0 for any α ∈ [0, 1] by the
Lowner-Heinz inequality [9], and consequently

Aα − I
α

≥ Bα − I
α

.



116 Ramiz .T, Najla .A, and Mubariz .G

Hence by tending α→ 0+, we have that logA ≥ logB. On the other hand, by virtue
of Theorem 2 in [9, §3.2.3], the last inequality is equivalent to Ar ≥ (Ar/2BpAr/2)

r
p+r

for all p ≥ 0 and r ≥ 0. This implies that

Ãr(λ) ≥
[
(Ar/2BpAr/2)r/p+r

]∼
(λ)

for all λ ∈ Ω. So, by taking supremum, we get the desired result.

To prove our next results, we need several well-known lemmas which are respec-
tively the simple consequences of the classical Jensen and Young inequalities (see [14]);
spectral theorem for positive operators and Jensen’s inequality (see Kittaneh [21,23]);
and the generalized mixed Schwarz inequality (see Kittaneh [21]).

Lemma 3.4. For a, b > 0, 0 ≤ α ≤ 1 and p, q > 1 such that
1

p
+

1

q
= 1, we have:

(a) aαb1−α ≤ αa+ (1− α) b ≤ [αar + (1− α) br]

1

r for r ≥ 1;

(b) ab ≤ ap

p
+
bq

q
≤
(
apr

p
+
bqr

q

)1

r for r ≥ 1.

Lemma 3.5 (McCarty inequality). Let A ∈ B (H) , A ≥ 0 and let x ∈ H be any
unit vector. Then

(i) 〈Ax, x〉r ≤ 〈Arx, x〉 for r ≥ 1;
(ii) 〈Arx, x〉 ≤ 〈Ax, x〉r for 0 < r ≤ 1.

Lemma 3.6. Let A ∈ B (H) and x, y ∈ H be any unit vectors.
(i) If 0 ≤ α ≤ 1, then

|〈Ax, y〉|2 ≤
〈
|A|2α x, x

〉 〈
|A∗|2(1−α) y, y

〉
.

(ii) If f, g are nonnegative continuous functions on [0,∞) satisfying f (t) g (t) = t
(t ≥ 0), then

|〈Ax, y〉| ≤ ‖f (|A|)x‖ ‖g (|A∗|) y‖ ;

here |A| := (A∗A)1/2 denotes the so-called modul of operator A.

We set

F = {(f, g) ∈ C [0,∞)× C [0,∞) : f, g ≥ 0 and f (t) g (t) = t (t ≥ 0)} .
Clearly, (tα, t1−α) ∈ F for any α ∈ [0, 1], and therefore F is nonempty.

The following corollary of this lemma gives in particular a refinement of the general
inequality

(5) ber (A) ≤ sup
λ∈Ω

∥∥∥Ak̂λ∥∥∥ .
Corollary 3.7. Let A ∈ B(H(Ω)) be an operator.

(i) If 0 ≤ α ≤ 1, then ber (A)2 ≤ ber
(
|A|2α

)
ber
(
|A∗|2(1−α)

)
.

(ii) ber (A) ≤ inf
(f,g)∈F

sup
λ∈Ω

(∥∥∥f (|A|) k̂λ
∥∥∥∥∥∥g (|A∗|) k̂λ

∥∥∥) .
Proof. (i) Put x = y = k̂λ in Lemma 3.6 (i) and take the supremum over λ ∈ Ω, we

obtain the desired inequality. The proof of (ii) is quite similar to the proof of (i).
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Since (t, 1) ∈ F , it is clear from Corollary 3.7 (ii) that

ber (A) ≤ sup
λ∈Ω

∥∥∥|A| k̂λ∥∥∥ = sup
λ∈Ω

〈
|A| k̂λ, |A| k̂λ

〉1/2

= sup
λ∈Ω

〈
|A|∗ |A| k̂λ,k̂λ

〉1/2

= sup
λ∈Ω

〈
|A|2 k̂λ,k̂λ

〉1/2

= sup
λ∈Ω

〈
A∗Ak̂λ,k̂λ

〉1/2

= sup
λ∈Ω

∥∥∥Ak̂λ∥∥∥ .
So, we have that

ber (A) ≤ inf
(f,g)∈F

sup
λ∈Ω

(∥∥∥f (|A|) k̂λ
∥∥∥∥∥∥g (|A∗|) k̂λ

∥∥∥) ≤ sup
λ∈Ω

∥∥∥Ak̂λ∥∥∥ ,
which is a refinement of the inequality (5).

Now we are in a position to state our next results.

Theorem 3.8. If A ∈ B(H(Ω)), then

ber2r (A) ≤ 1

2

[(
ber
(
|A|2

)
ber
(
|A∗|2

)) r
2 + berr

(
A2
)]

for any r ≥ 1.

Proof. The following refinement of the Cauchy-Schwarz inequality proved by Dragomir
[7]:

(6) ‖x‖ ‖y‖ ≥ |〈x, y〉 − 〈x, e〉 〈e, y〉|+ |〈x, e〉 〈e, y〉| ≥ |〈x, y〉| ,
for all x, y, e ∈ H and ‖e‖ = 1. From inequality (6), we conclude that

1

2
(‖x‖ ‖y‖+ |〈x, y〉|) ≥ |〈x, e〉 〈e, y〉| .

Putting e = k̂λ, x = Ak̂λ and y = A∗k̂λ in the above inequality and using Lemma 3.4
(i), we have∣∣∣〈Ak̂λ, k̂λ〉∣∣∣2 ≤ 1

2

(∥∥∥Ak̂λ∥∥∥∥∥∥A∗k̂λ∥∥∥+
∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣)
≤


∥∥∥Ak̂λ∥∥∥r ∥∥∥A∗k̂λ∥∥∥r +

∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣r
2

1/r

=


〈
A∗Ak̂λ, k̂λ

〉 r
2
〈
AA∗k̂λ, k̂λ

〉 r
2

+
∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣r
2


1/r

,

whence ∣∣∣Ã (λ)
∣∣∣2r ≤ 1

2

(
Ã∗A (λ)

r
2 ÃA∗ (λ)

r
2 +

∣∣∣Ã2 (λ)
∣∣∣r) ,

and hence

(7)
∣∣∣Ã (λ)

∣∣∣2r ≤ 1

2

(
|̃A|2 (λ)

r
2 |̃A∗|2 (λ)

r
2 +

∣∣∣Ã2 (λ)
∣∣∣r)

for all λ ∈ Ω.
Taking the supremum over λ ∈ Ω in inequality (7), we obtain the desired inequality.
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Proposition 3.9. Let A ∈ B(H(Ω)) and (f, g) ∈ F . Then

(8) ber2r (A) ≤ 1

2

[(
ber
(
|A|2

)
ber
(
|A∗|2

)) r
2 + ber

(
1

p
fpr
(∣∣A2

∣∣)+
1

q
gqr
(∣∣A∗2∣∣))]

for all r ≥ 1, p ≥ q > 1 with
1

p
+

1

q
= 1 and qr ≥ 2.

Proof. Let λ ∈ Ω be any number. Then we have:∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣r ≤ ∥∥∥f (∣∣A2
∣∣) k̂λ∥∥∥r ∥∥∥g (∣∣(A2

)∗∣∣) k̂λ∥∥∥r (by Lemma 3.6 (ii) )

=
〈
f 2
(∣∣A2

∣∣) k̂λ, k̂λ〉 r
2
〈
g2
(∣∣(A2

)∗∣∣) k̂λ, k̂λ〉 r
2

≤ 1

p

〈
f 2
(∣∣A2

∣∣) k̂λ, k̂λ〉 pr
2

+
1

q

〈
g2
(∣∣(A2

)∗∣∣) k̂λ, k̂λ〉 qr
2

(by Lemma 3.4 (ii) )

≤ 1

p

〈
fpr
(∣∣A2

∣∣) k̂λ, k̂λ〉+
1

q

〈
gqr
(∣∣(A2

)∗∣∣) k̂λ, k̂λ〉 (by Lemma 3.5 (i) )

=

〈(
1

p
fpr
(∣∣A2

∣∣)+
1

q
gqr
(∣∣(A2

)∗∣∣)) k̂λ, k̂λ〉 .
Taking the supremum over λ ∈ Ω in this inequality, we have

(9) berr
(
A2
)
≤ ber

(
1

p
fpr
(∣∣A2

∣∣)+
1

q
gqr
(∣∣A∗2∣∣)) .

Now it follows from the inequalities (7) and (9) the desired inequality (8).

Notice that inequality (8) induces several Berezin number inequalities as special
cases. For example, if we take f (t) = tα, g (t) = t1−α and p = q = 2 in inequality (8),
then we get the next result.

Corollary 3.10. If A ∈ B(H(Ω)), then

ber2r (A) ≤ 1

2

[(
ber
(
|A|2

)
ber
(
|A∗|2

)) r
2 + ber

(∣∣A2
∣∣2αr +

∣∣A∗2∣∣2(1−α)r
)]

for all r ≥ 1 and 0 ≤ α ≤ 1. In particular, when r = 1 and α =
1

2
, we have

ber2 (A) ≤ ber
(
A2
)

for any self-adjoint operator A ∈ B(H(Ω)).

In conclusion of this section, recall that an operator A ∈ B(H) is hyponormal if
[A∗, A] := A∗A−AA∗ ≥ 0. The following is immediate from McCarty inequality (see
Lemma 3.5) and arithmetic-geometric mean formula.

Proposition 3.11. We have:

sup
A≥0

ber
(
A1/2

)
1 + ber (A)

≤ 1

2
.

An immediate corollary of this proposition is the following.

Corollary 3.12. If A ∈ B(H) is an hyponormal operator, then

ber
(

[A∗, A]1/2
)

1 + ber ([A∗, A])
≤ 1

2
.
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