COEFFICIENT BOUNDS FOR A SUBCLASS OF BI-UNIVALENT FUNCTIONS ASSOCIATED WITH DZIOK-SRIVASTAVA OPERATOR

Mohammad Mehdi Shabani and Saeed Hashemi Sababe*

Abstract

In this article, we represent and examine a new subclass of holomorphic and bi-univalent functions defined in the open unit disk \mathfrak{U}, which is associated with the Dziok-Srivastava operator. Additionally, we get upper bound estimates on the Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of functions in the new class and improve some recent studies.

1. Introduction

Let \mathcal{A} be a family of functions of the form

$$
\begin{equation*}
\mathfrak{f}(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}, \tag{1.1}
\end{equation*}
$$

which are holomorphic in the open unit disk $\mathfrak{U}=\{z \in \mathbb{C}:|z|<1\}$. Also, we let \mathcal{S} to denote the class of functions $\mathfrak{f} \in \mathcal{A}$ which are univalent in \mathfrak{U}.

The Koebe one-quarter theorem [4] ensures that the image of \mathfrak{U} under every univalent function $\mathfrak{f} \in \mathcal{S}$ contains a disk of radius $\frac{1}{4}$. So every function $\mathfrak{f} \in \mathcal{S}$ has an inverse \mathfrak{f}^{-1}, which is defined by

$$
\mathfrak{f}^{-1}(\mathfrak{f}(z))=z \quad z \in \mathfrak{U},
$$

and

$$
\mathfrak{f}\left(\mathfrak{f}^{-1}(w)\right)=w \quad \text { for }|w|<r_{0}(\mathfrak{f}) \text { such that } r_{0}(\mathfrak{f}) \geq \frac{1}{4}
$$

where

$$
\mathfrak{f}^{-1}(w)=w-a_{2}^{2} w+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots .
$$

A function $\mathfrak{f} \in \mathcal{A}$ is said to be bi-univalent in \mathfrak{U} if both \mathfrak{f} and \mathfrak{f}^{-1} are univalent in \mathfrak{U}. Let Σ denote the class of bi-univalent functions in \mathfrak{U} given by (1.1).
Lewin [10] enquired the class Σ of bi-univalent functions and established that $\left|a_{2}\right|<$ 1.51 for the functions belonging to Σ. Afterward, Brannan and Clunie [3] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$. Kedzierawski [9] proved this conjecture for a special case when the function \mathfrak{f} and \mathfrak{f}^{-1} are starlike functions. Tan [15] obtained the bound for $\left|a_{2}\right|$ namely

Received November 17, 2021. Revised January 22, 2022. Accepted January 24, 2022.
2010 Mathematics Subject Classification: 30C45, 30C50.
Key words and phrases: Dziok-Srivastava operator, Bi-univalent functions, Coefficient estimates.

* Corresponding Author.
(C) The Kangwon-Kyungki Mathematical Society, 2022.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
$\left|a_{2}\right| \leq 1.485$ which is the best-known estimate for functions in the class Σ. Recently, their relevance to research the bi-univalent functions class Σ (see $[7,8,11-13,16,17]$) and get non-sharp bounds on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. The coefficient estimate problem i.e. bound of $\left|a_{j}\right|(j \in \mathbb{N}-\{1,2\})$ for each $\mathfrak{f} \in \Sigma$ given by [1] is still an open problem.

The Hadamard product of two analytic functions

$$
\mathfrak{f}(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j} \quad \text { and } \quad \mathfrak{h}(z)=z+\sum_{j=2}^{\infty} b_{j} z^{j},
$$

is defined as

$$
(\mathfrak{f} * \mathfrak{h})(z)=(\mathfrak{h} * \mathfrak{f})(z)=z+\sum_{j=2}^{\infty} b_{j} a_{j} z^{j} .
$$

For the complex parameters $\mathfrak{a}, \mathfrak{b}$ and \mathfrak{c} with $\mathfrak{c} \neq 0,-1,-2,-3, \ldots$, the Gaussian hypergeometric function ${ }_{2} \mathcal{F}_{1}(\mathfrak{a}, \mathfrak{b}, \mathfrak{c} ; z)$ is defined as

$$
{ }_{2} \mathcal{F}_{1}(\mathfrak{a}, \mathfrak{b}, \mathfrak{c} ; z)=\sum_{j=0}^{\infty} \frac{(\mathfrak{a})_{j}(\mathfrak{b})_{j}}{(\mathfrak{c})_{j}} \frac{z^{j}}{j!}=1+\sum_{j=2}^{\infty} \frac{(\mathfrak{a})_{j-1}(\mathfrak{b})_{j-1}}{(\mathfrak{c})_{j-1}} \frac{z^{j-1}}{(j-1)!} \quad z \in \mathfrak{U},
$$

where $(\tau)_{j}$ is the Pochhammer symbol (or the shifted factorial) defined as follows:

$$
(\varkappa)_{j}=\frac{\Gamma(\varkappa+j)}{\Gamma(\varkappa)}= \begin{cases}1 & j=0 \\ \varkappa(\varkappa+1)(\varkappa+2) \ldots(\varkappa+j-1) & j=1,2,3, \ldots\end{cases}
$$

the generalized hypergeometric function ${ }_{\mathfrak{q}} \mathcal{F}_{\mathfrak{s}}(\mathfrak{a}, \mathfrak{b}, \mathfrak{c} ; z),(\mathfrak{q} \leq \mathfrak{s}+1, z \in \mathfrak{U})$ is defined by the following infinite series:

$$
\begin{aligned}
&{ }_{\mathfrak{q}} \mathcal{F}_{\mathfrak{s}}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{\mathfrak{q}} ; \mathfrak{b}_{1}, \ldots, \mathfrak{b}_{\mathfrak{s}} ; z\right)=\sum_{j=0}^{\infty} \frac{\left(\mathfrak{a}_{1}\right)_{j \ldots\left(\mathfrak{a}_{\mathfrak{q}}\right)_{j}}^{\left(\mathfrak{b}_{1}\right)_{j \ldots\left(\mathfrak{b}_{\mathfrak{s}}\right)_{j}} \frac{z^{j}}{j!}}}{} \\
&=1+\sum_{j=2}^{\infty} \frac{\left(\mathfrak{a}_{1}\right)_{j-1} \ldots\left(\mathfrak{a}_{\mathfrak{q}}\right)_{j-1}}{\left(\mathfrak{b}_{1}\right)_{j-1} \ldots\left(\mathfrak{b}_{\mathfrak{s}}\right)_{j-1}} \frac{z^{j-1}}{(j-1)!}
\end{aligned}
$$

correspondingly a function $\mathfrak{h}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{\mathfrak{q}} ; \mathfrak{b}_{1}, \ldots, \mathfrak{b}_{\mathfrak{s}} ; z\right)$ is defined by

$$
\mathfrak{h}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{\mathfrak{q}} ; \mathfrak{b}_{1}, \ldots, \mathfrak{b}_{\mathfrak{s}} ; z\right)=z_{\mathfrak{q}} \mathcal{F}_{\mathfrak{s}}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{\mathfrak{q}} ; \mathfrak{b}_{1}, \ldots, \mathfrak{b}_{\mathfrak{s}} ; z\right), \quad z \in \mathfrak{U} .
$$

Dziok and Srivastava [5](see also [6]) considered a linear operator

$$
\mathcal{H}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{q} ; \mathfrak{b}_{1}, \ldots, \mathfrak{b}_{\mathfrak{s}} ; z\right): \mathcal{A} \rightarrow \mathcal{A}
$$

defined by the following Hadamard product:

$$
\mathcal{H}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{\mathfrak{q}} ; \mathfrak{b}_{1}, \ldots, \mathfrak{b}_{\mathfrak{s}}\right) \mathfrak{f}(z)=\mathfrak{h}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{\mathfrak{q}} ; \mathfrak{b}_{1}, \ldots, \mathfrak{b}_{\mathfrak{s}}\right) * \mathfrak{f}(z) \quad \mathfrak{q} \leq \mathfrak{s}+1, z \in \mathfrak{U}
$$

If $\mathfrak{f} \in \mathcal{A}$ is given by (1.1), then we have

$$
\mathcal{H}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{\mathfrak{q}} ; \mathfrak{b}_{1}, \ldots, \mathfrak{b}_{\mathfrak{s}}\right) \mathfrak{f}(z)=z+\sum_{j=2}^{\infty} \Gamma_{j}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right] a_{j} z^{j}
$$

where

$$
\Gamma_{j}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]=\frac{\left(\mathfrak{a}_{1}\right)_{j-1} \ldots\left(\mathfrak{a}_{\mathfrak{q}}\right)_{j-1}}{\left(\mathfrak{b}_{1}\right)_{j-1} \ldots\left(\mathfrak{b}_{\mathfrak{s}}\right)_{j-1}} \frac{1}{(j-1)!} \quad j \in \mathbb{N} .
$$

To make the notation simple, we write

$$
\mathcal{H}_{\mathfrak{q}, \mathfrak{s}}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1} ; z\right]=\mathcal{H}\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{\mathfrak{q}} ; \mathfrak{b}_{1}, \ldots, \mathfrak{b}_{\mathfrak{s}}\right) \mathfrak{f}(z) .
$$

The linear operator $\mathcal{H}_{\mathfrak{q}, \mathfrak{s}}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1} ; z\right]$ is a generalization of many other linear operators considered earlier.

In the present article, we innovate a new subclass of the bi-univalent functions which are defined by the Dziok-Srivastava operator also we get upper bound estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ by applying the methods used earlier by Srivastava et al. [14] (see also [8]). Our results generalize and improve those in related studies of several earlier authors.
2. The subclass ${ }_{\Sigma} \mathcal{H}_{\mathfrak{q}, \mathfrak{s}}^{\Theta, \Upsilon}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1} ; \xi\right]$

In this section, we represent and examine the general subclass $\Sigma \mathcal{H}_{\mathfrak{q}, \mathfrak{s}}^{\Theta, \Upsilon}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1} ; \xi\right]$.
Definition 2.1. Let the analytic functions $\Theta, \Upsilon: \mathfrak{U} \rightarrow \mathbb{C}$ be so constrained that

$$
\begin{equation*}
\min \{\mathfrak{R e}(\Theta(z)), \mathfrak{R e}(\Upsilon(z))\}>0, \quad z \in \mathfrak{U} \text { and } \Theta(0)=1=\Upsilon(0) \tag{2.1}
\end{equation*}
$$

We say that a function $\mathfrak{f} \in \Sigma \mathcal{H}_{\mathfrak{q}, \mathfrak{s}}^{\Theta, \mathfrak{\Upsilon}}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1} ; \xi\right],(\xi \geq 1)$, if the following conditions satisfy

$$
\begin{equation*}
\mathfrak{f} \in \Sigma \quad \text { and } \quad(1-\xi) \frac{\mathcal{H}_{\mathfrak{q}, \mathfrak{s}}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1} ; z\right]}{z}+\xi\left(\mathcal{H}_{\mathfrak{q}, \mathfrak{s}}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1} ; z\right]\right)^{\prime} \in \Theta(\mathfrak{U}), \quad z \in \mathfrak{U}, \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\xi) \frac{\mathfrak{g}(w)}{w}+\xi \mathfrak{g}^{\prime}(w) \in \Upsilon(\mathfrak{U}), \quad w \in \mathfrak{U} \tag{2.3}
\end{equation*}
$$

where the function $\mathfrak{g}(w)$ is given by

$$
\begin{align*}
\mathfrak{g}(w) & =\mathcal{H}_{\mathfrak{q}, \mathfrak{s}}^{-1}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1} ; z\right] \\
& =w-\Gamma_{2}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right] a_{2} w^{2}+\left(2\left(\Gamma_{2}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right)^{2} a_{2}-\Gamma_{3}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right] a_{3}\right) w^{3}+\cdots . \tag{2.4}
\end{align*}
$$

Remark 2.2. There are different options of the functions $\Theta(z)$ and $\Upsilon(z)$ which would provide interesting subclasses of the analytic function class \mathcal{A}.

1. If we take

$$
\Theta(z)=\Upsilon(z)=\left(\frac{1+z}{1-z}\right)^{\lambda} \quad z \in \mathfrak{U}, 0<\lambda \leq 1
$$

then the functions $\Theta(z)$ and $\Upsilon(z)$ satisfy the hypotheses of Definition 2.1. Clearly, if $\mathfrak{f} \in \Sigma \mathcal{H}_{\mathfrak{q}, \mathfrak{s}}^{\Theta, \Upsilon}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1} ; \xi\right]$, then we have

$$
\left|\arg \left((1-\xi) \frac{\mathcal{H}_{\mathfrak{q}, \mathfrak{s}}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1} ; z\right]}{z}+\xi\left(\mathcal{H}_{\mathfrak{q}, \mathfrak{s}}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1} ; z\right]\right)^{\prime}\right)\right|<\frac{\lambda \pi}{2} \quad z \in \mathfrak{U}, \xi \geq 1
$$

and

$$
\left|\arg \left((1-\xi) \frac{\mathfrak{g}(w)}{w}+\xi \mathfrak{g}^{\prime}(w)\right)\right|<\frac{\lambda \pi}{2} \quad w \in \mathfrak{U}, \xi \geq 1
$$

2. If we take

$$
\Theta(z)=\Upsilon(z)=\frac{1+(1-2 \delta) z}{1-z} \quad z \in \mathfrak{U}, 0 \leq \delta<1
$$

then the functions $\Theta(z)$ and $\Upsilon(z)$ satisfy the hypotheses of Definition 2.1. Clearly, if $\mathfrak{f} \in \Sigma \mathcal{H}_{\mathfrak{q}, \mathfrak{s}}^{\Theta, \mathfrak{\gamma}}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1} ; \xi\right]$, then we have

$$
\mathfrak{R e}\left[(1-\xi) \frac{\mathcal{H}_{\mathfrak{q}, \mathfrak{s}}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1} ; z\right]}{z}+\xi\left(\mathcal{H}_{\mathfrak{q}, 5}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1} ; z\right]\right)^{\prime}\right]>\delta \quad z \in \mathfrak{U}, \quad \xi \geq 1,0 \leq \delta<1
$$

and

$$
\mathfrak{R e}\left[(1-\xi) \frac{\mathfrak{g}(w)}{w}+\xi \mathfrak{g}^{\prime}(w)\right]>\delta, \quad w \in \mathfrak{U}, \quad \xi \geq 1,0 \leq \delta<1
$$

3. For $\mathfrak{q}=2, \mathfrak{s}=1, \mathfrak{a}_{1}=\mathfrak{a}_{2}=\mathfrak{b}_{1}=\xi=1$ and $\Theta(z)=\Upsilon(z)=\left(\frac{1+z}{1-z}\right)^{\lambda}$, we have

$$
{ }_{\Sigma} \mathcal{H}_{1,2}^{\Theta, \Upsilon}[1 ; 1 ; 1]=\mathcal{H}_{\Sigma}^{\lambda},
$$

where the class $\mathcal{H}_{\Sigma}^{\lambda}$ was studied by Srivastava et al [14].
4. For $\mathfrak{q}=2, \mathfrak{s}=1, \mathfrak{a}_{1}=\mathfrak{a}_{2}=\mathfrak{b}_{1}=\xi=1$ and $\Theta(z)=\Upsilon(z)=\frac{1+(1-2 \delta) z}{1-z}$, we have

$$
{ }_{\Sigma} \mathcal{H}_{1,2}^{\Theta, \Upsilon}[1 ; 1 ; 1]=H_{\Sigma}(\delta),
$$

where the class $\mathcal{H}_{\Sigma}(\delta)$ was studied by Srivastava et al [14].
5. For $\Theta(z)=\Upsilon(z)=\left(\frac{1+z}{1-z}\right)^{\lambda}$ we have

$$
\Sigma \mathcal{H}_{\mathfrak{q}, \mathfrak{s}}^{\Theta, \mathfrak{\Upsilon}}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1} ; \xi\right]=\mathcal{H}_{\mathfrak{q}, \mathfrak{s}}^{\Sigma}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1} ; \lambda ; \xi\right],
$$

where the class $\mathcal{H}_{\mathfrak{q}, \mathfrak{s}}^{\Sigma}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1} ; \lambda ; \xi\right]$ was introduced and studied by M. K. Aouf [2].

3. Coefficient Estimates

For proof of the theorem, we need the following lemma.
Lemma 3.1. [4] If $\phi \in \mathcal{P}$, then $\left|\phi_{j}\right| \leqslant 2$ for each j, where \mathcal{P} is the class of all functions $\phi(z)$ analytic in \mathfrak{U} for which $\mathfrak{R e}(\phi(z))>0, \phi(z)=1+\phi_{1} z+\phi_{2} z^{2}+\cdots$ for $z \in \mathfrak{U}$.

Theorem 3.2. Let $\mathfrak{f}(z)$ given by the Taylor Maclaurin series expansion (1.1) be in the class ${ }_{\Sigma} \mathcal{H}_{\mathfrak{q}, \mathfrak{s}}^{\Theta}\left[\mathfrak{r}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1} ; \xi\right],(\xi \geq 1)\right.$. Then,

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|\Theta^{\prime}(0)\right|^{2}+\left|\Upsilon^{\prime}(0)\right|^{2}}{2(\xi+1)^{2}\left|\Gamma_{2}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right|^{2}}}, \sqrt{\frac{\left|\Theta^{\prime \prime}(0)\right|+\left|\Upsilon^{\prime \prime}(0)\right|}{4(2 \xi+1)\left|\Gamma_{2}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right|^{2}}}\right\} \tag{3.1}
\end{equation*}
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\frac{\left|\Theta^{\prime}(0)\right|^{2}+\left|\Upsilon^{\prime}(0)\right|^{2}}{2(\xi+1)^{2}\left|\Gamma_{3}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right|}+\frac{\left|\Theta^{\prime \prime}(0)\right|+\left|\Upsilon^{\prime \prime}(0)\right|}{4(2 \xi+1)\left|\Gamma_{3}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right|}, \frac{\left|\Theta^{\prime \prime}(0)\right|}{2(2 \xi+1)\left|\Gamma_{3}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right|}\right\} .
$$

Proof. First of all, it follows from the conditions (2.2) and (2.3) that,

$$
\begin{equation*}
(1-\xi) \frac{\mathcal{H}_{\mathfrak{q}, \mathfrak{s}}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1} ; z\right]}{z}+\xi\left(\mathcal{H}_{\mathfrak{q}, \mathfrak{s}}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1} ; z\right]\right)^{\prime}=\Theta(z) \quad z \in \mathfrak{U}, \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\xi) \frac{\mathfrak{g}(w)}{w}+\xi \mathfrak{g}^{\prime}(w)=\Upsilon(w) \quad w \in \mathfrak{U} \tag{3.3}
\end{equation*}
$$

where the function $\mathfrak{g}(w)$ is given by (2.4), respectively, $\Theta(z)$ and $\Upsilon(w)$ satisfy in (2.1). Also, the functions $\Theta(z)$ and $\Upsilon(w)$ have the following Taylor-Maclaurin series expansions:

$$
\begin{align*}
& \Theta(z)=1+\Theta_{1} z+\Theta_{2} z^{2}+\cdots \\
& \Upsilon(w)=1+\Upsilon_{1} w+\Upsilon_{2} w^{2}+\cdots \tag{3.4}
\end{align*}
$$

Now, by comparing the series expansions (3.4) by the coefficients (3.2) and (3.3), we get

$$
\begin{align*}
& (\xi+1) \Gamma_{2}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right] a_{2}=\Theta_{1} \tag{3.5}\\
& \quad(2 \xi+1) \Gamma_{3}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right] a_{3}=\Theta_{2} \tag{3.6}\\
& -(\xi+1) \Gamma_{2}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right] a_{2}=\Upsilon_{1} \tag{3.7}\\
& \quad(2 \xi+1)\left(2\left(\Gamma_{2}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right)^{2} a_{2}^{2}-\Gamma_{3}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right] a_{3}\right)=\Upsilon_{2} \tag{3.8}
\end{align*}
$$

From (3.5) and (3.7), we obtain

$$
\begin{align*}
& \Theta_{1}=-\Upsilon_{1} \\
& \Theta_{1}^{2}+\Upsilon_{1}^{2}=2(\xi+1)^{2}\left(\Gamma_{2}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right)^{2} a_{2}^{2} \tag{3.9}
\end{align*}
$$

Also, From (3.6) and (3.8), we find that

$$
\begin{equation*}
\Theta_{2}+\Upsilon_{2}=2(2 \xi+1)\left(\Gamma_{2}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right)^{2} a_{2}^{2} \tag{3.10}
\end{equation*}
$$

Therefore, we find from the equations (3.9) and (3.10) that

$$
\left|a_{2}\right|^{2} \leq \frac{\left|\Theta^{\prime}(0)\right|^{2}+\left|\Upsilon^{\prime}(0)\right|^{2}}{2(\xi+1)^{2}\left|\Gamma_{2}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right|^{2}}
$$

and

$$
\left|a_{2}\right|^{2} \leq \frac{\left|\Theta^{\prime \prime}(0)\right|+\left|\Upsilon^{\prime \prime}(0)\right|}{4(2 \xi+1)\left|\Gamma_{2}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right|^{2}} .
$$

So we get the requested estimate on the coefficient $\left|a_{2}\right|$ as asserted in (3.1). Next, in order to find the bound on the coefficient $\left|a_{3}\right|$, we subtract (3.8) from (3.6). We thus get

$$
\begin{equation*}
\Theta_{2}-\Upsilon_{2}=2(2 \xi+1)\left(\Gamma_{3}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right] a_{3}-\left(\Gamma_{2}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right)^{2} a_{2}^{2}\right) \tag{3.11}
\end{equation*}
$$

Upon substituting the value of a_{2}^{2} from (3.9) into (3.11), it follows that

$$
a_{3}=\frac{\Theta_{1}^{2}+\Upsilon_{1}^{2}}{2(\xi+1)^{2} \Gamma_{3}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]}+\frac{\Theta_{2}-\Upsilon_{2}}{2(2 \xi+1) \Gamma_{3}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]} .
$$

We thus find that

$$
\left|a_{3}\right| \leq \frac{\left|\Theta^{\prime}(0)\right|^{2}+\left|\Upsilon^{\prime}(0)\right|^{2}}{2(\xi+1)^{2}\left|\Gamma_{3}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right|}+\frac{\left|\Theta^{\prime \prime}(0)\right|+\left|\Upsilon^{\prime \prime}(0)\right|}{4(2 \xi+1)\left|\Gamma_{3}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right|}
$$

On the other hand, upon substituting the value of a_{2}^{2} from (3.10) into (3.11), it follows that

$$
a_{3}=\frac{\Theta_{2}}{(2 \xi+1) \Gamma_{3}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]} .
$$

Consequently, we have

$$
\left|a_{3}\right| \leq \frac{\left|\Theta^{\prime \prime}(0)\right|}{2(2 \xi+1)\left|\Gamma_{3}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right|}
$$

This completes the proof of Theorem 3.2.

4. Corollaries and Consequences

By setting $\Theta(z)=\Upsilon(z)=\left(\frac{1+z}{1-z}\right)^{\lambda}, \xi=1, \mathfrak{q}=2$ and $\mathfrak{s}=\mathfrak{a}_{1}=\mathfrak{a}_{2}=\mathfrak{b}_{1}=1$ in Theorem 3.2. we get the following result.

Corollary 4.1. Let the function $\mathfrak{f}(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the bi-univalent function class $\mathcal{H}_{\Sigma}^{\lambda}$. Then

$$
\left|a_{2}\right| \leq \frac{\sqrt{2} \lambda}{\sqrt{3}} \quad \text { and } \quad\left|a_{3}\right| \leq \frac{2 \lambda^{2}}{3} .
$$

Remark 4.2. Corollary 4.1 is an development of the following estimates obtained by Srivastava et al. [14].

Corollary 4.3. [14] Let the function $\mathfrak{f}(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the bi-univalent function class $\mathcal{H}_{\Sigma}^{\lambda}$. Then

$$
\left|a_{2}\right| \leq \frac{\sqrt{2} \lambda}{\sqrt{\lambda+2}} \quad \text { and } \quad\left|a_{3}\right| \leq \frac{(3 \lambda+2) \lambda}{3} .
$$

By setting $\Theta(z)=\Upsilon(z)=\left(\frac{1+z}{1-z}\right)^{\lambda}$ in Theorem 3.2, we get the following consequence.
Corollary 4.4. Let the function $\mathfrak{f}(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the bi-univalent function class $\Sigma_{\Sigma} \mathcal{H}_{\mathfrak{q}, \mathfrak{s}}^{\Theta}\left[\mathfrak{\Upsilon}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1} ; \xi\right],(\eta \geq 1)\right.$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{2 \lambda}{\left|\Gamma_{2}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right|(\xi+1)}, \frac{2 \lambda}{\left|\Gamma_{2}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right| \sqrt{2(2 \xi+1)}}\right\},
$$

and

$$
\left|a_{3}\right| \leq \frac{2 \lambda^{2}}{\left|\Gamma_{3}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right|(2 \xi+1)} .
$$

Thus, Corollary 4.4 is an improvement of the following estimates obtained by Auof [2].

Corollary 4.5. [2] Let the function $\mathfrak{f}(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the bi-univalent function class $\mathcal{H}_{\mathfrak{q}, 5}^{\Sigma}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1} ; \lambda ; \xi\right](\xi \geq 1)$. Then

$$
\left|a_{2}\right| \leq \frac{2 \lambda}{\left|\Gamma_{2}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right| \sqrt{(\xi+1)^{2}+\lambda\left(1+2 \xi-\xi^{2}\right)}}
$$

and

$$
\left|a_{3}\right| \leq \frac{4 \lambda^{2}}{\left|\Gamma_{3}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right|(\xi+1)^{2}}+\frac{2 \lambda}{\left|\Gamma_{3}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right|(2 \xi+1)} .
$$

Remark 4.6. For the coefficient $\left|a_{2}\right|$ with conditions $0<\lambda \leq 1, \xi \geq 1+\sqrt{2}$

$$
\frac{2 \lambda}{\left|\Gamma_{2}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right|(\xi+1)} \leq \frac{2 \lambda}{\left|\Gamma_{2}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right| \sqrt{(\xi+1)^{2}+\lambda\left(1+2 \xi-\xi^{2}\right)}},
$$

and with conditions $0<\lambda \leq 1,1 \leq \xi<1+\sqrt{2}$

$$
\frac{2 \lambda}{\left|\Gamma_{2}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right| \sqrt{2(2 \xi+1)}} \leq \frac{2 \lambda}{\left|\Gamma_{2}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right| \sqrt{(\xi+1)^{2}+\lambda\left(1+2 \xi-\xi^{2}\right)}} .
$$

Otherwise, for the coefficient $\left|a_{3}\right|$, we make the following investigations:

$$
\begin{aligned}
\frac{2 \lambda^{2}}{\left|\Gamma_{3}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right|(2 \xi+1)} & \leq \frac{2 \lambda}{\left|\Gamma_{3}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right|(2 \xi+1)} \\
& \leq \frac{4 \lambda^{2}}{\left|\Gamma_{3}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right|(\xi+1)^{2}}+\frac{2 \lambda}{\left|\Gamma_{3}\left[\mathfrak{a}_{1} ; \mathfrak{b}_{1}\right]\right|(2 \xi+1)}
\end{aligned}
$$

Acknowledgments

A part of this research was carried out while the second author was visiting the University of Alberta. The authors are grateful to professor Sibel Yalçın for her comments.

References

[1] R. M. Ali, S. K. Lee, V. Ravichandran and S. Subramaniam, Coefficient estimates for biunivalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), 344-351.
[2] M. K. Aouf, R. M. El-Ashwah, and A. Abd-Eltawab, New Subclasses of Biunivalent Functions Involving Dziok-Srivastava Operator, ISRN Mathematical Analysis (2013), Article ID 387178, 5 pages.
[3] D. A. Brannan and J. G. Clunie (Eds.), Aspects of Contemporary Complex Analysis, Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1-20, 1979, (Academic Press, New York and London, 1980).
[4] P. L. Duren, Univalent Functions, Springer-Verlag, New York, Berlin, 1983.
[5] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), 1-13.
[6] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. 14 (2003), 7-18.
[7] T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, PanAm. Math. J. 22 (2012), 15-26.
[8] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569-1573.
[9] A. W. Kedzierawski, Some remarks on bi-univalent functions, Ann. Univ. Mariae Curie Sklodowska Sect. A. 39 (1985), 77-81.
[10] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68.
[11] M.M. Shabani and S. Hashemi Sababe, On Some Classes of Spiral-like Functions Defined by the Salagean Operator, Korean J. Math. 28 (2020), 137-147.
[12] M.M. Shabani, Maryam Yazdi and S. Hashemi Sababe, Coefficient Bounds for a Subclass of Harmonic Mappings Convex in one direction, KYUNGPOOK Math. J. 61 (2021), 269-278
[13] M.M. Shabani, Maryam Yazdi and S. Hashemi Sababe, Some distortion theorems for new subclass of harmonic univalent functions, Honam Mathematical J. 42(4) (2020), 701-717.
[14] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23 (2010), 1188-1192.
[15] D. L. Tan, Coefficient estimates for bi-univalent functions, Chinese Ann. Math. Ser. A. 5 (1984), 559-568.
[16] Q. H. Xu, Y. C. Gui, and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990-994.
[17] Q. H. Xu, H.G. Xiao, and H. M. Srivastava, A certain general subclass of analytic and biunivalent functions and associated cofficient estimate problems, Appl. Math. Comput. 218 (2012), 11461-11465.

Mohammad Mehdi Shabani

Faculty of sciences, Imam Ali University, Tehran, Iran.
E-mail: Mohammadmehdishabani@yahoo.com

Saeed Hashemi Sababe

Young Researchers and Elite Club, Malard Branch, Islamic Azad University, Malard, Iran.
E-mail: Hashemi_1365@yahoo.com

