EXTENSION OF GRACE'S THEOREM TO BI-COMPLEX POLYNOMIALS

Zahid Manzoor Wani* and Wali Mohammad ShaH ${ }^{\dagger}$

Abstract

In this paper, we prove some results concerning the zeros of Bi-complex polynomials. These results as special cases include Grace's theorem and related results.

1. Introduction and Historical Background

Let $\mathbb{C}=\{z: z=x+i y ; x, y \in \mathbb{R}$ and $i=\sqrt{-1}\}$ be the set of complex numbers. For $z_{1}, z_{2} \in \mathbb{C}$, the set $\mathbb{B C}$ of bi-complex numbers is defined as $\mathbb{B C}=\left\{Z: Z=z_{1}+\right.$ $\left.j z_{2} ; z_{1}, z_{2} \in \mathbb{C}\right\}$, where $i j=j i=k$ and $i^{2}=j^{2}=-k^{2}=-1$. Here k is known as a hyperbolic imaginary unit. Thus more precisely bi-complex numbers are complex numbers with complex coefficients.

Addition and multiplication on $\mathbb{B C}$ is defined in the similar fashion as is defined on \mathbb{C} and it is easy to observe that the set $\mathbb{B} \mathbb{C}$ forms a commutative ring. However due to the presence of zero-divisors, $\mathbb{B C}$ is not a field. The set of zero-divisors in $\mathbb{B C}$ is given as:

$$
\mathcal{O}=\left\{z_{1}+j z_{2} \in \mathbb{B C}: z_{1}^{2}+z_{2}^{2}=0\right\}=\{a(1 \pm i j): a \in \mathbb{C}\} .
$$

For $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}$, we have $Z=z_{1}+j z_{2}=x_{1}+i x_{2}+j y_{1}+j i y_{2}$. Thus $\mathbb{B} \mathbb{C}$ can be viewed as a real vector space isomorphic to \mathbb{R}^{4} via the map $x_{1}+i x_{2}+j y_{1}+j i y_{2} \rightarrow\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$.

As (for reference see [3]) the structure of $\mathbb{B C}$ consists of two imaginary units and one hyperbolic unit in it, therefore there are three possible conjugations on this structure:
1.: $\bar{Z}:=\overline{z_{1}}+j \overline{z_{2}}$ (the bar-conjugation);
2.: $Z^{\dagger}:=z_{1}-j z_{2} \quad$ (the \dagger-conjugation);
3.: $Z^{*}:=(\bar{Z})^{\dagger}=\overline{Z^{\dagger}}=\overline{z_{1}}-j \overline{z_{2}} \quad$ (the $*$-conjugation).

One of the most important presentation of bi-complex numbers is the idempotent representation. The bi-complex numbers $e=\frac{1+i j}{2}, e^{\dagger}=\frac{1-i j}{2}$ are linearly independent in the linear space $\mathbb{B} \mathbb{C}$ over \mathbb{C}. From the simple calculations, it can be easily seen that $e+e^{\dagger}=1$, $e-e^{\dagger}=i j, e . e^{\dagger}=0, e^{2}=e$ and $\left(e^{\dagger}\right)^{2}=e^{\dagger}$. Also it can be easily verified that any bi-complex number $Z=z_{1}+j z_{2}$ can be uniquely written as $Z=\left(z_{1}-i z_{2}\right) e+\left(z_{1}+i z_{2}\right) e^{\dagger}$ and this unique representation of the bi-complex numbers is known as their idempotent representation.

[^0]If $Z=z_{1}+j z_{2}=\zeta_{1} e+\zeta_{2} e^{\dagger}$, then the norm function $\|\|:. \mathbb{B} \mathbb{C} \rightarrow \mathbb{R}^{+}$, where R^{+}denotes the set of all non-negative real numbers, is defined as:

$$
\|Z\|=\left\{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right\}^{\frac{1}{2}}=\left\{\frac{\left|\zeta_{1}\right|^{2}+\left|\zeta_{2}\right|^{2}}{2}\right\}^{\frac{1}{2}}
$$

From the idempotent representation of any bi-complex number $Z=z_{1}+j z_{2}$ as $Z=$ $\left(z_{1}-i z_{2}\right) e+\left(z_{1}+i z_{2}\right) e^{\dagger}$, we get the idea of defining two spaces $\mathbb{A}=\left\{z_{1}-i z_{2}: z_{1}, z_{2} \in \mathbb{C}\right\}$ and $\overline{\mathbb{A}}=\left\{z_{1}+i z_{2}: z_{1}, z_{2} \in \mathbb{C}\right\}$, known as auxiliary complex spaces. Though \mathbb{A} and $\overline{\mathbb{A}}$ contain same elements as in \mathbb{C} but these convenient notations are used for special representation of elements in the sense that each $Z=z_{1}+j z_{2}=\left(z_{1}-i z_{2}\right) e+\left(z_{1}+i z_{2}\right) e^{\dagger} \in \mathbb{B C}$ associates the points $\left(z_{1}-i z_{2}\right) \in \mathbb{A}$ and $\left(z_{1}+i z_{2}\right) \in \overline{\mathbb{A}}$. Also to each point $\left(z_{1}-i z_{2}, z_{1}+i z_{2}\right) \in \mathbb{A} \times \overline{\mathbb{A}}$, there is a unique point in $\mathbb{B} \mathbb{C}$.

The cartesian set $\mathbb{B C}$ determined by $X_{1} \subset \mathbb{A}$ and $X_{2} \subset \overline{\mathbb{A}}$ is defined as

$$
X_{1} \times_{e} X_{2}:=\left\{z_{1}+j z_{2} \in \mathbb{B C}: z_{1}+j z_{2}=w_{1} e+w_{2} e^{\dagger},\left(w_{1}, w_{2}\right) \in X_{1} \times X_{2}\right\}
$$

An open discus $D\left(a ; r_{1}, r_{2}\right)$ with centre $a=a_{1} e+a_{2} e^{\dagger}$ and radii $r_{1}>0, r_{2}>0$ is defined as

$$
\begin{aligned}
D\left(a ; r_{1}, r_{2}\right) & =B\left(a_{1}, r_{1}\right) \times{ }_{e} B\left(a_{2}, r_{2}\right) \\
& =\left\{w_{1} e+w_{2} e^{\dagger} \in \mathbb{B} \mathbb{C}:\left|w_{1}-a_{1}\right|<r_{1},\left|w_{2}-a_{2}\right|<r_{2}\right\}
\end{aligned}
$$

and a closed discus $\bar{D}\left(a ; r_{1}, r_{2}\right)$ with centre $a=a_{1} e+a_{2} e^{\dagger}$ and radii $r_{1}>0, r_{2}>0$ is defined as

$$
\begin{aligned}
\bar{D}\left(a ; r_{1}, r_{2}\right) & =\bar{B}\left(a_{1}, r_{1}\right) \times_{e} \bar{B}\left(a_{2}, r_{2}\right) \\
& =\left\{w_{1} e+w_{2} e^{\dagger} \in \mathbb{B C}:\left|w_{1}-a_{1}\right| \leq r_{1},\left|w_{2}-a_{2}\right| \leq r_{2}\right\}
\end{aligned}
$$

Where $B(z, r)$ and $\bar{B}(z, r)$ respectively represent open and closed ball with centre z and radius r.

It is worth here to mention that $\bar{D}\left(a ; r_{1}, r_{2}\right)$, the product of two discs respectively of radii r_{1} and r_{2}, geometrically represents a duocylinder or double cylinder in 4-dimensional Euclidean space. This duocylinder or double cylinder in 4-dimensional Euclidean space is analogous to a cylinder in 3- dimensional Euclidean space, which is the cartesian product of a disc with a line segment (for reference see [6]). If both $r_{1}>0$ and $r_{2}>0$ are equal to r, then the discus is called a $\mathbb{B C}-D i s c$ and is denoted by $D(a ; r, r)=D(a ; r)$.

A bi-complex polynomial of degree n is a function of the form

$$
P(Z)=\sum_{i=0}^{n} A_{i} Z^{i}, \quad A_{n} \neq 0
$$

where $A_{i}, i=0,1,2, \ldots, n$ are bi-complex numbers and Z is a bi-complex variable. Now if we write $Z=z_{1}+j z_{2}=\zeta_{1} e+\zeta_{2} e^{\dagger}$ and $A_{i}=\alpha_{i} e+\beta_{i} e^{\dagger}$ for all $i=0,1,2, \ldots, n$, then $Z^{i}=\zeta_{1}{ }^{i} e+\zeta_{2}{ }^{i} e^{\dagger}$ and we can re-write our polynomial in the idempotent representation as

$$
P(Z)=\sum_{i=0}^{n}\left(\alpha_{i} \zeta_{1}^{i}\right) e+\sum_{i=0}^{n}\left(\beta_{i} \zeta_{2}^{i}\right) e^{\dagger}=f_{1}\left(\zeta_{1}\right) e+f_{2}\left(\zeta_{2}\right) e^{\dagger}
$$

Now if we denote the sets of distinct zeros of f_{1} and f_{2} by S_{1} and S_{2}, and if S denotes the set of distinct zeros of the polynomial P, then

$$
S=S_{1} e+S_{2} e^{\dagger}
$$

Therefore the following three cases fully describe the structure of the null-set of the polynomial $P(Z)$ of degree n (for details see [3])

1. If both polynomials f_{1} and f_{2} are of degree at least one, and if $S_{1}=\left\{\mathfrak{z}_{1,1}, \mathfrak{z}_{1,2}, \ldots, \mathfrak{z}_{1, k}\right\}$ and $S_{2}=\left\{\mathfrak{z}_{2,1}, \mathfrak{z}_{2,2}, \ldots, \mathfrak{z}_{2, l}\right\}$, then the set of distinct zeros of the polynomial $P(z)$ is given by

$$
S=\left\{Z_{s, t}=\mathfrak{z}_{1, s} e+\mathfrak{z}_{2, t} e^{\dagger}: s=1, \ldots, k, t=1 \ldots, l\right\} .
$$

2. If f_{1} is identically zero, then $S_{1}=\mathbb{C}$ and $S_{2}=\left\{\mathfrak{z}_{2,1}, \mathfrak{z}_{2,2}, \ldots, \mathfrak{z}_{2, l}\right\}$, with $l \leq n$. Therefore

$$
S=\left\{Z_{t}=\lambda e+\mathfrak{z}_{2, t} e^{\dagger}: \lambda \in \mathbb{C}, t=1 \ldots, l\right\} .
$$

Similarly, If f_{2} is identically zero, then $S_{2}=\mathbb{C}$ and $S_{1}=\left\{\mathfrak{z}_{1,1}, \mathfrak{z}_{1,2}, \ldots, \mathfrak{z}_{1, k}\right\}$, with $k \leq n$. Hence

$$
S=\left\{Z_{s}=\mathfrak{z}_{1, s} e+\lambda e^{\dagger}: \lambda \in \mathbb{C}, s=1 \ldots, k\right\}
$$

3. If all the coefficients A_{i} with the exception $A_{0}=\alpha_{0} e+\beta_{0} e^{\dagger}$ are complex multiples of e (respectively of e^{\dagger}), but $\beta_{0} \neq 0$ (respectively $\alpha_{0} \neq 0$), then polynomial P has no zeros.

In this paper, we extend some results concerning complex polynomials to Bi-complex polynomials. Before discussing these results, we first recall the following basic definitions. Let \mathbb{P}_{n} be the class of complex polynomials of degree n. Let $f, g \in \mathbb{P}_{n}$ be such that for $A_{j}, B_{j} \in \mathbb{C}$, $j=0,1,2, \ldots, n, f(z)=\sum_{j=0}^{n}\binom{n}{j} A_{j} z^{j}$ and $g(z)=\sum_{j=0}^{n}\binom{n}{j} B_{j} z^{j}, A_{n} B_{n} \neq 0$, then these two polynomials are said to be Apolar, if their coefficients satisfy the equation

$$
\begin{equation*}
A_{0} B_{n}-\binom{n}{1} A_{1} B_{n-1}+\binom{n}{2} A_{2} B_{n-2}+\ldots+(-1)^{n} A_{n} B_{0}=0 \tag{1.1}
\end{equation*}
$$

Clearly, for a given polynomial there are number of polynomials apolar to it. Also the Hadamard product of these complex polynomials f and g is defined as

$$
h(z):=(f * g)(z)=\sum_{j=0}^{n}\binom{n}{j} A_{j} B_{j} z^{j} .
$$

1.1. Apolarity of Bi-complex polynomials. Following the approach of complex polynomials, we can say that two bi-complex polynomials

$$
F(Z)=\sum_{k=0}^{n}\binom{n}{k} A_{k} Z^{k}=\left(\sum_{k=0}^{n}\binom{n}{k} \alpha_{k} \zeta_{1}^{k}\right) e+\left(\sum_{k=0}^{n}\binom{n}{k} \beta_{k} \zeta_{2}^{k}\right) e^{\dagger}=f_{1}\left(\zeta_{1}\right) e+f_{2}\left(\zeta_{2}\right) e^{\dagger}
$$

and

$$
G(Z)=\sum_{k=0}^{n}\binom{n}{k} B_{k} Z^{k}=\left(\sum_{k=0}^{n}\binom{n}{k} \gamma_{k} \zeta_{1}^{k}\right) e+\left(\sum_{k=0}^{n}\binom{n}{k} \delta_{k} \zeta_{2}^{k}\right) e^{\dagger}=g_{1}\left(\zeta_{1}\right) e+g_{2}\left(\zeta_{2}\right) e^{\dagger},
$$

where $A_{i}=\alpha_{i} e+\beta_{i} e^{\dagger}, B_{i}=\gamma_{i} e+\delta_{i} e^{\dagger}$ for $i=1,2, \ldots, n$ and $Z=\zeta_{1} e+\zeta_{1} e^{\dagger}$, are apolar, if

$$
\begin{aligned}
& A_{0} B_{n}-\binom{n}{1} A_{1} B_{n-1}+\binom{n}{2} A_{2} B_{n-2}-\ldots+(-1)^{n} A_{n} B_{0} \\
&=\left(\alpha_{0} e+\beta_{0} e^{\dagger}\right)\left(\gamma_{n} e+\delta_{n} e^{\dagger}\right)-\binom{n}{1}\left(\alpha_{1} e+\beta_{1} e^{\dagger}\right)\left(\gamma_{n-1} e+\delta_{n-1} e^{\dagger}\right)+ \\
&\binom{n}{2}\left(\alpha_{2} e+\beta_{2} e^{\dagger}\right)\left(\gamma_{n-2} e+\delta_{n-2} e^{\dagger}\right)-\ldots+(-1)^{n}\left(\alpha_{n} e+\beta_{n} e^{\dagger}\right)\left(\gamma_{0} e+\delta_{0} e^{\dagger}\right) \\
&=\left(\alpha_{0} \gamma_{n}-\binom{n}{1} \alpha_{1} \gamma_{n-1}+\binom{n}{2} \alpha_{2} \gamma_{n-2}-\ldots+(-1)^{n} \alpha_{n} \gamma_{0}\right) e \\
& \quad+\left(\beta_{0} \delta_{n}-\binom{n}{1} \beta_{1} \delta_{n-1}+\binom{n}{2} \beta_{2} \delta_{n-2}-\ldots+(-1)^{n} \beta_{n} \delta_{0}\right) e^{\dagger} \\
&= 0 .
\end{aligned}
$$

That is, if

$$
\begin{equation*}
\alpha_{0} \gamma_{n}-\binom{n}{1} \alpha_{1} \gamma_{n-1}+\binom{n}{2} \alpha_{2} \gamma_{n-2}-\ldots+(-1)^{n} \alpha_{n} \gamma_{0}=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{0} \delta_{n}-\binom{n}{1} \beta_{1} \delta_{n-1}+\binom{n}{2} \beta_{2} \delta_{n-2}-\ldots+(-1)^{n} \beta_{n} \delta_{0}=0 \tag{2}
\end{equation*}
$$

From (1) and (2), it follows that two bi-complex polynomials

$$
F(Z)=\sum_{k=0}^{n}\binom{n}{k} A_{k} Z^{k}=\left(\sum_{k=0}^{n}\binom{n}{k} \alpha_{k} \zeta_{1}^{k}\right) e+\left(\sum_{k=0}^{n}\binom{n}{k} \beta_{k} \zeta_{2}^{k}\right) e^{\dagger}=f_{1}\left(\zeta_{1}\right) e+f_{2}\left(\zeta_{2}\right) e^{\dagger}
$$

and

$$
G(Z)=\sum_{k=0}^{n}\binom{n}{k} B_{k} Z^{k}=\left(\sum_{k=0}^{n}\binom{n}{k} \gamma_{k} \zeta_{1}^{k}\right) e+\left(\sum_{k=0}^{n}\binom{n}{k} \delta_{k} \zeta_{2}^{k}\right) e^{\dagger}=g_{1}\left(\zeta_{1}\right) e+g_{2}\left(\zeta_{2}\right) e^{\dagger}
$$

are Apolar, if the coefficients of their corresponding idempotent parts satisfy the following equations simultaneously

$$
\alpha_{0} \gamma_{n}-\binom{n}{1} \alpha_{1} \gamma_{n-1}+\binom{n}{2} \alpha_{2} \gamma_{n-2}-\ldots+(-1)^{n} \alpha_{n} \gamma_{0}=0
$$

and

$$
\beta_{0} \delta_{n}-\binom{n}{1} \beta_{1} \delta_{n-1}+\binom{n}{2} \beta_{2} \delta_{n-2}-\ldots+(-1)^{n} \beta_{n} \delta_{0}=0
$$

In other words, two bi-complex polynomials $F(Z)=f_{1}\left(\zeta_{1}\right) e+f_{2}\left(\zeta_{2}\right) e^{\dagger}$ and $G(Z)=g_{1}\left(\zeta_{1}\right) e+$ $g_{2}\left(\zeta_{2}\right) e^{\dagger}$ are apolar if their corresponding idempotent parts are apolar simultaneously.
1.2. Hadamard product of Bi-complex polynomials. Following the approach of complex functions, we define the Hadamard product of two bi-complex polynomials

$$
F(Z)=\sum_{k=0}^{n}\binom{n}{k} A_{k} Z^{k}=\left(\sum_{k=0}^{n}\binom{n}{k} \alpha_{k} \zeta_{1}^{k}\right) e+\left(\sum_{k=0}^{n}\binom{n}{k} \beta_{k} \zeta_{2}^{k}\right) e^{\dagger}=f_{1}\left(\zeta_{1}\right) e+f_{2}\left(\zeta_{2}\right) e^{\dagger}
$$

and

$$
G(Z)=\sum_{k=0}^{n}\binom{n}{k} B_{k} Z^{k}=\left(\sum_{k=0}^{n}\binom{n}{k} \gamma_{k} \zeta_{1}^{k}\right) e+\left(\sum_{k=0}^{n}\binom{n}{k} \delta_{k} \zeta_{2}^{k}\right) e^{\dagger}=g_{1}\left(\zeta_{1}\right) e+g_{2}\left(\zeta_{2}\right) e^{\dagger}
$$

by

$$
\begin{aligned}
H(Z) & =F(Z) * G(Z) \\
& =\sum_{j=0}^{n}\binom{n}{j} A_{j} B_{j} Z^{j} .
\end{aligned}
$$

Which further gives after substituting $A_{i}=\alpha_{i} e+\beta_{i} e^{\dagger}, B_{i}=\gamma_{i} e+\delta_{i} e^{\dagger}$ for $i=1,2, \ldots, n$ and $Z=\zeta_{1} e+\zeta_{1} e^{\dagger}$

$$
\begin{aligned}
H(Z) & =\sum_{j=0}^{n}\binom{n}{j}\left(\alpha_{j} e+\beta_{j} e^{\dagger}\right)\left(\gamma_{j} e+\delta_{j} e^{\dagger}\right)\left(\zeta_{1} e+\zeta_{2} e^{\dagger}\right)^{j} \\
& =\sum_{j=0}^{n}\binom{n}{j}\left(\alpha_{j} e+\beta_{j} e^{\dagger}\right)\left(\gamma_{j} e+\delta_{j} e^{\dagger}\right)\left(\zeta_{1}^{j} e+\zeta_{2}^{j} e^{\dagger}\right) \\
& =\sum_{j=0}^{n}\binom{n}{j}\left\{\left(\alpha_{j} \gamma_{j} \zeta_{1}^{j}\right) e+\left(\beta_{j} \delta_{j} \zeta_{2}^{j}\right) e^{\dagger}\right\} \\
& =\left(\sum_{j=0}^{n}\binom{n}{j} \alpha_{j} \gamma_{j} \zeta_{1}^{j}\right) e+\left(\sum_{j=0}^{n}\binom{n}{j} \beta_{j} \delta_{j} \zeta_{2}^{j}\right) e^{\dagger} \\
& =\left(f_{1} * g_{1}\right)\left(\zeta_{1}\right) e+\left(f_{2} * g_{2}\right)\left(\zeta_{2}\right) e^{\dagger} \\
& =h_{1}\left(\zeta_{1}\right) e+h_{2}\left(\zeta_{2}\right) e^{\dagger} .
\end{aligned}
$$

Thus the covolution or Hadamard product of two bi-complex polynomials $F(Z)=f_{1}\left(\zeta_{1}\right) e+$ $f_{2}\left(\zeta_{2}\right) e^{\dagger}$ and $G(Z)=g_{1}\left(\zeta_{1}\right) e+g_{2}\left(\zeta_{2}\right) e^{\dagger}$ is defined by

$$
\begin{align*}
H(Z) & =F(Z) * G(Z) \\
& =h_{1}\left(\zeta_{1}\right) e+h_{2}\left(\zeta_{2}\right) e^{\dagger} \tag{3}
\end{align*}
$$

where $h_{1}\left(\zeta_{1}\right)=\left(f_{1} * g_{1}\right)\left(\zeta_{1}\right)$ and $h_{2}\left(\zeta_{2}\right)=\left(f_{2} * g_{2}\right)\left(\zeta_{2}\right)$.

2. Results and Discussion

To prove our results, we need the following lemmas due to Price [3].
Lemma 2.1. Let $X=X_{1} e+X_{2} e^{\dagger}:=\left\{\zeta_{1} e+\zeta_{2} e^{\dagger}: \zeta_{1} \in X_{1}, \zeta_{2} \in X_{2}\right\}$ be a domain in $\mathbb{B} \mathbb{C}$. A bi-complex function $F=f_{1} e+f_{2} e^{\dagger}: X \rightarrow \mathbb{B} \mathbb{C}$ is holomorphic if and only if both the component functions f_{1} and f_{2} are holomorphic in X_{1} and X_{2} respectively.

Lemma 2.2. Let F be a bi-complex holomorphic function defined in a domain $X=$ $X_{1} e+X_{2} e^{\dagger}:=\left\{\zeta_{1} e+\zeta_{2} e^{\dagger}: \zeta_{1} \in X_{1}, \zeta_{2} \in X_{2}\right\}$ such that $F(Z)=f_{1}\left(\zeta_{1}\right) e+f_{2}\left(\zeta_{2}\right) e^{\dagger}$, for all $Z=\zeta_{1} e+\zeta_{2} e^{\dagger} \in X$. Then, $F(Z)$ has a zero in X if and only if $f_{1}\left(\zeta_{1}\right)$ and $f_{2}\left(\zeta_{2}\right)$ both have a zero at ζ_{1} in X_{1} and at ζ_{2} in X_{2} respectively.

The main aim of writing this paper is to extend Grace's theorem [1] and related results proved for complex polynomials to bi-complex polynomials. We first prove the following result, which extends Grace's theorem to bi-complex polynomials.

Theorem 2.3. If $F(Z)$ and $G(Z)$ are apolar bi-complex polynomials and if any one of them has all its zeros in a closed discus $\bar{D}\left(c ; r_{1}, r_{2}\right)$, then the other will have atleast one zero in \bar{D}.

Proof. Let the two bi-complex polynomials in their idempotent representation be

$$
F(Z)=f_{1}\left(\zeta_{1}\right) e+f_{2}\left(\zeta_{2}\right) e^{\dagger}
$$

and

$$
G(Z)=g_{1}\left(\zeta_{1}\right) e+g_{2}\left(\zeta_{2}\right) e^{\dagger}
$$

Assume that the bi-complex polynomial $F(Z)$ has all its zeros in discus

$$
\bar{D}\left(c ; r_{1}, r_{2}\right),
$$

where $c=c_{1} e+c_{2} e^{\dagger}$. This implies by Lemma 2.2 that $f_{1}\left(\zeta_{1}\right)$ and $f_{2}\left(\zeta_{2}\right)$ have all their zeros in

$$
X_{1}=\left\{\zeta_{1} \in \mathbb{A}:\left|\zeta_{1}-c_{1}\right| \leq r_{1}\right\} \subset \mathbb{C}
$$

and

$$
X_{2}=\left\{\zeta_{2} \in \overline{\mathbb{A}}:\left|\zeta_{2}-c_{2}\right| \leq r_{2}\right\} \subset \mathbb{C}
$$

respectively. Now it is given that $F(Z)$ and $G(Z)$ are apolar bi-complex polynomials. Therefore the polynomial $f_{1}\left(\zeta_{1}\right)$ is apolar to polynomial $g_{1}\left(\zeta_{1}\right)$ and the polynomial $f_{2}\left(\zeta_{2}\right)$ is apolar to the polynomial $g_{2}\left(\zeta_{2}\right)$ simultaneously. Hence by Grace's theorem for complex polynomials, we conclude that atleast one zero of $g_{1}\left(\zeta_{1}\right)$ and atleast one zero of $g_{2}\left(\zeta_{2}\right)$ lie in X_{1} and X_{2} respectively. Hence by lemma 2.2, bi-complex polynomial

$$
G(Z)=g_{1}\left(\zeta_{1}\right) e+g_{2}\left(\zeta_{2}\right) e^{\dagger}
$$

has at least one zero in

$$
X_{1} e+X_{2} e^{\dagger}=\bar{D}\left(c ; r_{1}, r_{2}\right) .
$$

This completes the proof of the Theorem.
Next we prove the following result, which extends a result due to Szegö [4] to bi-complex polynomials.

Theorem 2.4. From the two bi-complex polynomials $F(z):=\sum_{j=0}^{n}\binom{n}{j} A_{j} Z^{j}$ and $G(z):=$ $\sum_{j=0}^{n}\binom{n}{j} B_{j} Z^{j}$, let us form the composite bi-complex polynomial

$$
H(Z):=\sum_{j=0}^{n}\binom{n}{j} A_{j} B_{j} Z^{j}
$$

If all the zeros of $F(z)$ lie in a closed discus $\bar{D}\left(c ; r_{1}, r_{2}\right)$, then every zero $w=w_{1} e+w_{2} e^{\dagger}$ of $H(Z)$ has the form $w=-\mu \vartheta$, where $\mu=\mu_{1} e+\mu_{2} e^{\dagger}$ is a suitably chosen point in \bar{D} and $\vartheta=\vartheta_{1} e+\vartheta_{2} e^{\dagger}$ is a zero of $G(Z)$.

Proof. Let the two bi-complex polynomials in their idempotent representation be

$$
F(Z)=f_{1}\left(\zeta_{1}\right) e+f_{2}\left(\zeta_{2}\right) e^{\dagger}
$$

and

$$
G(Z)=g_{1}\left(\zeta_{1}\right) e+g_{2}\left(\zeta_{2}\right) e^{\dagger}
$$

Now, we have the composite bi-complex polynomial as

$$
\begin{aligned}
H(Z) & =F(Z) * G(Z) \\
& =\sum_{j=0}^{n}\binom{n}{j} A_{j} B_{j} Z^{j} \\
& =h_{1}\left(\zeta_{1}\right) e+h_{2}\left(\zeta_{2}\right) e^{\dagger},
\end{aligned}
$$

where $h_{1}\left(\zeta_{1}\right)=\left(f_{1} * g_{1}\right)\left(\zeta_{1}\right)$ and $h_{2}\left(\zeta_{2}\right)=\left(f_{2} * g_{2}\right)\left(\zeta_{2}\right)$. Since $\vartheta=\vartheta_{1} e+\vartheta_{2} e^{\dagger}$ is a zero of

$$
G(Z)=g_{1}\left(\zeta_{1}\right) e+g_{2}\left(\zeta_{2}\right) e^{\dagger},
$$

therefore ϑ_{1} and ϑ_{2} are the zeros of $g_{1}\left(\zeta_{1}\right)$ and $g_{2}\left(\zeta_{2}\right)$ respectively. Also $\mu=\mu_{1} e+\mu_{2} e^{\dagger}$ is a suitably chosen point in \bar{D}, therefore

$$
\mu_{1} \in X_{1}=\left\{\zeta_{1} \in \mathbb{A}:\left|\zeta_{1}-c_{1}\right| \leq r_{1}\right\} \subset \mathbb{C}
$$

and

$$
\mu_{2} \in X_{2}=\left\{\zeta_{2} \in \overline{\mathbb{A}}:\left|\zeta_{2}-c_{2}\right| \leq r_{2}\right\} \subset \mathbb{C}
$$

Hence with the help of Szeg0̈'s theorem [4] for complex polynomials, it follows that all the zeros of

$$
h_{1}\left(\zeta_{1}\right)=\left(f_{1} * g_{1}\right)\left(\zeta_{1}\right)
$$

and

$$
h_{2}\left(\zeta_{2}\right)=\left(f_{2} * g_{2}\right)\left(\zeta_{2}\right)
$$

are respectively of the forms $w_{1}=-\mu_{1} \vartheta_{1}$ and $w_{2}=-\mu_{2} \vartheta_{2}$. This implies from Lemma 2.2 that all the zeros of the bi-complex polynomial

$$
H(Z)=h_{1}\left(\zeta_{1}\right) e+h_{2}\left(\zeta_{2}\right) e^{\dagger}
$$

are of the form

$$
\begin{aligned}
w & =w_{1} e+w_{2} e^{\dagger} \\
& =\left(-\mu_{1} \vartheta_{1}\right) e+\left(-\mu_{2} \vartheta_{2}\right) e^{\dagger} \\
& =-\left\{\mu_{1} \vartheta_{1} e+\mu_{2} \vartheta_{2} e^{\dagger}\right\} \\
& =-\mu \vartheta .
\end{aligned}
$$

We also prove the following result, which extends a result due to Cohn and Egervary ([2], p. 66) to bi-complex polynomials.

Theorem 2.5. If all the zeros of a bi-complex polynomial $F(Z):=\sum_{j=0}^{n}\binom{n}{j} A_{j} Z^{j}$ lie in open discus $D\left(c ; r_{1}, r_{2}\right)$ and if all the zeros of the bi-complex polynomial $G(Z):=$ $\sum_{j=0}^{n}\binom{n}{j} B_{j} Z^{j}$ lie in closed discus $\bar{D}\left(c ; s_{1}, s_{2}\right)$, then all the zeros of the composite bi-complex polynomial

$$
H(Z):=\sum_{j=0}^{n}\binom{n}{j} A_{j} B_{j} Z^{j}
$$

lie in open discus $D\left(c ; r_{1} s_{1}, r_{2} s_{2}\right)$.
Proof. Here the two bi-complex polynomials in their idempotent representation are

$$
F(Z)=f_{1}\left(\zeta_{1}\right) e+f_{2}\left(\zeta_{2}\right) e^{\dagger}
$$

and

$$
G(Z)=g_{1}\left(\zeta_{1}\right) e+g_{2}\left(\zeta_{2}\right) e^{\dagger}
$$

Also, we have the composite bi-complex polynomial as

$$
\begin{aligned}
H(Z) & =F(Z) * G(Z) \\
& =\sum_{j=0}^{n}\binom{n}{j} A_{j} B_{j} Z^{j} \\
& =h_{1}\left(\zeta_{1}\right) e+h_{2}\left(\zeta_{2}\right) e^{\dagger},
\end{aligned}
$$

where $h_{1}\left(\zeta_{1}\right)=\left(f_{1} * g_{1}\right)\left(\zeta_{1}\right)$ and $h_{2}\left(\zeta_{2}\right)=\left(f_{2} * g_{2}\right)\left(\zeta_{2}\right)$. Now, if $\vartheta=\vartheta_{1} e+\vartheta_{2} e^{\dagger}$ is a zero of

$$
G(Z)=g_{1}\left(\zeta_{1}\right) e+g_{2}\left(\zeta_{2}\right) e^{\dagger}
$$

and $\mu=\mu_{1} e+\mu_{2} e^{\dagger}$ is a suitably chosen point in $D\left(c ; r_{1}, r_{2}\right)$, then from the proof of theorem 2.4, we have that every zero of

$$
h_{1}\left(\zeta_{1}\right)=\left(f_{1} * g_{1}\right)\left(\zeta_{1}\right)
$$

and

$$
h_{2}\left(\zeta_{2}\right)=\left(f_{2} * g_{2}\right)\left(\zeta_{2}\right)
$$

are respectively of the forms $w_{1}=-\mu_{1} \vartheta_{1}$ and $w_{2}=-\mu_{2} \vartheta_{2}$. This implies

$$
\begin{aligned}
\left|w_{1}\right| & =\left|-\mu_{1} \vartheta_{1}\right| \\
& =\left|\mu_{1}\right|\left|\vartheta_{1}\right| \\
& <r_{1} s_{1} .
\end{aligned}
$$

Similarly $\left|w_{2}\right|<r_{2} s_{2}$. Thus we conclude that all the zeros of $h_{1}\left(\zeta_{1}\right)$ and all the zeros of $h_{2}\left(\zeta_{2}\right)$ lie in

$$
X_{1}=\left\{\zeta_{1} \in \mathbb{A}:\left|\zeta_{1}-c_{1}\right|<r_{1} s_{1}\right\} \subset \mathbb{C}
$$

and

$$
X_{2}=\left\{\zeta_{2} \in \overline{\mathbb{A}}:\left|\zeta_{2}-c_{2}\right|<r_{2} s_{2}\right\} \subset \mathbb{C}
$$

respectively. Hence by lemma 2.2, bi-complex polynomial

$$
H(Z)=h_{1}\left(\zeta_{1}\right) e+h_{2}\left(\zeta_{2}\right) e^{\dagger}
$$

has all its zeros in

$$
X_{1} e+X_{2} e^{\dagger}=D\left(c ; r_{1} s_{1}, r_{2} s_{2}\right)
$$

This completes the proof.

Finally we prove the following result, which extends a result due to Walsh [5] to bicomplex polynomials.

Theorem 2.6. From two bi-complex polynomials

$$
F(Z):=\sum_{j=0}^{n} A_{j} Z^{j}
$$

and

$$
G(z):=\sum_{j=0}^{n} A_{j} Z^{j}
$$

of degree n, let us form the composite bi-complex polynomial as

$$
H(z):=\sum_{j=0}^{n}(n-j)!B_{n-j} F^{j}(Z)=\sum_{j=0}^{n}(n-j)!A_{n-j} G^{j}(Z)
$$

of degree n. if all the zeros of $F(Z)$ lie in a discus $\bar{D}\left(c ; r_{1}, r_{2}\right)$, then all the zeros of $H(Z)$ has the form $w=\vartheta+\mu$, where ϑ is a zero of $G(Z)$ and μ is suitably chosen point in \bar{D}.

Proof. From the hypothesis, we have

$$
F(Z):=\sum_{i=0}^{n} A_{i} Z^{i} \quad \text { and } \quad G(Z):=\sum_{i=0}^{n} B_{i} Z^{i} .
$$

Therefore,

$$
F^{k}(z)=\sum_{i=k}^{n} \frac{i!}{(i-k)!} A_{i} Z^{(i-k)}, \quad k=1,2, \ldots, n
$$

and

$$
G^{k}(z)=\sum_{i=k}^{n} \frac{i!}{(i-k)!} B_{i} Z^{(i-k)}, \quad k=1,2, \ldots, n .
$$

Now we have

$$
\begin{gathered}
\sum_{k=0}^{n}(n-k)!B_{n-k} F^{k}(Z)=n!B_{n} F(Z)+(n-1)!B_{n-1} F^{\prime}(Z)+\ldots+ \\
B_{1} F^{(n-1)}(Z)+B_{0} F^{n}(Z)
\end{gathered}
$$

This gives

$$
\begin{align*}
& \sum_{k=0}^{n}(n-k)!B_{n-k} F^{k}(Z)=n!B_{n}\left[A_{0}+A_{1}+\ldots+A_{n-1} Z^{n-1}+A_{n} Z^{n}\right]+ \\
& \\
& (n-1)!B_{n-1}\left[A_{1}+2 A_{2} Z+\ldots+(n-1) A_{n-1} Z^{n-2}+\right. \\
& \\
& \left.=n A_{n} Z^{n-1}\right]+\ldots+B_{1}\left[(n-1)!A_{n-1}+n!A_{n} Z\right]+B_{0} n!A_{n} \\
& = \tag{4}\\
& {\left[n!A_{0} B_{n}+(n-1)!A_{1} B_{n-1}+\ldots+(n-1)!A_{n-1} B_{1}+\right.} \\
& \left.n!A_{n} B_{0}\right]+Z\left[n!A_{1} B_{n}+2(n-1)!A_{2} B_{n-1}+\ldots+n!A_{n} B_{1}\right]+ \\
& \\
& \\
& \ldots+Z^{n-1}\left[n!A_{n-1} B_{n}+n(n-1)!A_{n} B_{n-1}\right]+Z^{n}\left[n!A_{n} B_{n}\right] .
\end{align*}
$$

Also we have

$$
\begin{align*}
& \sum_{k=0}^{n}(n-k)!A_{n-k} G^{k}(Z)=n!A_{n} G(Z)+(n-1)!A_{n-1} G^{\prime}(Z)+\ldots+ \\
& \\
& \quad A_{1} G^{(n-1)}(Z)+A_{0} G^{n}(z) \\
& =n!A_{n}\left[B_{0}+B_{1}+\ldots+B_{n-1} Z^{n-1}+B_{n} Z^{n}\right]+ \\
& \quad(n-1)!A_{n-1}\left[B_{1}+2 B_{2} Z+\ldots+(n-1) B_{n-1} Z^{n-2}+\right. \\
& \\
& \left.n B_{n} Z^{n-1}\right]+\ldots+A_{1}\left[(n-1)!B_{n-1}+n!B_{n} Z\right]+A_{0} n!B_{n} \\
& = \tag{5}\\
& \\
& \\
& \\
& n!A_{n} B_{0}+(n-1)!A_{n-1} B_{1}+\ldots+(n-1)!A_{1} B_{n-1}+ \\
& \\
& \left.n!A_{0} B_{n}\right]+Z\left[n!A_{n} B_{1}+2(n-1)!A_{n-1} B_{2}+\ldots+n!A_{1} B_{n}\right]+ \\
& \\
& \\
& \\
& \text { 5) }+Z^{n-1}\left[n!A_{n} B_{n-1}+n(n-1)!A_{n-1} B_{n}\right]+Z^{n}\left[n!A_{n} B_{n}\right] .
\end{align*}
$$

From (4) and (5), we conclude that

$$
H(Z)=\sum_{k=0}^{n}(n-k)!B_{n-k} F^{(k)}(Z)=\sum_{k=0}^{n}(n-k)!A_{n-k} G^{(k)}(Z)
$$

Consider $A_{j}=\alpha_{j} e+\beta_{j} e^{\dagger}, B_{j}=\gamma_{j} e+\delta_{j} e^{\dagger}$ and $F(Z)=f_{1}\left(\zeta_{1}\right) e+f_{2}\left(\zeta_{2}\right) e^{\dagger}$, therefore

$$
\begin{align*}
H(Z) & =\sum_{k=0}^{n}(n-k)!B_{n-k} F^{(k)}(Z) \\
& =\sum_{k=0}^{n}\left((n-k)!e+(n-k)!e^{\dagger}\right)\left(\gamma_{n-k} e+\delta_{n-k} e^{\dagger}\right)\left(f_{1}^{(k)}\left(\zeta_{1}\right) e+f_{2}^{(k)}\left(\zeta_{2}\right)\right) \\
& =\sum_{k=0}^{n}\left((n-k)!\gamma_{n-k} f_{1}^{(k)}\left(\zeta_{1}\right)\right) e+\left((n-k)!\delta_{n-k} f_{2}^{(k)}\left(\zeta_{2}\right)\right) \\
& =\sum_{k=0}^{n}\left((n-k)!\gamma_{n-k} f_{1}^{(k)}\left(\zeta_{1}\right)\right) e+\sum_{k=0}^{n}\left((n-k)!\delta_{n-k} f_{2}^{(k)}\left(\zeta_{2}\right)\right) \\
& =h_{1}\left(\zeta_{1}\right) e+h_{2}\left(\zeta_{2}\right) e^{\dagger} \tag{6}
\end{align*}
$$

where

$$
h_{1}\left(\zeta_{1}\right)=\sum_{k=0}^{n}\left((n-k)!\gamma_{n-k} f_{1}^{(k)}\left(\zeta_{1}\right)\right)
$$

and

$$
h_{2}\left(\zeta_{2}\right)=\sum_{k=0}^{n}\left((n-k)!\delta_{n-k} f_{2}^{(k)}\left(\zeta_{2}\right)\right)
$$

Let $\vartheta=\vartheta_{1} e+\vartheta_{2} e^{\dagger}$ be a zero of $G(Z)=g_{1}\left(\zeta_{1}\right) e+g_{2}\left(\zeta_{2}\right) e^{\dagger}$, therefore ϑ_{1} and ϑ_{2} are the zeros of $g_{1}\left(\zeta_{1}\right)$ and $g_{2}\left(\zeta_{2}\right)$ respectively. Also $\mu=\mu_{1} e+\mu_{2} e^{\dagger}$ is a suitably chosen point in \bar{D}, therefore

$$
\mu_{1} \in X_{1}=\left\{\zeta_{1} \in \mathbb{A}:\left|\zeta_{1}-c_{1}\right| \leq r_{1}\right\} \subset \mathbb{C}
$$

and

$$
\mu_{2} \in X_{2}=\left\{\zeta_{2} \in \overline{\mathbb{A}}:\left|\zeta_{2}-c_{2}\right| \leq r_{2}\right\} \subset \mathbb{C}
$$

respectively. Hence with the help of Walsh's theorem [5] for complex polynomials, we have that all the zeros of $h_{1}\left(\zeta_{1}\right)$ and $h_{2}\left(\zeta_{2}\right)$ are respectively of the forms

$$
w_{1}=\mu_{1}+\vartheta_{1}
$$

and

$$
w_{2}=\mu_{2}+\vartheta_{2} .
$$

This implies from Lemma 2.2 that all the zeros of bi-complex polynomial

$$
H(Z)=h_{1}\left(\zeta_{1}\right) e+h_{2}\left(\zeta_{2}\right) e^{\dagger}
$$

are of the form

$$
\begin{aligned}
w & =w_{1} e+w_{2} e^{\dagger} \\
& =\left(\mu_{1}+\vartheta_{1}\right) e+\left(\mu_{2}+\vartheta_{2}\right) e^{\dagger} \\
& =\left(\mu_{1} e+\vartheta_{1} e^{\dagger}\right)+\left(\mu_{2} e+\vartheta_{2} e^{\dagger}\right) \\
& =\mu+\vartheta .
\end{aligned}
$$

Hence the theorem is proved completely.

Acknowledgements

The authors are highly grateful to the referee for his/her valuable comments and suggestions.

References

[1] J. H. Grace, The zeros of a polynomial, Proc. Cambridge Philos. Soc. 11 (1902), 352-357.
[2] M. Marden, The Geomatry of polynomials, 2nd ed., Mathematical Surveys, no. 3, Amer. Math. Soc., Providence, R.I. 1966.
[3] G. B. Price, An introduction to multicomplex spaces and functions, Marcel Dekker, New York, 1991.
[4] G. Szegö, Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen, Math. Z. 13 (1922), 28-55.
[5] J. L. Walsh, On the location of the roots of certain types of polynomials, Trans. Amer. Math. Soc. 24 (1922), 163-180.
[6] Wikipedia contributors: Duocylinder, Wikipedia, July 5, 2021, 20:12 UTC. Available at: https://en.m.wikipedia.org/wiki/Duocylinder. Accessed September 18, 2021.

Zahid Manzoor Wani

Department of Mathematics, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India.
E-mail: zahid.wani@cukashmir.ac.in

Wali Mohammad Shah

Department of Mathematics, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India.
E-mail: wmshah@rediffmail.com

[^0]: Received November 26, 2021. Accepted June 17, 2022. Publicated June 22, 2022.
 2010 Mathematics Subject Classification: 30D20, 30C10, 30C15, 30D10, 30G35.
 Key words and phrases: Bi-complex polynomials, Grace's theorem, Apolar, Hadamard product.
 \dagger This work was financially supported by the Science and Engineering Research Board, Govt. of India under Mathematical Research Impact-Centric Sport (MATRICS) Scheme vide SERB sanction order No : F : MTR/2017/000508, Dated 28-05-2018.

 * Corresponding author.
 (C) The Kangwon-Kyungki Mathematical Society, 2022.

 This is an Open Access article distributed under the terms of the Creative commons Attribution NonCommercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted noncommercial use, distribution and reproduction in any medium, provided the original work is properly cited.

