INEQUALITIES FOR A POLYNOMIAL WHOSE ZEROS ARE WITHIN OR OUTSIDE A GIVEN DISK

Lubna Wali Shah ${ }^{\dagger}$, Mohd Yousf Mir*, and Wali Mohammad Shah

Abstract

In this paper we prove some results by using a simple but elegant techniques to improve and strengthen some generalizations and refinements of two widely known polynomial inequalities and thereby deduce some useful corollaries.

1. Introduction

Let \mathbb{P}_{n} be the space of complex polynomials $P(z):=\sum_{j=1}^{n} c_{j} z^{j}$ of degree at most n. For each real number $k>0$, we define the following:

$$
\begin{aligned}
& D_{k}:=\{z \in \mathbb{C}:|z|=k\} \\
& D_{k}^{-}:=\{z \in \mathbb{C}:|z|<k\} \\
& D_{k}^{+}:=\{z \in \mathbb{C}:|z|>k\}
\end{aligned}
$$

To be brief, we shall denote $D_{1}, D_{1}^{-}, D_{1}^{+}$simply by D, D^{-}, D^{+}respectively.
For every $P \in \mathbb{P}_{n}$ and P^{\prime} as its derivative one form of the classical Bernstein inequality [2] for polynomials can be

$$
\begin{equation*}
\max _{z \in D}\left|P^{\prime}(z)\right| \leq n \max _{z \in D}|P(z)| . \tag{1}
\end{equation*}
$$

An improved form of this inequality due to Frappier, Rahman and Rusheweyh [3] states that, if $P(z)$ is a polynomial of degree n, then

$$
\begin{equation*}
\max _{z \in D}\left|P^{\prime}(z)\right| \leq n \max _{1 \leq k \leq 2 n}\left|P\left(e^{\frac{i k \pi}{n}}\right)\right| \tag{2}
\end{equation*}
$$

Clearly (2) represents a refinement of (1), since the maximum of $|P(z)|$ for $z \in D$ may be larger than the maximum of $|P(z)|$ taken over the $(2 n)^{t h}$ roots of unity, as is shown by the simpler example $P(z)=z^{n}+i a, a>0$. Its worth mentioning that equality holds in (1) if and only if P has all its zeros at the origin. Dependence of inequalities on location of zeros made it prerequisite to learn the behaviour of inequality (1) while

[^0]restricting ourselves to the class of polynomials having zeros in a given region. Among various forms, we mention following two results of Malik [7] which stand out in terms of their impact in the journey carried out in this direction :
If $P \in \mathbb{P}_{n}$ is such that it does not vanish in the open disk D_{k}^{-}, then for $k \geq 1$
\[

$$
\begin{equation*}
\max _{z \in D}\left|P^{\prime}(z)\right| \leq \frac{n}{1+k} \max _{z \in D}|P(z)| \tag{3}
\end{equation*}
$$

\]

and in case it does not vanish in the open disk D_{k}^{+}, then for $k \leq 1$

$$
\begin{equation*}
\max _{z \in D}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k} \max _{z \in D}|P(z)| \tag{4}
\end{equation*}
$$

For $k=1$, inequality (3) reduces to a result conjectured by Erdös and latter proved by Lax [6], whereas inequality (4) reduces to a result proved by Turán [8]. In this direction the following result analogous to inequality (2) was proved by Aziz [1].

THEOREM 1.1. If $P(z)$ is a polynomial of degree n having no zeros in the disk D^{-}, then for every real α

$$
\begin{equation*}
\max _{z \in D}\left|P^{\prime}(z)\right| \leq \frac{n}{2}\left\{M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right\}^{\frac{1}{2}} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{\alpha}=\max _{1 \leq k \leq n}\left|P\left(e^{\frac{i(\alpha+2 k \pi)}{n}}\right)\right| \tag{6}
\end{equation*}
$$

and $M_{\alpha+\pi}$ is obtained from (6) by replacing α by $\alpha+\pi$.
It was Dubinin [4] who improved on Tuŕan's result [8] and proved the following:
Theorem 1.2. If $P(z):=\sum_{j=0}^{n} c_{j} z^{j}=c_{n} \prod_{j=1}^{n}\left(z-z_{j}\right),\left|z_{j}\right| \leq 1, j=1,2, \ldots, n$ is a polynomial of degree n, then the following inequality holds at each point z on the circle D such that $P(z) \neq 0$,

$$
\begin{equation*}
\max _{z \in D}\left|P^{\prime}(z)\right| \geq\left[\frac{n}{2}+\frac{1}{2} \frac{\left|c_{n}\right|-\left|c_{0}\right|}{\left|c_{n}\right|+\left|c_{0}\right|}\right] \max _{z \in D} P(z) . \tag{7}
\end{equation*}
$$

The following Lemma which is due to Aziz [1]:
Lemma 1.3. If $P(z)$ is a polynomial of degree n and $P^{*}(z)=z^{n} P \overline{\left(\frac{1}{\bar{z}}\right)}$, then for $|z|=1$ and for every real α,

$$
\begin{equation*}
\left|P^{\prime}(z)\right|^{2}+\left|\left(P^{*}(z)\right)^{\prime}\right|^{2} \leq \frac{n^{2}}{2}\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right) \tag{8}
\end{equation*}
$$

where M_{α} is defined by (6).

2. Main Results

In this paper we prove some results which besides the above two theorems refine some other polynomial inequalities. In fact we prove :

THEOREM 2.1. If $P(z):=\sum_{j=0}^{n} c_{j} z^{j}=c_{n} \prod_{j=1}^{n}\left(z-z_{j}\right)$ is a polynomial of degree n having no zeros in the disk $D_{k}^{-}, k \geq 1$, then for each point z on D_{k} such that $P(z) \neq 0$ and for every given real α,

$$
\max _{z \in D}\left|P^{\prime}(z)\right| \leq
$$

$\frac{1}{2}\left[n^{2}-\frac{2 n^{2}(k-1)}{k+1} \frac{|P(z)|^{2}}{M_{\alpha}^{2}+M_{\alpha+\pi}^{2}}-\frac{4 n|P(z)|^{2}}{\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)(1+k)}\left\{n+\frac{\left|c_{0}\right|-k^{n}\left|c_{n}\right|}{\left|c_{0}\right|+k^{n}\left|c_{n}\right|}\right\}\right]^{\frac{1}{2}}\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)^{\frac{1}{2}}$
where M_{α} and $M_{\alpha+\pi}$ are defined by (6).

Proof. Suppose that $P(z) \neq 0$ for $z \in D_{k}$. Since $P(z)=c_{n} \sum_{j=1}^{n}\left(z-z_{j}\right)$, therefore

$$
\operatorname{Re} \frac{z P^{\prime}(z)}{P(z)}=\operatorname{Re} \sum_{j=1}^{n} \frac{z}{z-z_{j}},\left|z_{j}\right| \geq k \geq 1
$$

Now for $z \neq z_{j}$ we have

$$
\begin{aligned}
\operatorname{Re} \frac{z}{z-z_{j}}= & \operatorname{Re} \frac{e^{i \theta}}{e^{i \theta}-r_{j} e^{i \theta_{j}}},\left|r_{j}\right| \geq k \geq 1, \forall j=1,2, \ldots, n \\
& =\operatorname{Re} \frac{1-r_{j} e^{i\left(\theta-\theta_{j}\right)}}{1-2 r_{j} \cos \left(\theta-\theta_{j}\right)+r_{j}^{2}} \\
& =\frac{1-r_{j} \cos \left(\theta-\theta_{j}\right)}{1-2 r_{j} \cos \left(\theta-\theta_{j}\right)+r_{j}^{2}} \\
& \leq \frac{1}{1+r_{j}} \\
& =\frac{1}{1+\left|z_{j}\right|}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\operatorname{Re} \frac{z P^{\prime}(z)}{P(z)} \leq \sum_{j=1}^{n} \frac{1}{1+\left|z_{j}\right|} \tag{9}
\end{equation*}
$$

Also if $P^{*}(z)=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)}$, then we have for $z \in D$,

$$
\left|\left(P^{*}(z)\right)^{\prime}\right|=\left|n P(z)-z P^{\prime}(z)\right|
$$

This gives for $z \in D$

$$
\begin{align*}
\left|\frac{z\left(P^{*}(z)\right)^{\prime}}{P(z)}\right|^{2} & =\left|n-z \frac{P^{\prime}(z)}{P(z)}\right|^{2} \\
& =n^{2}+\left|\frac{z P^{\prime}(z)}{P(z)}\right|^{2}-2 n \operatorname{Re}\left(\frac{z P^{\prime}(z)}{P(z)}\right) \tag{10}\\
& \geq n^{2}+\left|z \frac{P^{\prime}(z)}{P(z)}\right|^{2}-2 n\left(\sum_{j=1}^{n} \frac{1}{1+\left|z_{j}\right|}\right)
\end{align*}
$$

This gives

$$
\left|\left(P^{*}(z)\right)^{\prime}\right|^{2} \geq n^{2}|P(z)|^{2}+\left|z P^{\prime}(z)\right|^{2}-2 n|P(z)|^{2}\left(\sum_{j=1}^{n} \frac{1}{1+\left|z_{j}\right|}\right) .
$$

Equivalently for $|z|=1$

$$
\left|P^{\prime}(z)\right|^{2} \leq\left|\left(P^{*}(z)\right)^{\prime}\right|^{2}-n^{2}|P(z)|^{2}+2 n|P(z)|^{2}\left(\sum_{j=1}^{n} \frac{1}{1+\left|z_{j}\right|}\right) .
$$

Therefore

$$
\begin{equation*}
2\left|P^{\prime}(z)\right|^{2} \leq\left|P^{\prime}(z)\right|^{2}+\left|\left(P^{*}(z)\right)^{\prime}\right|^{2}-n\left\{n-2 \sum_{j=1}^{n} \frac{1}{1+\left|z_{j}\right|}\right\}|P(z)|^{2} . \tag{11}
\end{equation*}
$$

Now using Lemma 1.3 in (11), we get

$$
2\left|P^{\prime}(z)\right|^{2} \leq \frac{n^{2}}{2}\left\{\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)\right\}-n\left(n-2 \sum_{j=1}^{n} \frac{1}{1+\left|z_{j}\right|}\right)|P(z)|^{2},
$$

which gives,
(12)

$$
\begin{aligned}
& 4\left|P^{\prime}(z)\right|^{2} \leq n^{2}\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)+4 n|P(z)|^{2} \sum_{j=1}^{n} \frac{1}{1+\left|z_{j}\right|}-2 n^{2}|P(z)|^{2} \\
& =\left[n^{2}+\frac{4 n|P(z)|^{2}}{\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)} \sum_{j=1}^{n} \frac{1}{1+\left|z_{j}\right|}-\frac{2 n^{2}}{\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)}|P(z)|^{2}\right]\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right) \\
& \left.=\left[n^{2}-\frac{2 n^{2}(k-1)|P(z)|^{2}}{(k+1)\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)}-\frac{4 n^{2}|P(z)|^{2}}{\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)(k+1)}+\frac{4 n|P(z)|^{2}}{\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)} \sum_{j=1}^{n} \frac{1}{1+\left|z_{j}\right|}\right\}\right]\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right) \\
& =\left[n^{2}-\frac{2 n^{2}(k-1)}{k+1} \frac{|P(z)|^{2}}{\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)}-\frac{4 n|P(z)|^{2}}{\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)}\left\{\frac{n}{1+k}-\frac{1}{1+k} \sum_{j=1}^{n} \frac{k+1}{1+\left|z_{j}\right|}\right\}\right]\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right) \\
& \leq\left[n^{2}-\frac{2 n^{2}(k-1)}{k+1} \frac{|(z)|^{2}}{\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)}-\frac{4 n|P(z)|^{2}}{\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)}\left\{\frac{n}{1+k}-\frac{1}{1+k} \sum_{j=1}^{n} \frac{k-\left|z_{j}\right|}{k+\left|z_{j}\right|}\right\}\right]\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right) \\
& =\left[n^{2}-\frac{2 n^{2}(k-1)}{k+1} \frac{|P(z)|^{2}}{\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)}-\frac{4 n|P(z)|^{2}}{\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)}\left\{\frac{n}{1+k}-\frac{1}{1+k} \sum_{j=1}^{n} \frac{1-\frac{\left|z_{j}\right|}{k}}{1+\frac{\mid z z_{j}}{k}}\right\}\right]\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right) .
\end{aligned}
$$

We have by a simple application of principle mathematical induction,

$$
\sum_{j=1}^{n} \frac{1-c_{j}}{1+c_{j}} \leq \frac{1-\prod_{j=1}^{n} c_{j}}{1+\prod_{j=1}^{n} c_{j}} \forall n \in \mathbb{N} \text { and } c_{j} \geq 1, j=1,2, \ldots, n .
$$

Using this fact in (12), as $\frac{\left|z_{j}\right|}{k} \geq 1$, and then using Vitali's formula, we get

$$
\begin{aligned}
& \left|P^{\prime}(z)\right| \\
& \leq \frac{1}{2}\left[n^{2}-\frac{2 n^{2}(k-1)}{k+1} \frac{|P(z)|^{2}}{\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)}-\frac{4 n|P(z)|^{2}}{\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)(1+k)}\left\{n-\frac{1-\prod_{j=1}^{n} \frac{\left|z_{j}\right|}{k}}{1+\prod_{j=1}^{n} \frac{\left|z_{j}\right|}{k}}\right\}\right]^{\frac{1}{2}}\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)^{\frac{1}{2}} \\
& =\frac{1}{2}\left[n^{2}-\frac{2 n^{2}(k-1)}{k+1} \frac{|P(z)|^{2}}{\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)}-\frac{4 n|P(z)|^{2}}{\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)(1+k)}\left\{n-\frac{k^{n}\left|c_{n}\right|-\left|c_{0}\right|}{k^{n}\left|c_{n}\right|+\left|c_{0}\right|}\right\}\right]^{\frac{1}{2}}\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)^{\frac{1}{2}} \\
& =\frac{1}{2}\left[n^{2}-\frac{2 n^{2}(k-1)}{k+1} \frac{|P(z)|^{2}}{\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)}-\frac{4 n|P(z)|^{2}}{\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)(1+k)}\left\{n+\frac{\left|c_{0}\right|-k^{n}\left|c_{n}\right|}{\left|c_{0}\right|+k^{n}\left|c_{n}\right|}\right\}\right]^{\frac{1}{2}}\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

This completes the proof of theorem.
For $k=1$, Theorem 2.1 reduces to the following:
Corollary 2.2. If $P(z):=c_{n} \prod_{j=1}^{n}\left(z-z_{j}\right),\left|z_{j}\right| \geq 1, j=1,2, \ldots, n$ is a polynomial of degree n then for each point z on D such that $P(z) \neq 0$ and every given real α

$$
\begin{equation*}
\max _{z \in D}\left|P^{\prime}(z)\right| \leq \frac{1}{2}\left[n^{2}-\frac{2 n|P(z)|^{2}}{\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)}\left\{n+\frac{\left|c_{0}\right|-\left|c_{n}\right|}{\left|c_{0}\right|+\left|c_{n}\right|}\right\}\right]^{\frac{1}{2}}\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)^{\frac{1}{2}}, \tag{13}
\end{equation*}
$$

where M_{α} and $M_{\alpha+\pi}$ are defined by (6).
Remark 2.3. Since $\frac{\left|c_{0}\right|-\left|c_{n}\right|}{\left|c_{0}\right|+\left|c_{n}\right|} \geq 0$, therefore Corollary 2.2 is an improvement over Theorem 1.1.

Remark 2.4. We have

$$
\left(1-\sqrt{\left|\frac{k^{n} c_{n}}{c_{0}}\right|}\right)^{2} \geq 0
$$

therefore

$$
\sqrt{\left|\frac{k^{n} c_{n}}{c_{0}}\right|}+\left|\frac{k^{n} c_{n}}{c_{0}}\right|^{\frac{3}{2}} \geq 2\left|\frac{k^{n} c_{n}}{c_{0}}\right| .
$$

Equivalently

$$
1-\left|\frac{k^{n} c_{n}}{c_{0}}\right| \geq 1+\left|\frac{k^{n} c_{n}}{c_{0}}\right|-\sqrt{\left|\frac{k^{n} c_{n}}{c_{0}}\right|}-\left|\frac{k^{n} c_{n}}{c_{0}}\right|^{\frac{3}{2}}
$$

or

$$
\frac{1-\left|\frac{k^{n} c_{n}}{c_{0}}\right|}{1+\left|\frac{k^{n} c_{n}}{c_{0}}\right|} \geq \frac{\sqrt{\left|c_{0}\right|}-\sqrt{k^{n}\left|c_{n}\right|}}{\sqrt{\left|c_{0}\right|}}
$$

which gives,

$$
\frac{\left|c_{0}\right|-k^{n}\left|c_{n}\right|}{\left|c_{0}\right|+k^{n}\left|c_{n}\right|} \geq \frac{\sqrt{\left|c_{0}\right|}-\sqrt{k^{n}\left|c_{n}\right|}}{\sqrt{\left|c_{0}\right|}}
$$

Therefore from Theorem 2.1, we get:

Corollary 2.5. If $P(z):=\sum_{j=0}^{n} c_{j} z^{j}=c_{n} \prod_{j=1}^{n}\left(z-z_{j}\right)$ is a polynomial of degree n having no zeros in the disk $D_{k}^{-}, k \geq 1$, then for each point z on D_{k} such that $P(z) \neq 0$ and for every given real α,
$\max _{z \in D}\left|P^{\prime}(z)\right| \leq$
$\frac{1}{2}\left[n^{2}-\frac{2 n^{2}(k-1)}{k+1} \frac{|P(z)|^{2}}{M_{\alpha}^{2}+M_{\alpha+\pi}^{2}}-\frac{4 n|P(z)|^{2}}{\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)(1+k)}\left\{n+\frac{\sqrt{\left|c_{0}\right|}-\sqrt{k^{n}\left|c_{n}\right|}}{\sqrt{\left|c_{0}\right|}}\right\}\right]^{\frac{1}{2}}\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)^{\frac{1}{2}}$ where M_{α} and $M_{\alpha+\pi}$ are defined by (6).

We next prove the following result which is a generalization of Theorem 1.2.

Theorem 2.6. Suppose $P(z):=\sum_{j=0}^{n} c_{j} z^{j}=c_{n} \prod_{j=1}^{n}\left(z-z_{j}\right)$ is a polynomial of degree n having no zeros in the disk $D_{k}^{+}, k \leq 1$, then

$$
\max _{z \in D}\left|P^{\prime}(z)\right| \geq\left[\frac{n}{1+k}+\frac{k}{1+k}\left\{\frac{k^{n}\left|c_{n}\right|-\left|c_{0}\right|}{k^{n}\left|c_{n}\right|+\left|c_{0}\right|}\right\}\right] \max _{z \in D}|P(z)| .
$$

The result is sharp and equality holds for the polynomial $P(z)=\left(\frac{z+k}{1+k}\right)^{n}$.
Proof. Since $P(z)$ has no zeros in D_{k}^{+}, therefore, we can write $P(z):=\sum_{j=1}^{n} c_{j} z^{j}=$ $c_{n} \sum_{j=1}^{n}\left(z-z_{j}\right)$, where $\left|z_{j}\right| \leq k \leq 1, \forall j=1,2, \ldots, n$. This gives, for the points $z \in D_{k}$, such that $P(z) \neq 0$

$$
\operatorname{Re}\left(\frac{z P^{\prime}(z)}{P(z)}\right)=\operatorname{Re} \sum_{j=1}^{n} \frac{z}{z-z_{j}} .
$$

Hence for $z \in D$, we have

$$
\begin{aligned}
\left|\frac{P^{\prime}(z)}{P(z)}\right| & \geq \operatorname{Re}\left(\frac{z P^{\prime}(z)}{P(z)}\right) \\
& =\operatorname{Re} \sum_{j=1}^{n} \frac{z}{z-z_{j}} \\
& \geq \frac{1}{1+\left|z_{j}\right|} \\
& =\frac{n}{1+k}-\sum_{j=1}^{n}\left(-\frac{1}{k+1}-\frac{1}{1+\left|z_{j}\right|}\right) \\
& =\frac{n}{1+k}+\sum_{j=1}^{n} \frac{k-\left|z_{j}\right|}{(k+1)\left(1+\left|z_{j}\right|\right)} \\
& \geq \frac{n}{1+k}+\frac{1}{1+k} \sum_{j=1}^{n} \frac{k-\left|z_{j}\right|}{k+\left|z_{j}\right|} .
\end{aligned}
$$

From (14), we get

$$
\begin{align*}
& \max _{z \in D}\left|P^{\prime}(z)\right| \geq\left[\frac{n}{1+k}+\frac{1}{1+k} \sum_{j=1}^{n} \frac{k-\left|z_{j}\right|}{k+\left|z_{j}\right|}\right] \max _{z \in D}|P(z)| \tag{15}\\
& =\left[\frac{n}{1+k}+\frac{1}{1+k} \sum_{j=1}^{n} \frac{1-\frac{\left|z_{j}\right|}{k}}{1+\frac{\left|z_{j}\right|}{k}}\right] \max _{z \in D}|P(z)| .
\end{align*}
$$

We have by a simple application of principle of mathematical induction, $\sum_{j=1}^{n} \frac{1-c_{j}}{1+c_{j}} \geq$ $\frac{1-\prod_{j=1}^{n} c_{j}}{1+\prod_{j=1}^{n} c_{j}} \forall n \in \mathbb{N}$ and $c_{j} \leq 1$.
Using this fact in (15), as $\frac{\left|z_{j}\right|}{k} \leq 1$, and then using Vitali's formula, we get

$$
\begin{aligned}
\max _{z \in D}\left|P^{\prime}(z)\right| & \geq\left[\frac{n}{1+k}+\frac{1}{1+k}\left\{\frac{1-\prod_{j=1}^{n} \frac{\left|z_{j}\right|}{k}}{1-\prod_{j=1}^{n} \frac{\left|z_{j}\right|}{k}}\right\}\right] \max _{z \in D}|P(z)| . \\
& =\left[\frac{n}{1+k}+\frac{1}{1+k}\left\{\frac{k^{n}\left|c_{n}\right|-\left|c_{0}\right|}{k^{n}\left|c_{n}\right|+\left|c_{0}\right|}\right\}\right] \max _{z \in D}|P(z)| .
\end{aligned}
$$

This completes the proof of theorem .
Remark 2.7. Theorem 2.6 is in fact a refinement of the result due to Malik (inequality (4)) and also generalises a result due to Dubinin [4].

It is easy to verify that

$$
\frac{k^{n}\left|c_{n}\right|-\left|c_{0}\right|}{k^{n}\left|c_{n}\right|+\left|c_{0}\right|} \geq \frac{\sqrt{k^{n}\left|c_{n}\right|}-\sqrt{\left|c_{0}\right|}}{\sqrt{k^{n}\left|c_{n}\right|}}
$$

therefore, from Theorem 2.6 we have

Corollary 2.8. Suppose $P(z):=\sum_{j=0}^{n} c_{j} z^{j}=c_{n} \prod_{j=1}^{n}\left(z-z_{j}\right)$ is a polynomial of degree n having no zeros in the disk $D_{k}^{+}, k \leq 1$ then

$$
\max _{z \in D}\left|P^{\prime}(z)\right| \geq\left[\frac{n}{1+k}+\frac{k}{1+k}\left\{\frac{\sqrt{k^{n}\left|c_{n}\right|}-\sqrt{\left|c_{0}\right|}}{\sqrt{k^{n}\left|c_{n}\right|}}\right\}\right] \max _{z \in D}|P(z)| .
$$

For $k=1$, it reduces to a result due to Dubinin [5].

References

[1] Abdul Aziz, A refinement of an inequality of S. Bernstein, J. Math. Anal. Appl., 142 (1989), 110.
[2] S. Bernstein, Sur la limitation des dérivées des polynomes, C. R. Acad. Sci. Paris., 190 (1930), 338-340.
[3] C. Frappier, Q. I. Rahman and St. Rusheweyh, New Inequalities for polynomials, Trans. Amer. Math. Soc., 288 (1985), 69-99.
[4] V. N. Dubinin, Applications of the Schwarz Lemma to inequalities for entire functions with constraints on zeros, J. Math. Sci.,(N.Y) 143 (3) (2007), 3069-3076.
[5] V. N. Dubinin, Distortion theorems for polynomials on the circle, Sbornik: Mathematics, 191 (12) (2000), 1797-1807.
[6] P. D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509-513.
[7] M. A. Malik, On the derivative of Polynomial, J. London Math. Soc., 1 (1969), 57-60.
[8] P. Turán, Uber die Ableitung von Polynomen, Compositio Math., 7 (1939), 89-95.
[9] S. L. Wali and W. M. Shah, Some applications of Dubinin's lemma to rational functions with prescribed poles, J. Math. Anal. Appl., 450 (2017), 769-779.

Lubna Wali Shah

Department of Mathematics, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India.
E-mail: slwali@yahoo.co.in

Mohd Yousf Mir

Department of Mathematics, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India.
E-mail: myousf@cukashmir.ac.in

Wali Mohammad Shah

Department of Mathematics, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India.
E-mail: wali@cukashmir.ac.in

[^0]: Received January 11, 2022. Revised April 25, 2022. Accepted April 25, 2022.
 2010 Mathematics Subject Classification: 30A10, 30C10, 30D15.
 Key words and phrases: Polynomials, Maximum Modulus Principle, Inequalities in the complex domain, Zeros.
 \dagger This work was supported by DST-INSPIRE.

 * Corresponding author.
 (C) The Kangwon-Kyungki Mathematical Society, 2022.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

