HOMOMORPHISMS IN PROPER LIE CQ^*-ALGEBRAS

JUNG RYE LEE* AND DONG YUN SHIN

Abstract. Using the Hyers-Ulam-Rassias stability method of functional equations, we investigate homomorphisms in proper CQ^*-algebras and proper Lie CQ^*-algebras, and derivations on proper CQ^*-algebras and proper Lie CQ^*-algebras associated with the following functional equation

$$\frac{1}{k} f(kx + ky + kz) = f(x) + f(y) + f(z)$$

for a fixed positive integer k.

1. Introduction and preliminaries

Ulam [46] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms.

We are given a group G and a metric group G' with metric $\rho(\cdot, \cdot)$. Given $\epsilon > 0$, does there exist a $\delta > 0$ such that if $f : G \to G'$ satisfies

$$\rho(f(xy), f(x)f(y)) < \delta$$

for all $x, y \in G$, then a homomorphism $h : G \to G'$ exists with $\rho(f(x), h(x)) < \epsilon$ for all $x \in G'$?

By now an affirmative answer has been given in several cases, and some interesting variations of the problem have also been investigated.

Received February 18, 2011. Revised March 11, 2011. Accepted March 15, 2011.

2000 Mathematics Subject Classification: 39B72, 17B40, 47N50, 47L60, 47L90, 46L05.

Key words and phrases: additive functional equation, proper CQ^*-algebra homomorphism, proper Lie CQ^*-algebra homomorphism, derivation, Lie derivation.

The first author and the second author were supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2010-0009232) and (NRF-2010-0021792), respectively.

*Corresponding author.
Hyers [18] considered the case of approximately additive mappings $f : E \to E'$, where E and E' are Banach spaces and f satisfies Hyers inequality

$$\|f(x + y) - f(x) - f(y)\| \leq \epsilon$$

for all $x, y \in E$. It was shown that the limit

$$L(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$$

exists for all $x \in E$ and that $L : E \to E'$ is the unique additive mapping satisfying

$$\|f(x) - L(x)\| \leq \epsilon.$$

Th.M. Rassias [34] provided a generalization of Hyers’ Theorem which allows the Cauchy difference to be unbounded.

Theorem 1.1. (Th.M. Rassias). Let $f : E \to E'$ be a mapping from a normed vector space E into a Banach space E' subject to the inequality

$$\|f(x + y) - f(x) - f(y)\| \leq \theta(\|x\|^p + \|y\|^p)$$

for all $x, y \in E$, where θ and p are positive real numbers with $p < 1$. Then the limit

$$L(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$$

exists for all $x \in E$ and $L : E \to E'$ is the unique additive mapping which satisfies

$$\|f(x) - L(x)\| \leq \frac{2\theta}{2 - 2^p} \|x\|^p$$

for all $x \in E$. Also, if for each $x \in E$ the function $f(tx)$ is continuous in $t \in \mathbb{R}$, then L is \mathbb{R}-linear.

Th.M. Rassias [35] during the 27th International Symposium on Functional Equations asked the question whether such a theorem can also be proved for $p \geq 1$. Gajda [14] following the same approach as in Th.M. Rassias [34], gave an affirmative solution to this question for $p > 1$. It was shown by Gajda [14], as well as by Th.M. Rassias and Šemrl [40] that one cannot prove a Th.M. Rassias’ type theorem when $p = 1$. The counterexamples of Gajda [14], as well as of Th.M. Rassias and Šemrl [40] have stimulated several mathematicians to invent new definitions of approximately additive or approximately linear mappings, cf. P. Găvruta [15], who among others studied the Hyers-Ulam stability of functional equations. The inequality (1.1) that was introduced for the first time by
Th.M. Rassias [34] provided a lot of influence in the development of a
generalization of the Hyers-Ulam stability concept. This new concept is
known as Hyers-Ulam-Rassias stability of functional equations (cf. the
books of P. Czerwik [10, 11], D.H. Hyers, G. Isac and Th.M. Rassias
[19]).

Beginning around the year 1980, the topic of approximate homomor-
phisms and their stability theory in the field of functional equations and
inequalities was taken up by several mathematicians (cf. D.H. Hyers and
Th.M. Rassias [20], Th.M. Rassias [38] and the references therein).

J.M. Rassias [32] following the spirit of the innovative approach of
Th.M. Rassias [34] for the unbounded Cauchy difference proved a similar
stability theorem in which he replaced the factor \(\|x\|^p + \|y\|^p \) by \(\|x\|^p \cdot \|y\|^q \)
for \(p, q \in \mathbb{R} \) with \(p + q \neq 1 \) (see also [33] for a number of other new
results).

Theorem 1.2. [31, 32, 33] Let \(X \) be a real normed linear space and
\(Y \) a real complete normed linear space. Assume that \(f : X \to Y \) is an
approximately additive mapping for which there exist constants \(\theta \geq 0 \)
and \(p \in \mathbb{R} - \{1\} \) such that \(f \) satisfies inequality
\[
\|f(x + y) - f(x) - f(y)\| \leq \theta \cdot \|x\|^\frac{p}{2} \cdot \|y\|^\frac{q}{2}
\]
for all \(x, y \in X \). Then there exists a unique additive mapping \(L : X \to Y \)
satisfying
\[
\|f(x) - L(x)\| \leq \frac{\theta}{|2p - 2|} \|x\|^p
\]
for all \(x \in X \). If, in addition, \(f : X \to Y \) is a mapping such that the
transformation \(t \to f(tx) \) is continuous in \(t \in \mathbb{R} \) for each fixed \(x \in X \),
then \(L \) is an \(\mathbb{R} \)-linear mapping.

Several mathematicians have contributed works on these subjects (see
[22]–[28], [36]–[39], [42]).

In a series of papers [1]–[13] and [43]–[45], many authors have con-
sidered a special class of quasi \(*\)-algebras, called proper \(CQ^*\)-algebras,
which arise as completions of \(C^*\)-algebras. They can be introduced in
the following way:

Let \(A \) be a Banach module over the \(C^*\)-algebra \(A_0 \) with involution \(*\)
and \(C^*\)-norm \(\| \cdot \|_0 \) such that \(A_0 \subset A \). We say that \((A, A_0)\) is a proper
\(CQ^*\)-algebra if

(i) \(A_0 \) is dense in \(A \) with respect to its norm \(\| \cdot \| ; \)
(ii) an involution \ast, which extends the involution of A_0, is defined in A with the property $(xy)^\ast = y^\ast x^\ast$ for all $x, y \in A$ whenever the multiplication is defined.

(iii) $\|y\|_0 = \sup_{x \in A, \|x\| \leq 1} \|xy\|$ for all $y \in A_0$.

Definition 1.3. Let (A, A_0) and (B, B_0) be proper CQ^*-algebras.

(i) A \mathbb{C}-linear mapping $H: A \to B$ is called a proper CQ^*-algebra homomorphism if $H(z) \in B_0$ and $H(zx) = H(z)H(x)$ for all $z \in A_0$ and all $x \in A$.

(ii) A \mathbb{C}-linear mapping $\delta: A_0 \to A$ is called a derivation if $\delta(xy) = \delta(x)y + x\delta(y)$ for all $x, y \in A_0$ (see [3]).

A C^*-algebra C, endowed with the Lie product $[x, y] := \frac{xy - yx}{2}$ on C, is called a Lie C^*-algebra. (see [22], [24], [30]).

Definition 1.4. A proper CQ^*-algebra (A, A_0), endowed with the Lie product $[z, x] := \frac{zx - xz}{2}$ for all $z \in A_0$ and all $x \in A$, is called a proper Lie CQ^*-algebra.

Definition 1.5. Let (A, A_0) and (B, B_0) be proper Lie CQ^*-algebras.

(i) A \mathbb{C}-linear mapping $H: A \to B$ is called a proper Lie CQ^*-algebra homomorphism if $H(z) \in B_0$ and $H([z, x]) = [H(z), H(x)]$ for all $z \in A_0$ and all $x \in A$.

(ii) A \mathbb{C}-linear mapping $\delta: A_0 \to A$ is called a Lie derivation if $\delta([x, y]) = [x, \delta(y)] + [\delta(x), y]$ for all $x, y \in A_0$.

In [16], Gilányi showed that if f satisfies the functional inequality
\begin{equation}
\|2f(x) + 2f(y) - f(x - y)\| \leq \|f(x + y)\| \tag{1.2}
\end{equation}
then f satisfies the Jordan-von Neumann functional inequality
\begin{equation}
2f(x) + 2f(y) = f(x + y) + f(x - y).
\end{equation}

This paper is organized as follows: In Section 2, we investigate homomorphisms in proper CQ^*-algebras associated with the functional equation
\begin{equation}
\frac{1}{k}f(kx + ky + kz) = f(x) + f(y) + f(z). \tag{1.3}
\end{equation}
In Section 3, we investigate derivations on proper CQ^*-algebras associated with the functional equation (1.3).

In Section 4, we investigate homomorphisms in proper Lie CQ^*-algebras associated with the functional equation (1.3).

In Section 5, we investigate derivations on proper Lie CQ^*-algebras associated with the functional equation (1.3).

2. Homomorphisms in proper CQ^*-algebras

Throughout this section, assume that (A,A_0) is a proper CQ^*-algebra with C^*-norm $\| \cdot \|_A$ and norm $\| \cdot \|_A$, and that (B,B_0) is a proper CQ^*-algebra with C^*-norm $\| \cdot \|_B$ and norm $\| \cdot \|_B$.

Proposition 2.1. Let X and Y be normed spaces with norms $\| \cdot \|_X$ and $\| \cdot \|_Y$, respectively. Let $f : X \to Y$ be a mapping such that

$$\| f(x) + f(y) + f(z) \|_Y \leq \| \frac{1}{k} f(kx + ky + kz) \|_Y$$

for all $x, y, z \in X$. Then f is Cauchy additive, i.e., $f(x+y) = f(x) + f(y)$.

Proof. Letting $x = y = z = 0$ in (2.1), we get

$$\|3f(0)\|_Y \leq \| \frac{1}{k} f(0) \|_Y.$$

So $f(0) = 0$.

Letting $z = 0$ and $y = -x$ in (2.1), we get

$$\| f(x) + f(-x) \|_Y \leq \| \frac{1}{k} f(0) \|_Y = 0$$

for all $x \in X$. Hence $f(-x) = -f(x)$ for all $x \in X$.

Letting $z = -x - y$ in (2.1), we get

$$\| f(x) + f(y) - f(x + y) \|_Y = \| f(x) + f(y) + f(-x - y) \|_Y$$

$$\leq \| \frac{1}{k} f(0) \|_Y = 0$$

for all $x, y \in X$. Thus

$$f(x + y) = f(x) + f(y)$$

for all $x, y \in X$, as desired. \hfill \Box

We investigate homomorphisms in proper CQ^*-algebras associated with the functional equation (1.3).
Theorem 2.2. Let \(r \neq 1 \) and \(\theta \) be nonnegative real numbers, and \(f : A \to B \) a mapping satisfying \(f(w) \in B_0 \) for all \(w \in A_0 \) such that

\[
\|\mu f(x) + f(y) + f(z)\|_B \leq \frac{1}{k} f(k\mu x + ky + kz)\|_B,
\]

(2.2)

\[
\|f(wx) - f(w)f(x)\|_B \leq \theta(\|w\|_A^2 + \|x\|_A^2)
\]

(2.3)

for \(\mu \in T^1 := \{ \lambda \in \mathbb{C} : |\lambda| = 1 \} \), all \(w \in A_0 \) and all \(x, y, z \in A \). Then the mapping \(f : A \to B \) is a proper \(CQ^* \)-algebra homomorphism.

Proof. Let \(\mu = 1 \) in (2.2). By Proposition 2.1, the mapping \(f : A \to B \) is Cauchy additive.

Letting \(z = 0 \) and \(y = -\mu x \) in (2.2), we get

\[
\mu f(x) - f(\mu x) = \mu f(x) + f(-\mu x) = 0
\]

for all \(x \in A \). So \(f(\mu x) = \mu f(x) \) for all \(x \in A \). By the same reasoning as in the proof of Theorem 2.1 of [23], the mapping \(f : A \to B \) is \(C \)-linear.

(i) Assume that \(r < 1 \). By (2.3),

\[
\|f(wx) - f(w)f(x)\|_B = \lim_{n \to \infty} \frac{1}{4^n} \|f(4^n wx) - f(2^n w)f(2^n x)\|_B
\]

\[
\leq \lim_{n \to \infty} \frac{4^{nr}}{4^n} \theta(\|w\|_A^{2r} + \|x\|_A^{2r}) = 0
\]

for all \(w \in A_0 \) and all \(x \in A \). So

\[
f(wx) = f(w)f(x)
\]

for all \(w \in A_0 \) and all \(x \in A \).

(ii) Assume that \(r > 1 \). By a similar method to the proof of the case (i), one can prove that the mapping \(f : A \to B \) satisfies

\[
f(wx) = f(w)f(x)
\]

for all \(w \in A_0 \) and all \(x \in A \).

Since \(f(w) \in B_0 \) for all \(w \in A_0 \), the mapping \(f : A \to B \) is a proper \(CQ^* \)-algebra homomorphism, as desired.

Theorem 2.3. Let \(r \neq 1 \) and \(\theta \) be nonnegative real numbers, and \(f : A \to B \) a mapping satisfying (2.2) and \(f(w) \in B_0 \) for all \(w \in A_0 \) such that

\[
\|f(wx) - f(w)f(x)\|_B \leq \theta \cdot \|w\|_A^r \cdot \|x\|_A^r
\]

(2.4)

for all \(w \in A_0 \) and all \(x \in A \). Then the mapping \(f : A \to B \) is a proper \(CQ^* \)-algebra homomorphism.
Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping $f : A \to B$ is C-linear.

(i) Assume that $r < 1$. By (2.4),
\[
\|f(wx) - f(w)f(x)\|_B = \lim_{n \to \infty} \frac{1}{4^n} \|f(4^nwx) - f(2^n w)f(2^n x)\|_B \\
\leq \lim_{n \to \infty} \frac{4^{nr}}{4^n} \theta \cdot \|w\|_A^r \cdot \|x\|_A^r = 0
\]
for all $w \in A_0$ and all $x \in A$. So
\[
f(wx) = f(w)f(x)
\]
for all $w \in A_0$ and all $x \in A$.

(ii) Assume that $r > 1$. By a similar method to the proof of the case (i), one can prove that the mapping $f : A \to B$ satisfies
\[
f(wx) = f(w)f(x)
\]
for all $w \in A_0$ and all $x \in A$.

The rest of the proof is similar to the proof of Theorem 2.2. \qed

3. Derivations on proper CQ^*-algebras

Throughout this section, assume that (A, A_0) is a proper CQ^*-algebra with C^*-norm $\| \cdot \|_{A_0}$ and norm $\| \cdot \|_A$.

We investigate derivations on proper CQ^*-algebras associated with the functional equation (1.3).

Theorem 3.1. Let $r \neq 1$ and θ be nonnegative real numbers, and $f : A \to A$ a mapping such that
\[
\|f(\mu x) + f(y) + f(z)\|_A \leq \frac{1}{k} f(k \mu x + ky + kz)\|_A,
\]
\[
\|f(w_0w_1) - f(w_0)w_1 - w_0f(w_1)\|_A \leq \theta(\|w_0\|_A^2 + \|w_1\|_A^2)
\]
for $\mu \in T^1$, all $w_0, w_1 \in A_0$ and all $x, y, z \in A$. Then the mapping $f : A \to A$ is a derivation on A.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping $f : A \to A$ is C-linear.
(i) Assume that $r < 1$. By (3.2),
\[
\|f(w_0w_1) - f(w_0)w_1 - w_0f(w_1)\|_A
\leq \lim_{n \to \infty} \frac{1}{4^n} \theta \left(\|w_0\|^2r_A + \|w_1\|^2r_A \right) = 0
\]
for all $w_0, w_1 \in A_0$. So
\[
f(w_0w_1) = f(w_0)w_1 + w_0f(w_1)
\]
for all $w_0, w_1 \in A_0$.

(ii) Assume that $r > 1$. By a similar method to the proof of the case (i), one can prove that the mapping $f : A \to A$ satisfies
\[
f(w_0w_1) = f(w_0)w_1 + w_0f(w_1)
\]
for all $w_0, w_1 \in A_0$.

Therefore, the mapping $f : A \to A$ is a derivation on A, as desired.

\[\square\]

Theorem 3.2. Let $r \neq 1$ and θ be nonnegative real numbers, and $f : A \to A$ a mapping satisfying (3.1) such that
\[
\|f(w_0w_1) - f(w_0)w_1 - w_0f(w_1)\|_A \leq \theta \cdot \|w_0\|^2r_A \cdot \|w_1\|^2r_A
\]
for all $w_0, w_1 \in A_0$. Then the mapping $f : A \to A$ is a derivation on A.

Proof. The proof is similar to the proofs of Theorems 2.2 and 3.1. \[\square\]

4. Homomorphisms in proper Lie CQ^*-algebras

Throughout this section, assume that (A, A_0) is a proper Lie CQ^*-algebra with C^*-norm $\| \cdot \|_{A_0}$ and norm $\| \cdot \|_A$, and that (B, B_0) is a proper Lie CQ^*-algebra with C^*-norm $\| \cdot \|_{B_0}$ and norm $\| \cdot \|_B$.

We investigate homomorphisms in proper Lie CQ^*-algebras associated with the functional equation (1.3).

Theorem 4.1. Let $r \neq 1$ and θ be nonnegative real numbers, and $f : A \to B$ a mapping satisfying (2.2) and $f(w) \in B_0$ for all $w \in A_0$ such that
\[
\|f([w, x]) - [f(w), f(x)]\|_B \leq \theta (\|w\|^2r_A + \|x\|^2r_A)
\]
for all $w \in A_0$ and all $x \in A$. Then the mapping $f : A \to B$ is a proper Lie CQ^*-algebra homomorphism.
Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping $f : A \to B$ is \mathbb{C}-linear.

(i) Assume that $r < 1$. By (4.1),

$$
\|f([w, x]) - [f(w), f(x)]\|_B = \lim_{n \to \infty} \frac{1}{4^n} \|f(4^n[w, x]) - [f(2^n w), f(2^n x)]\|_B \\
\leq \lim_{n \to \infty} \frac{4^n r}{4^n} \theta \|w\|_A^r + \|x\|_A^r = 0
$$

for all $w \in A_0$ and all $x \in A$. So

$$
\ f([w, x]) = [f(w), f(x)]
$$

for all $w \in A_0$ and all $x \in A$.

(ii) Assume that $r > 1$. By a similar method to the proof of the case (i), one can prove that the mapping $f : A \to B$ satisfies

$$
\ f([w, x]) = [f(w), f(x)]
$$

for all $w \in A_0$ and all $x \in A$.

Therefore, the mapping $f : A \to B$ is a proper Lie CQ^*-algebra homomorphism.

Theorem 4.2. Let $r \neq 1$ and θ be nonnegative real numbers, and $f : A \to B$ a mapping satisfying (2.2) and $f(w) \in B_0$ for all $w \in A_0$ such that

$$
\|f([w, x]) - [f(w), f(x)]\|_B \leq \theta \cdot \|w\|_A^r \cdot \|x\|_A^r
$$

for all $w \in A_0$ and all $x \in A$. Then the mapping $f : A \to B$ is a proper Lie CQ^*-algebra homomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping $f : A \to B$ is \mathbb{C}-linear.

(i) Assume that $r < 1$. By (4.2),

$$
\|f([w, x]) - [f(w), f(x)]\|_B = \lim_{n \to \infty} \frac{1}{4^n} \|f(4^n[w, x]) - [f(2^n w), f(2^n x)]\|_B \\
\leq \lim_{n \to \infty} \frac{4^n r}{4^n} \theta \cdot \|w\|_A^r \cdot \|x\|_A^r = 0
$$

for all $w \in A_0$ and all $x \in A$. So

$$
\ f([w, x]) = [f(w), f(x)]
$$

for all $w \in A_0$ and all $x \in A$.

(ii) Assume that $r > 1$. By a similar method to the proof of the case (i), one can prove that the mapping $f : A \to B$ satisfies
\[f([w, x]) = [f(w), f(x)] \]
for all $w \in A_0$ and all $x \in A$.
Therefore, the mapping $f : A \to B$ is a proper Lie CQ^*-algebra homomorphism.

Remark 4.3. If the Lie products $[\cdot, \cdot]$ in the statements of Theorems 4.1 and 4.2 are replaced by the Jordan products $\cdot \circ \cdot$, then one obtains proper Jordan CQ^*-algebra homomorphisms instead of proper Lie CQ^*-algebra homomorphisms.

5. Derivations on proper Lie CQ^*-algebras

Throughout this section, assume that (A, A_0) is a proper Lie CQ^*-algebra with C^*-norm $\| \cdot \|_{A_0}$ and norm $\| \cdot \|_A$.

We investigate derivations on proper Lie CQ^*-algebras associated with the functional equation (1.3).

Theorem 5.1. Let $r \neq 1$ and θ be nonnegative real numbers, and $f : A \to A$ a mapping satisfying (3.1) such that
\[
\|f([w_0, w_1]) - [f(w_0), w_1] - [w_0, f(w_1)]\|_A
\leq \theta(\|w_0\|_A^{2r} + \|w_1\|_A^{2r})
\]
for all $w_0, w_1 \in A_0$. Then the mapping $f : A \to A$ is a Lie derivation on A.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping $f : A \to A$ is C-linear.

(i) Assume that $r < 1$. By (5.1),
\[
\|f([w_0, w_1]) - [f(w_0), w_1] - [w_0, f(w_1)]\|_A
\leq \frac{1}{4^n} \theta(\|w_0\|_A^{2r} + \|w_1\|_A^{2r}) = 0
\]
for all $w_0, w_1 \in A_0$. So
\[f([w_0, w_1]) = [f(w_0), w_1] + [w_0, f(w_1)] \]
for all $w_0, w_1 \in A_0$.

Homomorphisms in proper Lie CQ^*-algebras

(ii) Assume that $r > 1$. By a similar method to the proof of the case (i), one can prove that the mapping $f : A \rightarrow A$ satisfies
\[f([w_0, w_1]) = [f(w_0), w_1] + [w_0, f(w_1)] \]
for all $w_0, w_1 \in A_0$.

Therefore, the mapping $f : A \rightarrow A$ is a Lie derivation on A, as desired.

Theorem 5.2. Let $r \neq 1$ and θ be nonnegative real numbers, and $f : A \rightarrow A$ a mapping satisfying (3.1) such that
\[\|f([w_0, w_1]) - [f(w_0), w_1] - [w_0, f(w_1)]\|_A \leq \theta \cdot \|w_0\|_A^r \cdot \|w_1\|_A^r \]
for all $w_0, w_1 \in A_0$. Then the mapping $f : A \rightarrow A$ is a Lie derivation on A.

Proof. The proof is similar to the proofs of Theorems 2.2 and 5.1.

Remark 5.3. If the Lie products $[\cdot, \cdot]$ in the statements of Theorems 5.1 and 5.2 are replaced by the Jordan products $\cdot \circ \cdot$, then one obtains Jordan derivations instead of Lie derivations.

References

Department of Mathematics
Daejin University
Kyeonggi 487-711, Republic of Korea
E-mail: jrllee@daejin.ac.kr

Department of Mathematics
University of Seoul
Seoul 130-743, Republic of Korea
E-mail: dyshin@uos.ac.kr