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A NOTE ON ENSTROM-KAKEYA THEOREM FOR
QUATERNIONIC POLYNOMIALS

ADIL HUSSAIN

ABSTRACT. In this paper, we are concerned with the problem of locating the zeros
of regular polynomials of a quaternionic variable with quaternionic coefficients. We
derive new bounds of Enestrom-Kakeya type for the zeros of these polynomials by
virtue of a maximum modulus theorem and the structure of the zero sets in the newly
developed theory of regular functions and polynomials of a quaternionic variable.
Our results generalize some recently proved results about the distribution of zeros
of a quaternionic polynomial.

1. Introduction and statement of results

Various experimental observations and investigations when translated into math-
ematical language lead to mathematical models. The solution of these models could
lead to problems of solving algebraic polynomial equations of certain degree. The ex-
act computation of zeros of polynomials of degree at most four made possible by virtue
of algorithms having been devised for such polynomials, no such method is available
for accomplishing the same task for polynomials of higher degree. The impossibility
of achieving this feat, or in other words, the impossibility of solving by radicals the
polynomial equations of degree five or greater is an important milestone in the his-
tory of mathematics, occasioned by ground breaking discoveries in algebra by N. H.
Abel and E. Galois in the first quarter of the nineteenth century. In view of this and
significant applications of zero bounds in scientific disciplines such as stability theory,
mathematical biology, communication theory and computer engineering, it became
interesting to identify the suitable regions in the complex plane which contain the
zeros of a given polynomial. A classical result due to Cauchy [3] on the distribution
of zeros of a polynomial may be stated as follows:

THEOREM 1.1. If p(z) = >"""_ a,z" is a polynomial of degree n, then all the zeros of
p lie in

a
|z] <1+ max |—|.
1<v<n-11la,
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Although various results concerning the bounds for zeros of polynomials are available
in literature (see [9], [10]), but the remarkable property of the bound in Theorem
1.1 which distinguishes it from other such bounds is its simplicity of computations.
However, this simplicity comes at the cost of precision. The following elegant result on
the location of zeros of a polynomial with restricted coefficients is known as Enestrom-
Kakeya theorem (see [4], [9], [10]) which states that:

THEOREM 1.2. If p(z) = Y_I"_,a,2" is a polynomial of degree n such that 0 < ay <
a; < ... < a,, then all the zeros of p lie in |z| < 1.

In literature, for example see ( [1], [7]- [10]), there exist various extensions and gen-
eralizations of Enestrom-Kakeya theorem. By removing non-negative restriction over
the coefficients of polynomial p(z), Joyal et al. [8] proved the following result:

THEOREM 1.3. If p(z) = Y_'_,a,z" is a polynomial of degree n such that ag < a; <
... < ay, then all the zeros of p lie in |z| < |a%(|ao| +a, — ap).

nl

In this paper, we will prove some extensions and generalizations of above results for
the class of polynomials with quaternionic variable and quaternionic coefficients.

2. Background

Quaternions are the extension of complex numbers to four dimensions, introduced by
William Rowan Hamilton in 1843. The set of all quaternions are denoted by H in
honour of Sir Hamilton and are generally represented in the form ¢ = a+if+jy+kd €
H, where «, 5,7,0 € R and 4,7, k are the fundamental quaternion units, such that
i? = j2 = k? = ijk = —1. Each quaternion ¢ has a conjugate. The conjuate of a
quaternion ¢ = a+if+jy+kd is denoted by ¢* and is defined as ¢* = a—i5—jy—ko.
Morever, the norm (or length) of a quaternion ¢ is given by

lgll = Vag = v/a? + 2 + 9> + 5.

The quaternions are the standard example of a noncommutative division ring and also
forms a four dimensional vector space over R with {1, 1,7, k:} as a basis.

In 2020, Carney et al. [2] proved the following extension of Theorem 1.2 for the
quaternionic polynomial p(q). More prescisely they proved the following result:

THEOREM 2.1. Ifp(q) = >_"_, ¢"a, Is a quaternionic polynomial of degree n with real
coefficients satisfying 0 < ag < a; < ... < ay, then all the zeros of p lie in |q| < 1.

As an extension of Theorem 1.3 to quaternionic polynomial p(q), Carney et al. in the
same paper proved the following result:

THEOREM 2.2. Ifp(q) = >_ ¢"a, is a quaternionic polynomial of degree n with quater-
v=0
nionic coefficients a, = o, + 18, + jv, + kd,, v =0,1,2,...,n, and satisfying

Qp > Q1 > ... > g, By > Bro1 2> .0 > P,

Yn Z Yn—1 Z Z Yo, 5n Z (571,1 Z Z 607
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then all the zeros of p lie in

= ] ool = 0+ )+ (8l = B+ 82+ (1l =30+ + (6 = 30+ 1) .

Recently, Dinesh Tripathi [11] relaxed the hypothesis of Theorem 2.1 and proved the
following intresting result which also provides a generalization to Theorem 2.2.

THEOREM 2.3. Ifp(q) = >_ ¢"a, is a quaternionic polynomial of degree n with quater-

v=0
nionic coefficients a, = o, + 18, + v, + kdy, v =0,1,2,...,n and for some 0 <[ < n,

67% Z Qp—1 2 Z ap, ﬁn 2 ﬂn—l 2 2 ﬁla
Tn Z Yn—1 Z Z Vi, 6n Z 67171 Z 2 517

then all the zeros of p lie in

lq| < ;,{\060| + 180l + 70l + [do| + (n — ) + (Bn — Bi) + (Yo — ) + (0n — 61) +M},

where M = Z{U—l{‘av - av—1| + |BU - ﬁv—1| + |’7v - ’YU—I| + |6U - 5v—1|}-

3. Main Results

We begin with the following result which gives a generalization of Theorem 2.3 and
hence of Theorem 2.2 as well.

THEOREM 3.1. If p(q) = q'a, is a quaternionic polynomial of degree m with

v=0
quaternionic coefficients a, = oy, + i3, + jv, + kd,, v = 0,1,2,...,n and for some
ki, ko ks, ks > 1,0< I <mn,and 0 < p <1,

kiog > oy > .0 > g > payg, kB > B > .0 2> B > pf,
EsYn 2 Va1 2 oo = g1 = p0, Kabp 2 0p1 > .0 2 0141 > pdy,

then all the zeros of p lie in
(1)

1
lq| < m{|040| + |Bol + |70l + 60| + (k1o — pou) + (k2B — pBi) + (ksvn — p21)
+ (k40p — poy) + (k1 — 1)|an| + (k2 — 1) Ba| + (k3 — 1)|yn| + (ks — 1)]0,|

(1= p)(Jaul + 18 + ol + [81]) + M},
Where M = Zizl{|04v - avfly + ’Bv - 61)71' + h/v - '71171’ + ’511 - 5111’}-

Applying Theorem 3.1 to the polynomial p(q) having real coefficients, i.e., § = v =
0 = 0, we have the following result:
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COROLLARY 3.2. Ifp(q) = >_ q"a, is a quaternionic polynomial of degree n with real
v=0
coefficients a,, v=10,1,2,....n and for some k; > 1,0 <[ <n,and 0 < p <1,
klan Zp_1 2 ... 2 aj41 > pai,
then all the zeros of p lie in
!
1
@ 1ol < o { ool + Gt = ) 4 (s = Dlaal + (1=l + 3 o = vl .

an| v=1

If we take [ = 0 in (1) and (2) respectively, we get the following results:

COROLLARY 3.3. If p(q) = >_ q"a, Is a quaternionic polynomial of degree n with
v=0

quaternionic coefficients a, = o, + i3, + jv, + kd,, v = 0,1,2,....,n and for some

kl,kg,kg,lﬁl > 1, and 0 < p < 1,
kian > a1 > ... > oy > pag, Koy > Bu1 > .0 = B > pPo,

ksYn 2> Yne1 2 oo 2> 91 2 pYo, kabp > 0p1 > ... > 01 > pdo,

then all the zeros of p lie in
3)
o < |a—1n|{|ao| £ 180l + 1ol 180] + (krctn — pao) + (ab — pBo) + (ks — )
+ (Kb — p80) + (kr — lan] + (b — D[Bal + (ks — Dlal + (ks — DI

(1= p)(Jaol + 1ol + ol |6or>}.

COROLLARY 3.4. Ifp(q) = >_ q"a, is a quaternionic polynomial of degree n with real
v=0

coefficients a,, v = 0,1, 2, ,_n and for some k1 > 1, and 0 < p < 1,
kian > an—1 > ... > a1 > pao,

then all the zeros of p lie in

(1) al < i{mo\ + (kran — pao) + (k= Dlan] + (1 - p)\ao\}.

|an|

REMARK 3.5. If we take ky = ko = k3 = ky = p = 1 in (3), we get Theorem 2.2.
Similarily if we take k; = p =1 in (4), we get the following extension of Theorem 1.3
to quaternion polynomials.

n

COROLLARY 3.6. If p(q) = >_ ¢"a, is a quaternionic polynomial of degree n with real
v=0
coefficients a,, v =0,1,2,...,n,

G, > Ap—1 > .= ai > aop,
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then all the zeros of p lie in

(5) gl < L{\%Han_ao}.

|an|

If in (5), we assume that ag > 0, then from Corollary 3.6, we get Theorem 2.1.
Next by considering a more general class of polynomials by putting the monotonicity-

type condition on the real and imaginary parts of p(q) = >_ ¢”a, (some are montonic
v=0

decreasing and some are monotonic increasing) and proved the following generalization

of Theorem 2.2.

n
THEOREM 3.7. If p(q) = q'a, is a quaternionic polynomial of degree m with

v=0
quaternionic coefficients a, = o, + 18, + jv, + ké,, v = 0,1,2,...,n and for some

/\17 AQ) A37 A4 Z ]-7

o <o << S > > 2> o > o,

Bn < Pn1 < . B < Xf > 61 > .. > B > Po,
M < Va1 < <Y KAV Ve 2> 2> Y > Yo,

Op < 0p1 < oo S0 SN0 2> 021 > .0 > 01 > o,

0 <1 < n, then all the zeros of p lie in

1
lq| < m{(\ao, + 22X\ — ap — o) + (|Bo] + 2028 — Bo — Bn) + (I70] + 2A37% — %0 — )

+ (|00| + 2461 — 09 — On) + N},

where N = 2<()\1 — Dlaa] + o = DB + (hs = Dl + (g — 1)\5,;).

Applying Theorem 3.7 to the polynomial p(q) having real coefficients, i.e., § = v =
0 = 0, we have the following result:

n
COROLLARY 3.8. If p(q) = >_ ¢"a, is a quaternionic polynomial of degree n with real
v=0
coefficients a,, v =10,1,2,...,n and for some \; > 1,0 <[ < n,
ap < ap1 <o < agpr S Mg > apoy > . > ag 2> ag,

then all the zeros of p lie in

1
lq| < m{(‘ad +2X\a; — ag — an) + 2(A1 — 1)’@l|}-

REMARK 3.9. If we take Ay = A\ = A3 = Ay, =1 and [ = n in Theorem 3.7, we easily
get Theorem 2.2.
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4. Lemmas

For the proofs of our main results, we need the following lemma due to G. Gentili and
C. Stoppato [5].

LEMMA 4.1. If f(q) = >_ q"a, and g(q) = >_ ¢"b, be two given quaternionic power
v=0 v=0
series with radii of convergence greater than R The regular product of f(q) and g(q) is

defined as (fxg)(q) = >_ ¢"c,, where ¢, = Zal w—t- Let |qo| < R, then (f*g)(q) =0

v=0

if and only if either £(q0) = 0 or £(qo) # 0 implies g(f(a0) a0 f (a0)) = .

5. Proof of Theorems

Proof of Theorem 3.1. Consider the polynomial

Zq v — Qy—1) + ag.

Let p(q) * (1 — q) = f(q) — ¢""ay, therefore by Lemma 4.1, p(q) * (1 — ¢) = 0 if and

only if either p(q) = 0 or p(q) # 0 implies p(¢q)~'qp(q) —1 = 0, that is, p(¢) "'gp(q) = 1.
If p(q) # 0, then g = 1. Therefore, the only zeros of p(q) * (1 — ¢q) are ¢ = 1 and the

zeros of p(q).

For |¢| = 1, we have

1 (@)] <laol + Y lav — ayi]
=1
=|ag + 1By + jvo + kdo|
+Z{‘ v Qy—1 +Z(ﬂv _51)71)+j<7v_7v71)+k(§v_5v71)

<lag| + |Bol + 70| + [do]

+ Z{|04v - Oévfly + ’Bv - vill + h/v - %71’ + ’511 - 51)1'}

v=1
=|ag| + |Bo| + |70] + |00| + |an — 1| + |n—1 — o] + ... + |1 — v

+ yﬁn - Bn—l’ + |5n—1 - ﬁn—Zl + ...+ |5l+1 - Bl| + h/n - P}/n—l‘ + "Vn—l - 7n—2’
Ao g = ] 0 = Gnt| + 0n1 — Ona| + o+ |Sy1 — 0] + M,

|

Where M - Zi—l{|av - av—1| + |6v - Bv—ll + h/’u - 7v—1| + ’61) - 61)—1’}7
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=lao| + |Bo| + [0l + |o] + [k1an + an — k1o, — 1| + |an—1 — ap_2|
+ ot |pay + arp1 — g — pag| + [k2Bn + Bn — kaBn — Bn-1] + |Bn-1 — Bn-2|
+ o F 1B+ Bir = B — pBil + k3vn + v — k3 — Yn—1| + [vn—1 — Y2
+ o+ oy v — v — el F Radn + 6n — 01 — kabp| + |0n—1 — G2
+ ...+ |pdy + 11 — 6 — poy| + M
<lao| + |Bo| + [r0] + [do] + [k1on — an—1] + (k1 — D)|aw| + |an—1 — an—2| + ... + (1 — p)|ay]
+ g1 = poa| + k2Bn — Bn-1| + (k2 — 1)|Bul + |Bn—1 — Bn—2| + ... + (1 = p)|Bi]
+ 81 — pBil + k3 vn — Va1l + (ks — D)l + a1 — Yn—2 + . + (L = p) |7l + |7141 — pl
+ |k4n, — On—1| + (kg — 1)|0p] + |6n—1 — Sn—z| + . + (1 = p)|&1] + |01c1 — pdy| + M
=lao| + [Bol + [0l + [do| + (k1cn — pau) + (k2Bn — pB1) + (k3vn — pn1) + (kadn — pdr)
+ (k1 = D|an| + (k2 — 1)[Bul + (k3 — D)|yal + (ks — 1)[6n| + (1 = p)(Ju| + |Bi] + [l + [01]) + M.

Since

max
lgl=1

71 ()| = el ()] = ety

therefore, ¢" % f(%) has the same bound on |¢| =1 as f(q), that is

"+ 1 ()| <laol + 1ol + ol + 18] + (kacs = pau) + (hafa = p51)

+ (k3 — o) + (Kadn = por) + (k1 = Dlan| + (k2 = 1)[Bal + (ks = 1) 7]
+ (ks = D)on| + (1 = p)([eu| + |8i] + [] + |01]) + M for |q| = 1.

Applying maximum modulus theorem ( [6], Theorem 3.4), it follows that

i+ £()] <lol + 1] + ol + 16l + (krcis = po) + (ka5 = p5)

+ (ks — pon) + (Kadn — p0r) + (k1 = D) an| + (k2 = D)|Bn] + (ks — 1) 7|
+ (ks = Dol + (1 = p)(lau| + [Bi] + Il + &) + M for [¢ < 1.

Replacing ¢ by %, we get for |g| > 1

() s{|ao| T 1Bol + 1ol + 160l + (bncn — poe) + (bafBa — p3)
+ (ks — pn) + (kady — pdy) + (k1 — 1)|a| + (ke — 1) 55|

(6) + (ks = D] 4 (ks = D]0n] + (1 = p)(Jeu| + 8] + [nl + o)) + M}IQI".

But [p(q) * (1 — q)l = () — " an| = |anlla["™ = [f(a)].
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Using (6), we have for |g| > 1
Ip(q) * (1 = q)]
ol = {1l + 18]+ 1ol + 1l + (b1 = pou) + (ka0
+ (k3vn — pn) + (kabn — pdy) + (k1 — 1)|ag| + (ko — 1)| 8,

T (ks — Dl 4+ (Rt — D15l + (1 — p) (el + 18] + ] + 13 + M}|q|".
This implies that |p(q) x (1 — ¢)| > 0, i.e., p(q) * (1 — q) # 0 if

1
al > m{w 1ol + Pl 4+ 80| + (krctn — pag) + (ki — ) + (ks — )

+ (kb — p1) + (k1 — Dow| + (k2 — 1)[Bu] + (ks — 1)|val + (ks — 1)[0,]

(1= p)(laal + 18]+ Il + 16]) + M}.

Note that the only zeros of p(q) x (1 — ¢) are ¢ = 1 and the zeros of p(q). Therefore,
p(q) # 0 for

1
lq| > |a_{|040| + 8ol + 70| + |00| + (k1w — pay) + (k2B — pB1) + (ks — pY1)

+ (kadn — p1) + (k1 — Do | + (k2 — D)[Bn] + (ks — 1)|7a| + (ks — 1)[0,]

+ (1= p) (] + 18] + [l + 161]) + M}.

Hence all the zeros of p(q) lie in

1
lq| < W{WO\ + |Bol + |70l + 60| + (kram — pou) + (kaBn — pBi) + (ksvn — pm1)

+ (k46y — por) + (k1 — V|| + (k2 — 1)| 50| + (ks — 1)|7yn| + (ks — 1)0,]
(L= )l + 161+ bl + 15+ .
This completes the proof of Theorem 3.1. O

Proof of Theorem 3.7. Consider the polynomial

f(Q) = qu<av - avfl) + ap.

Let p(q) * (1 — q) = f(q) — ¢""'a,, therefore by Lemma 4.1, p(q) * (1 — ¢) = 0 if and

only if either p(q) = 0 or p(q) # 0 implies p(q)'qp(q) —1 = 0, that is, p(q)"'qp(q) = 1.
If p(q) # 0, then ¢ = 1. Therefore the only zeros of p(q) * (1 — q) are ¢ = 1 and the

zeros of p(q).
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For |¢| = 1, we have

/(9]
<lao| + Y _ lay — ap 1|
v=1

<laol + 6ol + 0] + 1ol + Z{m ~ vl 180 = Boal 1o — Yot + 164 — mr}

v=1

=lao| + [Bol + 70l + [do] + a1 — ao| + |z — aa| + ... + |y — | + | —
oo | — | 181 = Bo| + |2 — Bul + .+ B = Bica| + B — B
+ o+ B = Bl + v =0l + 12 =l + o+ =y + v =l
+ oo+ Y — Vo] |01 = o] + |02 — | + o 0 — da| + |G — G
+ .o+ 0 — G|

=lao| + [Bo] + |70 + [do] + a1 — ao| + |aa — aa| + ... + | Mg + ap — My — g4
+ Mo+ ap — Mg — | + o o — anea| | B — Bol + |82 — Bl
F oA X2B + B — Xafy = Bia| + A+ B — Mo — Bra| + o+ B — Bl
+ v =] v =l A Ay = Az — v+ [As v — As — i
+ o v = Ynot| |01 = Go] 4 62 — 01| + o A [Agdy + 6 — Mgy — 1|
+ [0y + 0 — Aadp — S| + o+ 00 — Ona]

<lao| + |Bol + 70| + o] + 1 — a0 + a2 — a1 + ... + Aoy — g1 + 2(A — 1)|oy|
+Ah —ap+ ot ap —ay+ B = B+ B — B
Fo A XB = Bior 2 = DB + XoBy — By + oo+ Bt — B
+r =Y+ 2=t Az — v+ 2008 = D)|vl + Az — v
+ ot VY1 =Y+ 01—+ 02—+ ..+ MO — 61+ 2()\4 — 1)|5l‘
+ MO — 01+ o+ 0p1 — Oy

=(|ao| + 2A10 — g — o) + (|Bol + 2X28 — Bo — Bn) + (I70] + 2237 — 70 — )
+ (00| + 2X40; — 6o — 0,,) + N,

where N = 2( (A = Dlaa] + (O = DIG]+ Oa = Dl + (= DIay]).

Since

max
lg|=1

1
q"*f(—)‘:max ( )’—max]
q lgl=1 lg|=1

therefore, ¢" % f(é) has the same bound on |¢| =1 as f(q), that is

1
(5)] <ol + 20100 = a0 = a0) + ([60] + 20051 = o~ )
+ (|’70| + 237 — Y0 — Yn) + (|50| + 2X40; — 69 — ) + N for |q| =1.
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After few steps as in the proof of Theorem 3.1, we conclude that all the zeros of p(q)
lie in

gl < i{<|ao| 22001 — a0 — an) + (1Bo] + 22081 — fo — Br)

|an|
+ (|70] 4+ 2X3% — 70 — V) + (|00] 4+ 2A40; — dp — 0,) + N}.

This completes the proof of Theorem 3.7. O

6. Conclusions

Some new results on Enestrom-Kakeya theorem for quaternionic polynomials has been
established that are benefical in determining the regions containing all the zeros of a
polynomial.
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