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GENERALIZED FUZZY
CONGRUENCES ON SEMIGROUPS

Inheung Chon

Abstract. We define a G-fuzzy congruence, which is a generalized
fuzzy congruence, discuss some of its basic properties, and charac-
terize the G-fuzzy congruence generated by a fuzzy relation on a
semigroup. We also give certain lattice theoretic properties of G-
fuzzy congruences on semigroups.

1. Introduction

The concept of a fuzzy relation was first proposed by Zadeh ([7]).
Subsequently, Goguen ([1]) and Sanchez ([6]) studied fuzzy relations in
various contexts. In [4] Nemitz discussed fuzzy equivalence relations,
fuzzy functions as fuzzy relations, and fuzzy partitions. Murali ([3])
developed some properties of fuzzy equivalence relations and certain
lattice theoretic properties of fuzzy equivalence relations. The stan-
dard definition of a reflexive fuzzy relation µ on a set X, which most
mathematicians used in their papers, is µ(x, x) = 1 for all x ∈ X.
Gupta et al. ([2]) weakened this standard definition to µ(x, x) > 0 for
all x ∈ X and inf

t∈X
µ(t, t) ≥ µ(y, z) for all y 6= z ∈ X, which is called

G-reflexive fuzzy relation, and redefined a G-fuzzy equivalence rela-
tion on a set and developed some properties of that relation. Samhan
([5]) defined a fuzzy congruence based on the standard definition of
a reflexive fuzzy relation, found the fuzzy congruence generated by a
fuzzy relation on a semigroup, and developed some lattice theoretic
properties of fuzzy congruences. The present work has been started as
a continuation of these studies.
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In section 2 we define a generalized fuzzy congruence based on the
G-reflexive fuzzy relation, which is called a G-fuzzy congruence in this
note, and review some basic properties of fuzzy relations which will be
used in next sections. In section 3 we discuss some basic properties
of G-fuzzy congruences, find the G-fuzzy congruence generated by a
fuzzy relation µ on a semigroup S such that µ(x, y) > 0 for some
x 6= y ∈ S, and characterize the G-fuzzy congruence generated by
a fuzzy relation µ on a semigroup S such that µ(x, y) = 0 for all
x 6= y ∈ S. In section 4 we find sufficient conditions for the composition
µ ◦ ν of two G-fuzzy congruences µ and ν on a semigroup to be the
G-fuzzy congruence generated by µ ∪ ν, show that for the collection
C(S) of all G-fuzzy congruences on a semigroup S and 0 < k ≤ 1,
Ck(S) = {µ ∈ C(S) : µ(c, c) = k for all c ∈ S} is a complete lattice
and any sublattice H of Ck(S) such that µ ◦ ν = ν ◦ µ for all µ, ν ∈ H
is modular, and show that if S is a group, (Ck(S), +, ·) is modular.

2. Preliminaries

We recall some definitions and properties of fuzzy relations and G-
fuzzy congruences which will be used in next sections.

Definition 2.1. A function B from a set X to the closed unit
interval [0, 1] in R is called a fuzzy set in X. For every x ∈ B, B(x) is
called a membership grade of x in B.

The standard definition of a fuzzy reflexive relation µ in a set X
demands µ(x, x) = 1. Gupta et al. ([2]) weakened this definition as
follows.

Definition 2.2. A fuzzy relation µ in a set X is a fuzzy subset of
X×X. µ is G-reflexive in X if µ(x, x) > 0 and inf

t∈X
µ(t, t) ≥ µ(x, y) for

all x, y ∈ X such that x 6= y. µ is symmetric in X if µ(x, y) = µ(y, x)
for all x, y in X. The composition λ ◦ µ of two fuzzy relations λ, µ in
X is the fuzzy subset of X ×X defined by

(λ ◦ µ)(x, y) = sup
z∈X

min(λ(x, z), µ(z, y)).

A fuzzy relation µ in X is transitive in X if µ ◦ µ ⊆ µ. A fuzzy
relation µ in X is called G-fuzzy equivalence relation if µ is G-reflexive,
symmetric, and transitive.
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Let FX be the set of all fuzzy relations in a set X. Then it is easy
to see that the composition ◦ is associative, FX is a monoid under the
operation of composition ◦, and a G-fuzzy equivalence relation is an
idempotent element of FX .

Definition 2.3. A fuzzy relation µ in a set X is called fuzzy left
(right) compatible if µ(x, y) ≤ µ(zx, zy) (µ(x, y) ≤ µ(xz, yz)) for all
x, y, z ∈ X. A G-fuzzy equivalence relation on X is called a G-fuzzy
left congruence (right congruence) if it is fuzzy left compatible (right
compatible). A G-fuzzy equivalence relation on X is a G-fuzzy congru-
ence if it is a G-fuzzy left and right congruence.

Definition 2.4. Let µ be a fuzzy relation in a set X. µ−1 is defined
as a fuzzy relation in X by µ−1(x, y) = µ(y, x).

It is easy to see that (µ ◦ ν)−1 = ν−1 ◦µ−1 for fuzzy relations µ and
ν.

Proposition 2.5. Let µ be a fuzzy relation on a set X. Then
∪∞n=1 µn is the smallest transitive fuzzy relation on X containing µ,
where µn = µ ◦ µ ◦ · · · ◦ µ.

Proof. See Proposition 2.3 of [5]. ¤

Proposition 2.6. Let µ be a fuzzy relation on a set X. If µ is
symmetric, then so is ∪∞n=1 µn, where µn = µ ◦ µ ◦ · · · ◦ µ.

Proof. See Proposition 2.4 of [5]. ¤

Proposition 2.7. If µ is a fuzzy relation on a semigroup S that
is fuzzy left and right compatible, then so is ∪∞n=1 µn, where µn =
µ ◦ µ ◦ · · · ◦ µ.

Proof. See Proposition 3.6 of [5]. ¤

Proposition 2.8. If µ is a G-reflexive fuzzy relation on a set X,
then µn+1(x, y) ≥ µn(x, y) for all natural numbers n and all x, y ∈ X.

Proof. Note that

µ2(x, y) = (µ ◦ µ)(x, y) = sup
z∈X

min[µ(x, z), µ(z, y)]

≥ min[µ(x, x), µ(x, y)] = µ(x, y).
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Suppose µk+1(x, y) ≥ µk(x, y) for all x, y ∈ X. Then

µk+2(x, y) = (µ ◦ µk+1)(x, y) = sup
z∈S

min[µ(x, z), µk+1(z, y)]

≥ sup
z∈S

min[µ(x, z), µk(z, y)]

= (µ ◦ µk)(x, y) = µk+1(x, y).

By the mathematical induction, µn+1(x, y) ≥ µn(x, y) for n = 1, 2, . . . .¤

Proposition 2.9. Let µ and each νi be fuzzy relations in a set X
for all i ∈ I. Then µ ◦ ( ∩

i∈I
νi) ⊆ ∩

i∈I
(µ ◦ νi) and ( ∩

i∈I
νi) ◦µ ⊆ ∩

i∈I
(νi ◦µ).

Proof. Straightforward. ¤

3. G-fuzzy congruences on semigroups

In this section we develop some basic properties of G-fuzzy congru-
ences and characterize the G-fuzzy congruence generated by a fuzzy
relation on a semigroup.

Proposition 3.1. Let µ be a fuzzy relation on a set S. If µ is
G-reflexive, then so is ∪∞n=1 µn, where µn = µ ◦ µ ◦ · · · ◦ µ.

Proof. Clearly µ1 = µ is G-reflexive. Suppose µk is G-reflexive.

µk+1(x, x) = (µk ◦ µ)(x, x) = sup
z∈S

min[µk(x, z), µ(z, x)]

≥ min[µk(x, x), µ(x, x)] > 0

for all x ∈ S. Let x, y ∈ S with x 6= y. Then

inf
t∈S

µk+1(t, t) = inf
t∈S

(µk ◦ µ)(t, t)

= inf
t∈S

sup
z∈S

min[µk(t, z), µ(z, t)] ≥ inf
t∈S

min[µk(t, t), µ(t, t)]

≥ min [ inf
t∈S

µk(t, t), inf
t∈S

µ(t, t)]

≥ min[µk(x, z), µ(z, y)]
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for all z ∈ S such that z 6= x and z 6= y. That is, inf
t∈S

µk+1(t, t) ≥
sup

z∈S−{x,y}
min[µk(x, z), µ(z, y)]. Clearly inf

t∈S
µ(t, t) ≥ min [µk(x, x),

µ(x, y)] and inf
t∈S

µk(t, t) ≥ min [µk(x, y), µ(y, y)]. Since µk+1(t, t) ≥
µk(t, t) ≥ µ(t, t) for k ≥ 1 by Proposition 2.8,

inf
t∈S

µk+1(t, t) ≥ min [µk(x, x), µ(x, y)]

and inf
t∈S

µk+1(t, t) ≥ min [µk(x, y), µ(y, y)]. Thus

inf
t∈S

µk+1(t, t) ≥ max [ sup
z∈S−{x,y}

min(µk(x, z), µ(z, y)),

min (µk(x, x), µ(x, y)), min (µk(x, y), µ(y, y))]

= sup
z∈S

min[µk(x, z), µ(z, y)] = (µk ◦ µ)(x, y) = µk+1(x, y).

That is, µk+1 is G-reflexive. By the mathematical induction, µn is G-
reflexive for n = 1, 2, . . . . Thus inf

t∈S
[∪∞n=1 µn](t, t) = inf

t∈S
sup[µ(t, t), (µ◦

µ)(t, t), . . . ] ≥ sup [ inf
t∈S

µ(t, t), inf
t∈S

(µ ◦ µ)(t, t), . . . ] ≥ sup[µ(x, y),

(µ◦µ)(x, y), . . . ] = [∪∞n=1µ
n](x, y). Clearly [∪∞n=1 µn](x, x) > 0. Hence

∪∞n=1 µn is G-reflexive. ¤

Proposition 3.2. Let µ and ν be G-fuzzy congruences in a set X.
Then µ ∩ ν is a G-fuzzy congruence.

Proof. It is clear that µ ∩ ν is G-reflexive and symmetric. By
Proposition 2.9, [(µ ∩ ν) ◦ (µ ∩ ν)] ⊆ [µ ◦ (µ ∩ ν)] ∩ [ν ◦ (µ ∩ ν)] ⊆
[(µ◦µ)∩ (µ◦ν)]∩ [(ν ◦µ)∩ (ν ◦ν)] ⊆ [µ∩ (µ◦ν)]∩ [(ν ◦µ)∩ν] ⊆ µ∩ν.
That is, µ ∩ ν is transitive. Clearly µ ∩ ν is fuzzy left and right com-
patible. Thus µ ∩ ν is a G-fuzzy congruence. ¤

It is easy to see that even though µ and ν are G-fuzzy congruences,
µ ∪ ν is not necessarily a G-fuzzy congruence. We provide an explicit
form of the G-fuzzy congruence generated by µ ∪ ν in the following
proposition.
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Proposition 3.3. Let µ and ν be G-fuzzy congruences on a semi-
group S. Then the G-fuzzy congruence generated by µ ∪ ν in S is
∪∞n=1(µ ∪ ν)n = (µ ∪ ν) ∪ [(µ ∪ ν) ◦ (µ ∪ ν)] ∪ . . . .

Proof. Clearly (µ ∪ ν)(x, x) > 0 and

inf
t∈S

(µ ∪ ν)(t, t) = inf
t∈S

max(µ(t, t), ν(t, t))

≥ max ( inf
t∈S

µ(t, t), inf
t∈S

ν(t, t))

≥ max (µ(x, y), ν(x, y))

= (µ ∪ ν)(x, y)

for all x 6= y in S. That is, µ ∪ ν is G-reflexive. By Proposition 3.1,
∪∞n=1(µ∪ν)n is G-reflexive. Clearly µ∪ν is symmetric. By Proposition
2.6, ∪∞n=1(µ ∪ ν)n is symmetric. By Proposition 2.5, ∪∞n=1(µ ∪ ν)n

is transitive. Hence ∪∞n=1(µ ∪ ν)n is a G-fuzzy equivalence relation
containing µ ∪ ν. It is straightforward to see that µ ∪ ν is fuzzy left
and right compatible. By Proposition 2.7, ∪∞n=1(µ ∪ ν)n is fuzzy left
and right compatible. Thus ∪∞n=1(µ ∪ ν)n is a G-fuzzy congruence
containing µ∪ ν. Let λ be a G-fuzzy congruence in S containing µ∪ ν.
Then ∪∞n=1(µ∪ν)n ⊆ ∪∞n=1λ

n = λ∪(λ◦λ)∪(λ◦λ◦λ)∪· · · ⊆ λ∪λ∪· · · =
λ. Thus ∪∞n=1(µ∪ ν)n is the G-fuzzy congruence generated by µ∪ ν.¤

We now turn to the characterization of the G-fuzzy congruence gen-
erated by a fuzzy relation on a semigroup.

Definition 3.4. Let µ be a fuzzy relation on a semigroup S and
let S1 = S ∪ {e}, where e is the identity of S. We define the fuzzy
relation µ∗ on S as

µ∗(c, d) =
⋃

x,y∈S1,
xay=c,
xby=d

µ(a, b) for all c, d ∈ S.

Proposition 3.5. Let µ and ν be two fuzzy relations on a semi-
group S. Then

(1) µ ⊆ µ∗

(2) (µ∗)−1 = (µ−1)∗
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(3) If µ ⊆ ν, then µ∗ ⊆ ν∗

(4) (µ ∪ ν)∗ = µ∗ ∪ ν∗

(5) µ = µ∗ if and only if µ is fuzzy left and right compatible
(6) (µ∗)∗ = µ∗

Proof. See Proposition 3.5 of [5]. ¤

Samhan ([5]) found the fuzzy congruence generated by a fuzzy rela-
tion on a semigroup. Theorem 3.6 may be considered as a generaliza-
tion of this work in G-fuzzy congruences.

Theorem 3.6. Let µ be a fuzzy relation on a semigroup S.

(1) If µ(x, y) > 0 for some x 6= y ∈ S, then the G-fuzzy congruence
generated by µ is ∪∞n=1 [µ∗ ∪ (µ∗)−1 ∪ θ∗]n, where θ is a fuzzy
relation on S such that θ(z, z) = sup

x6=y∈S
µ(x, y) for all z ∈ S

and θ(x, y) = θ(y, x) ≤ min [µ(x, y), µ(y, x)] for all x, y ∈ S
with x 6= y, and µ∗ and θ∗ are fuzzy relations on S defined in
Definition 3.4.

(2) If µ(x, y) = 0 for all x 6= y ∈ S and µ(z, z) > 0 for all z ∈ S,
then the G-fuzzy congruence generated by µ is ∪∞n=1 (µ∗)n

,
where µ∗ is a fuzzy relation on S defined in Definition 3.4.

(3) If µ(x, y) = 0 for all x 6= y ∈ S, µ(z, z) = 0 for some z ∈ S,
and µ∗(z, z) > 0 for all z ∈ S, then the G-fuzzy congruence
generated by µ is ∪∞n=1 (µ∗)n

, where µ∗ is a fuzzy relation on
S defined in Definition 3.4.

(4) If µ(x, y) = 0 for all x 6= y ∈ S, µ(z, z) = 0 for some z ∈ S,
and µ∗(z, z) = 0 for some z ∈ S, then there does not exist the
G-fuzzy congruence generated by µ.

Proof. (1) Since θ(z, z) > 0, θ∗(z, z) > 0 for all z ∈ S by Proposition
3.5 (1). Let x, y ∈ S with x 6= y and let S1 = S ∪ {e}, where e is the
identity of S. From Definition 3.4, µ∗(x, y) = ∪c,d∈S1,

cad=x,
cbd=y

µ(a, b) and

θ∗(x, y) = ∪c,d∈S1,
cad=x,
cbd=y

θ(a, b). Since cad = x and cbd = y for c, d ∈ S1,

x 6= y implies a 6= b. Thus µ∗(x, y) ≤ sup
x 6=y∈S

µ(x, y) = θ(t, t) for
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all t ∈ S and θ∗(x, y) ≤ µ∗(x, y). That is, inf
z∈S

θ∗(z, z) ≥ θ(t, t) ≥
µ∗(x, y) ≥ θ∗(x, y). Let µ1 = µ∗ ∪ (µ∗)−1 ∪ θ∗. Then

µ1(z, z) = max[µ∗(z, z), (µ∗)−1(z, z), θ∗(z, z)] > 0

and

inf
t∈S

µ1(t, t) ≥ inf
t∈S

θ∗(t, t) ≥ max[µ∗(x, y), (µ∗)−1(x, y), θ∗(x, y)]

= µ1(x, y).

Thus µ1 is G-reflexive. By Proposition 3.1, ∪∞n=1 µn
1 is G-reflexive.

Since θ(x, y) = θ(y, x), θ = θ−1. By Proposition 3.5 (2), θ∗ = (θ−1)∗ =
(θ∗)−1. Thus

µ1(x, y) = max [µ∗(x, y), (µ∗)−1(x, y), θ∗(x, y)]

= max [(µ∗)−1(y, x), µ∗(y, x), (θ∗)−1(x, y)]

= max[(µ∗)−1(y, x), µ∗(y, x), θ∗(y, x)] = µ1(y, x).

Thus µ1 is symmetric. By Proposition 2.6, ∪∞n=1 µn
1 is symmetric. By

Proposition 2.5, ∪∞n=1 µn
1 is transitive. Hence ∪∞n=1 µn

1 is a G-fuzzy
equivalence relation containing µ. By Proposition 3.5 (2), (4), and (6),
µ∗1 = (µ∗ ∪ (µ∗)−1 ∪ θ∗)∗ = (µ∗ ∪ (µ−1)∗ ∪ θ∗)∗ = (µ∗)∗ ∪ ((µ−1)∗)∗ ∪
(θ∗)∗ = µ∗ ∪ (µ−1)∗ ∪ θ∗ = µ∗ ∪ (µ∗)−1 ∪ θ∗ = µ1. Thus µ1 is fuzzy
left and right compatible by Proposition 3.5 (5). By Proposition 2.7,
∪∞n=1 µn

1 is fuzzy left and right compatible. Thus ∪∞n=1 µn
1 is a G-fuzzy

congruence containing µ. Let ν be a G-fuzzy congruence containing
µ. Then µ(x, y) ≤ ν(x, y), µ−1(x, y) = µ(y, x) ≤ ν(y, x) = ν(x, y),
and θ(x, y) ≤ µ(x, y) ≤ ν(x, y). That is, (µ ∪ µ−1 ∪ θ)(x, y) ≤ ν(x, y)
for all x, y ∈ S such that x 6= y. Since ν(a, a) ≥ ν(x, y) ≥ µ(x, y) for
all a, x, y ∈ S such that x 6= y, θ(a, a) = sup

x 6=y∈S
µ(x, y) ≤ ν(a, a) for

all a ∈ S. Since ν(a, a) ≥ µ(a, a) = µ−1(a, a) and ν(a, a) ≥ θ(a, a)
for all a ∈ S, max [µ(a, a), µ−1(a, a), θ(a, a)] ≤ ν(a, a) for all a ∈ S.
Thus µ ∪ µ−1 ∪ θ ⊆ ν. By Proposition 3.5 (2), (3), and (4), µ1 =
µ∗ ∪ (µ∗)−1 ∪ θ∗ = µ∗ ∪ (µ−1)∗ ∪ θ∗ = (µ ∪ µ−1 ∪ θ)∗ ⊆ ν∗. Since
ν is fuzzy left and right compatible, ν = ν∗ by Proposition 3.5 (5).
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Thus µ1 ⊆ ν. Suppose µk
1 ⊆ ν. Then µk+1

1 (b, c) = (µk
1 ◦ µ1)(b, c) =

sup
d∈S

min[µk
1(b, d), µ1(d, c)] ≤ sup

d∈S
min [ν(b, d), ν(d, c)] = (ν ◦ ν)(b, c) for

all b, c ∈ S. That is, µk+1
1 ⊆ (ν ◦ν). Since ν is transitive, µk+1

1 ⊆ ν. By
the mathematical induction, µn

1 ⊆ ν for every natural number n. Thus
∪∞n=1 [µ∗∪(µ∗)−1∪θ∗]n = ∪∞n=1 µ1

n = µ1∪(µ1◦µ1)∪(µ1◦µ1◦µ1) · · · ⊆
ν.

(2) Since µ(z, z) > 0, µ∗(z, z) > 0 for all z ∈ S by Proposition 3.5
(1). Let x, y ∈ S with x 6= y. Since µ∗(x, y) ≤ sup

x6=y∈S
µ(x, y) and

µ(x, y) = 0, µ∗(x, y) = 0. Thus inf
t∈S

µ∗(t, t) ≥ µ∗(x, y). Hence µ∗ is G-

reflexive. Since µ = µ−1, µ∗ = (µ−1)∗ = (µ∗)−1 by Proposition 3.5 (2).
Thus µ∗ is symmetric. By Proposition 2.5, Proposition 2.6, and Propo-
sition 3.1, ∪∞n=1 (µ∗)n is a G-fuzzy equivalence relation containing µ.
By Proposition 3.5 (5) and (6), µ∗ is fuzzy left and right compatible.
By Proposition 2.7, ∪∞n=1 (µ∗)n is a G-fuzzy congruence containing µ.
Let ν be a G-fuzzy congruence containing µ. Since µ ⊆ ν, µ∗ ⊆ ν∗ by
Proposition 3.5 (3). Since ν is fuzzy left and right compatible, ν∗ = ν
by Proposition 3.5 (5). Thus µ∗ ⊆ ν. By the mathematical induction as
shown in Theorem 3.6 (1), we may show that (µ∗)n ⊆ ν for every natu-
ral number n. Hence ∪∞n=1 (µ∗)n = µ∗∪(µ∗◦µ∗)∪(µ∗◦µ∗◦µ∗) · · · ⊆ ν.

(3) The proof is similar to that of (2).
(4) Suppose ξ is the G-fuzzy congruence generated by µ. Then

ξ(z, z) > 0 for every z ∈ S. Let θ be a fuzzy relation such that
θ(a, b) = ξ(a,b)

2 for all a, b ∈ S. Then θ(z, z) > 0, and hence θ∗(z, z) > 0
for all z ∈ S by Proposition 3.5 (1). Let x, y ∈ S with x 6= y. Since
µ∗(x, y) ≤ sup

x 6=y∈S
µ(x, y) and µ(x, y) = 0, µ∗(x, y) = 0. Since ξ is fuzzy

left and right compatible, ξ∗ = ξ by Proposition 3.5 (5). Since ξ is
G-reflexive and ξ∗ = ξ, inf

t∈S
ξ∗(t, t) ≥ ξ∗(x, y). Since θ∗(a, b) = ξ∗(a,b)

2

for all a, b ∈ S, inf
t∈S

θ∗(t, t) ≥ θ∗(x, y). Thus (µ∗ ∪ θ∗)(z, z) > 0 for

all z ∈ S and inf
t∈S

(µ∗ ∪ θ∗)(t, t) ≥ (µ∗ ∪ θ∗)(x, y). That is, µ∗ ∪ θ∗ is

G-reflexive. Since ξ is symmetric, θ is symmetric. Since θ is symmetric
and µ(x, y) = 0, µ ∪ θ = (µ ∪ θ)−1. By Proposition 3.5 (2), (µ ∪ θ)∗ =
[(µ ∪ θ)−1]∗ = [(µ ∪ θ)∗]−1. Thus (µ ∪ θ)∗ = µ∗ ∪ θ∗ is symmetric. By
Proposition 2.5, Proposition 2.6, and Proposition 3.1, ∪∞n=1 (µ∗ ∪ θ∗)n

is a G-fuzzy equivalence relation containing µ. By Proposition 3.5 (4)
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and (6), (µ∗ ∪ θ∗)∗ = (µ∗)∗ ∪ (θ∗)∗ = µ∗ ∪ θ∗. Thus µ∗ ∪ θ∗ is fuzzy
left and right compatible by Proposition 3.5 (5). By Proposition 2.7,
∪∞n=1 (µ∗ ∪ θ∗)n is a G-fuzzy congruence containing µ. Since θ(a, b) =
ξ(a,b)

2 ≤ ξ(a, b) and µ(a, b) ≤ ξ(a, b) for all a, b ∈ S, µ ∪ θ ⊆ ξ. Let
µ1 = µ∗∪θ∗. By Proposition 3.5 (3) and (4), µ1 = µ∗∪θ∗ = (µ∪θ)∗ ⊆
ξ∗. Since ξ∗ = ξ, µ1 ⊆ ξ. By the mathematical induction as shown in
Theorem 3.6 (1), we may show that µn

1 ⊆ ξ for every natural number
n. Hence ∪∞n=1 [µ∗ ∪ θ∗]n = ∪∞n=1 µ1

n ⊆ ξ. Let v 6= w ∈ S. Then
µ1(v, w) = (µ∗ ∪ θ∗)(v, w) = θ∗(v, w) ≤ inf

t∈S
θ∗(t, t) ≤ µ1(z, z) for every

z ∈ S. Suppose µk
1(v, w) ≤ µ1(z, z) for every z ∈ S. Then

µk+1
1 (v, w) = sup

s∈S
min [µk

1(v, s), µ1(s, w)]

= max [ sup
s∈S−{v,w}

min(µk
1(v, s), µ1(s, w)), min (µk

1(v, v), µ1(v, w)),

min (µk
1(v, w), µ1(w, w))]

≤ max [µ1(z, z), µ1(z, z), µk
1(v, w)] = µ1(z, z).

By the mathematical induction, µn
1 (v, w) ≤ µ1(z, z) for every natural

number n. Clearly µk
1(z, z) = µ1(z, z) for k = 1. Suppose µk

1(z, z) =
µ1(z, z). Since µk

1(z, s) ≤ µ1(z, z) for s 6= z ∈ S, µk+1
1 (z, z) =

sup
s∈S

min [µk
1(z, s), µ1(s, z)] = max [ sup

s∈S−{z}
min(µk

1(z, s), µ1(s, z)),

min (µk
1(z, z), µ1(z, z))] = µ1(z, z). By the mathematical induction,

µn
1 (z, z) = µ1(z, z) for every natural number n and every z ∈ S. Let

p be in S with µ∗(p, p) = 0. Since θ(a, b) = ξ(a,b)
2 and ξ is fuzzy

left and right compatible, θ is fuzzy left and right compatible. That
is, θ = θ∗. Thus µ1(p, p) = θ∗(p, p) = θ(p, p) = ξ(p,p)

2 < ξ(p, p).
Since µn

1 (z, z) = µ1(z, z) for every natural number n and every z ∈ S,
[∪∞n=1 (µ∗ ∪ θ∗)n](p, p) = [∪∞n=1 µ1

n](p, p) = µ1(p, p) < ξ(p, p) for some
p ∈ S such that µ∗(p, p) = 0. Hence ∪∞n=1 (µ∗∪θ∗)n, which is a G-fuzzy
congruence containing µ, is contained in ξ. This contradicts that ξ is
the G-fuzzy congruence generated by µ. ¤

4. Lattices of G-fuzzy congruences

In this section we discuss some lattice theoretic properties of G-fuzzy
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congruences. Let C(S) be the collection of all G-fuzzy congruences on
a semigroup S. It is easy to see that C(S) is not a lattice.

Theorem 4.1. Let 0 < k ≤ 1 and let Ck(S) = {µ ∈ C(S) :
µ(c, c) = k for all c ∈ S}. Then (Ck(S),≤) is a complete lattice, where
≤ is a relation on the set of all G-fuzzy congruences on S defined by
µ ≤ ν iff µ(x, y) ≤ ν(x, y) for all x, y ∈ S.

Proof. Clearly ≤ is a partial order relation. It is easy to check that
the relation σ defined by σ(x, y) = k for all x, y ∈ S is in Ck(S) and
the relation λ defined by λ(x, y) = k for x = y and λ(x, y) = 0 for
x 6= y is in Ck(S). Also σ is the greatest element and λ is the least
element of Ck(S) with respect to the ordering ≤. Let {µj}j∈J be a
non-empty collection of G-fuzzy congruences in Ck(S). Let µ(x, y) =
inf
j∈J

µj(x, y) for all x, y ∈ S. It is easy to see that µ(x, x) > 0 for all

x ∈ S, inf
t∈X

µ(t, t) ≥ µ(y, z) for all y 6= z ∈ X, µ = µ−1, µ(x, y) ≤
µ(zx, zy), and µ(x, y) ≤ µ(xz, yz) for all x, y, z ∈ S. µ ◦ µ(x, y) =
sup
z∈X

min[ inf
j∈J

µj(x, z), inf
j∈J

µj(z, y)] = sup
z∈X

inf
j∈J

inf
i∈J

min[µj(x, z), µi(z, y)] ≤
sup
z∈X

inf
j∈J

min[µj(x, z), µj(z, y)] ≤ inf
j∈J

µj ◦ µj(x, y) ≤ inf
j∈J

µj(x, y) =

µ(x, y). That is, µ ∈ Ck(S). Since µ is the greatest lower bound of
{µj}j∈J , (Ck(S),≤) is a complete lattice. ¤

We define addition and multiplication on Ck(S) by µ+ν =< µ∪ν >c

and µ ·ν = µ∩ν, where < µ∪ν >c is the G-fuzzy congruence generated
by µ ∪ ν.

Definition 4.2. A lattice (L,+, ·) is called modular if (x + y) · z ≤
x + (y · z) for all x, y, z ∈ L with x ≤ z.

Lemma 4.3. Let µ and ν be G-fuzzy congruences on a semigroup
S such that

µ(c, c) = ν(c, c) for all c ∈ S.

If µ ◦ ν = ν ◦ µ, then µ ◦ ν is the G-fuzzy congruence on S generated
by µ ∪ ν.

Proof. Clearly (µ ◦ ν)(a, a) > 0 for all a ∈ S. Let x, y ∈ S with
x 6= y. Since µ(c, c) = ν(c, c) for all c ∈ S, inf

t∈S
µ(t, t) = inf

t∈S
ν(t, t) ≥
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max [µ(x, y), ν(x, y)]. Thus

inf
t∈S

(µ ◦ ν)(t, t) = inf
t∈S

sup
z∈S

min [µ(t, z), ν(z, t)]

≥ inf
t∈S

min [µ(t, t), ν(t, t)]

≥ min [ inf
t∈S

µ(t, t), inf
t∈S

ν(t, t)]

≥ max[µ(x, y), ν(x, y)].

Also

inf
t∈S

(µ ◦ ν)(t, t) ≥ min [ inf
t∈S

µ(t, t), inf
t∈S

ν(t, t)] ≥ min[µ(x, z), ν(z, y)]

for all z ∈ S such that z 6= x and z 6= y. That is,

inf
t∈S

(µ ◦ ν)(t, t) ≥ sup
z∈S−{x,y}

min [µ(x, z), ν(z, y)].

Thus

inf
t∈S

(µ ◦ ν)(t, t)

≥ max [ sup
z∈S−{x,y}

min(µ(x, z), ν(z, y)), max(µ(x, y), ν(x, y))]

= max[ sup
z∈S−{x,y}

min(µ(x, z), ν(z, y)), ν(x, y), µ(x, y)]

= max [ sup
z∈S−{x,y}

min (µ(x, z), ν(z, y)),min(µ(x, x), ν(x, y)),

min(µ(x, y), ν(y, y))]

= sup
z∈S

min[µ(x, z), ν(z, y)] = (µ ◦ ν)(x, y).

That is, µ◦ν is G-reflexive. Since µ and ν are symmetric, (µ◦ν)−1 =
ν−1 ◦ µ−1 = ν ◦ µ = µ ◦ ν. Thus µ ◦ ν is symmetric. Since µ and ν
are transitive and the operation ◦ is associative, (µ ◦ ν) ◦ (µ ◦ ν) =
µ ◦ (ν ◦ µ) ◦ ν = µ ◦ (µ ◦ ν) ◦ ν = (µ ◦ µ) ◦ (ν ◦ ν) ⊆ µ ◦ ν. Hence
µ ◦ ν is a G-fuzzy equivalence relation. Since S is a semigroup, (µ ◦
ν)(x, y) = sup

a∈S
min[µ(x, a), ν(a, y)] ≤ sup

za∈S
min[µ(zx, za), ν(za, zy)] ≤

sup
t∈S

min[µ(zx, t), ν(t, zy)] = (µ◦ν)(zx, zy). Thus µ◦ν is fuzzy left com-

patible. Similarly we may show µ ◦ ν is fuzzy right compatible. Hence
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µ◦ν is a G-fuzzy congruence in S. Since ν(y, y) = µ(y, y) ≥ µ(x, y), (µ◦
ν)(x, y) = sup

z∈S
min[µ(x, z), ν(z, y)] ≥ min(µ(x, y), ν(y, y)) = µ(x, y).

Since µ(x, x) = ν(x, x) ≥ ν(x, y), (µ◦ν)(x, y) = sup
z∈S

min[µ(x, z), ν(z, y)] ≥
min(µ(x, x), ν(x, y)) = ν(x, y).

Thus (µ ◦ ν)(x, y) ≥ max(µ(x, y), ν(x, y)) = (µ ∪ ν)(x, y) for all
x, y ∈ S such that x 6= y. Since µ(c, c) = ν(c, c) for all c ∈ S, (µ ◦
ν)(c, c) = sup

p∈S
min[µ(c, p), ν(p, c)] ≥ min(µ(c, c), ν(c, c)) = (µ ∪ ν)(c, c)

for all c ∈ S. Thus µ ∪ ν ⊆ µ ◦ ν. Let λ be a G-fuzzy congruence in S
containing µ∪ν. Since λ is transitive, µ◦ν ⊆ (µ∪ν)◦(µ∪ν) ⊆ λ◦λ ⊆ λ.
Thus µ ◦ ν is the G-fuzzy congruence generated by µ ∪ ν. ¤

It is well known that if µ and ν are congruences on a semigroup S
and µ◦ν = ν ◦µ, then µ◦ν is the congruence on S generated by µ∪ν.
Lemma 4.3 may be considered as a generalization of this in G-fuzzy
congruences.

Theorem 4.4. Let 0 < k ≤ 1 and let S be a semigroup and H be
a sublattice of (Ck(S), +, ·) such that µ ◦ ν = ν ◦ µ for all µ, ν ∈ H.
Then H is a modular lattice.

Proof. Let µ, ν, ρ ∈ H with µ ≤ ρ. Let x, y ∈ S.

min[(µ ◦ ν)(x, y), ρ(x, y)] = sup
z∈S

min [µ(x, z), ν(z, y), ρ(x, y)]

≤ sup
z∈S

min[µ(x, z), ρ(x, z), ν(z, y), ρ(x, y)]

≤ sup
z∈S

min[µ(x, z), ν(z, y), ρ(z, y)]

= [µ ◦min(ν, ρ)](x, y).

Thus (µ◦ν)·ρ ≤ µ◦(ν·ρ). Since µ, ν ∈ Ck(S), µ(c, c) = ν(c, c) = k for
all c ∈ S. By Lemma 4.3, µ◦ν is the G-fuzzy congruence generated by
µ∪ν. That is, µ+ν = µ◦ν. Similarly we may show µ+(ν ·ρ) = µ◦(ν ·ρ).
Thus (µ + ν) · ρ ≤ µ + (ν · ρ). Hence H is modular. ¤

Proposition 4.5. If S is a group, then µ ◦ ν = ν ◦ µ for all µ, ν ∈
Ck(S).
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Proof. Straightforward. ¤

Corollary 4.6. If S is a group and 0 < k ≤ 1, then (Ck(S), +, ·)
is modular.

Proof. By Theorem 4.4 and Proposition 4.5, (Ck(S), +, ·) is modu-
lar. ¤
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