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GENERALIZED FUZZY
CONGRUENCES ON SEMIGROUPS

INHEUNG CHON

ABSTRACT. We define a G-fuzzy congruence, which is a generalized
fuzzy congruence, discuss some of its basic properties, and charac-
terize the G-fuzzy congruence generated by a fuzzy relation on a
semigroup. We also give certain lattice theoretic properties of G-
fuzzy congruences on semigroups.

1. Introduction

The concept of a fuzzy relation was first proposed by Zadeh ([7]).
Subsequently, Goguen ([1]) and Sanchez ([6]) studied fuzzy relations in
various contexts. In [4] Nemitz discussed fuzzy equivalence relations,
fuzzy functions as fuzzy relations, and fuzzy partitions. Murali ([3])
developed some properties of fuzzy equivalence relations and certain
lattice theoretic properties of fuzzy equivalence relations. The stan-
dard definition of a reflexive fuzzy relation p on a set X, which most
mathematicians used in their papers, is p(z,z) = 1 for all x € X.
Gupta et al. ([2]) weakened this standard definition to pu(z,z) > 0 for
all z € X and tiél)f< wu(t,t) > u(y, z) for all y # z € X, which is called

G-reflexive fuzzy relation, and redefined a G-fuzzy equivalence rela-
tion on a set and developed some properties of that relation. Samhan
([5]) defined a fuzzy congruence based on the standard definition of
a reflexive fuzzy relation, found the fuzzy congruence generated by a
fuzzy relation on a semigroup, and developed some lattice theoretic
properties of fuzzy congruences. The present work has been started as
a continuation of these studies.
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In section 2 we define a generalized fuzzy congruence based on the
G-reflexive fuzzy relation, which is called a G-fuzzy congruence in this
note, and review some basic properties of fuzzy relations which will be
used in next sections. In section 3 we discuss some basic properties
of G-fuzzy congruences, find the G-fuzzy congruence generated by a
fuzzy relation p on a semigroup S such that u(z,y) > 0 for some
x # y € 8, and characterize the G-fuzzy congruence generated by
a fuzzy relation p on a semigroup S such that p(z,y) = 0 for all
x # y € S. In section 4 we find sufficient conditions for the composition
i o v of two G-fuzzy congruences p and v on a semigroup to be the
G-fuzzy congruence generated by u U v, show that for the collection
C(95) of all G-fuzzy congruences on a semigroup S and 0 < k < 1,
Cr(S) = {pn € C(S) : ple,c) = k for all ¢ € S} is a complete lattice
and any sublattice H of C(S) such that pov =voyu for all p,v € H
is modular, and show that if S is a group, (Ck(S), +, ) is modular.

2. Preliminaries

We recall some definitions and properties of fuzzy relations and G-
fuzzy congruences which will be used in next sections.

DEFINITION 2.1. A function B from a set X to the closed unit
interval [0, 1] in R is called a fuzzy set in X. For every x € B, B(x) is
called a membership grade of x in B.

The standard definition of a fuzzy reflexive relation p in a set X
demands p(z,x) = 1. Gupta et al. (][2]) weakened this definition as
follows.

DEFINITION 2.2. A fuzzy relation p in a set X is a fuzzy subset of
X xX. pis G-reflezive in X if p(z,x) > 0 and tin)f( p(t,t) > p(x,y) for
€

all z,y € X such that x # y. p is symmetric in X if p(x,y) = p(y, z)
for all z,y in X. The composition A o y of two fuzzy relations A, p in
X is the fuzzy subset of X x X defined by

(Aop)(z,y) = sup min(A(z, 2), 1(2, y))-

A fuzzy relation p in X is transitive in X if popu C pu. A fuzzy
relation p in X is called G-fuzzy equivalence relation if p is G-reflexive,
symmetric, and transitive.
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Let Fx be the set of all fuzzy relations in a set X. Then it is easy
to see that the composition o is associative, Fx is a monoid under the
operation of composition o, and a G-fuzzy equivalence relation is an
idempotent element of Fx.

DEFINITION 2.3. A fuzzy relation p in a set X is called fuzzy left
(right) compatible if p(x,y) < wp(zz,zy) (u(z,y) < wp(rz,yz)) for all
x,y,z € X. A G-fuzzy equivalence relation on X is called a G-fuzzy
left congruence (right congruence) if it is fuzzy left compatible (right
compatible). A G-fuzzy equivalence relation on X is a G-fuzzy congru-
ence if it is a G-fuzzy left and right congruence.

DEFINITION 2.4. Let u be a fuzzy relation in a set X. ! is defined
as a fuzzy relation in X by u=(z,y) = u(y, x).

1

It is easy to see that (uov)~! = v~ Lopu~! for fuzzy relations y and

V.

PROPOSITION 2.5. Let p be a fuzzy relation on a set X. Then
Use, u™ is the smallest transitive fuzzy relation on X containing p,
where p" = ppopo---op.

Proof. See Proposition 2.3 of [5]. O

PROPOSITION 2.6. Let u be a fuzzy relation on a set X. If p is
symmetric, then so is Uy2 ; p"™, where p'* = pto p1o---0 .

Proof. See Proposition 2.4 of [5]. O

PROPOSITION 2.7. If u is a fuzzy relation on a semigroup S that
is fuzzy left and right compatible, then so is U2, p", where p" =

,u le) M O--+0 /’L
Proof. See Proposition 3.6 of [5]. O]

PROPOSITION 2.8. If p is a G-reflexive fuzzy relation on a set X,
then p"*t*(x,y) > p™(x,y) for all natural numbers n and all z,y € X.

Proof. Note that

() = (pop)(z,y) = sup min[u(z, 2), u(z,y)]

> min[u(z, ), p(z, y)| = p(z, y).
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Suppose pFt(z,y) > pF(z,y) for all z,y € X. Then

k—|—2( k—l—l)( k;—H(

r,y) = sup min[u(x, z), p" " (z,y)]

zeS

> sup minu(z, z), p*(z,y)]
zeS

P (@, y) = (pop

k+1(

= (po ) (z,y) = ' (z,y).

By the mathematical induction, "1 (z,y) > u"(z,y) forn =1,2,....0
PROPOSITION 2.9. Let u and each v; be fuzzy relations in a set X
for alli € I. Then po(Nwv;) C N (pov;) and (Nv)opu € N (v;0p).
iel iel iel iel

Proof. Straightforward. OJ

3. G-fuzzy congruences on semigroups

In this section we develop some basic properties of G-fuzzy congru-
ences and characterize the G-fuzzy congruence generated by a fuzzy
relation on a semigroup.

PROPOSITION 3.1. Let pu be a fuzzy relation on a set S. If p is
G-reflexive, then so is U732 p", where ™ = 1o j1o--- o .

Proof. Clearly pu! = p is G-reflexive. Suppose p* is G-reflexive.

) = (4 o ), @) = sup il (2, 2), ()]

1
> min[p" (2, z), p(z, )] > 0
for all x € S. Let x,y € S with  # y. Then

inf p**t(¢,t) = inf (u* tt
inf p™(t,t) = Inf (u" 0 p)(t,1)

= inf inu® (¢ t)] > inf min[p®(t,t), p(t,t
inf sup minu” (¢, 2), u(z,t)] 2 Inf minfp®(2,1), p(t, ¢))

> min [inf 4*(t,1), infu(t,1)]

> min[p®(z, 2), u(z,y)]
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for all z € S such that z # x and z # y. That is, tmg pFti(t ) >
€

sup  min[u¥(x, 2), u(z,y)]. Clearly inf u(t,t) > min [u*(z,2),
zeS—{z,y} tesS

plz.y)] and nf pt(E1) > min (14 (@ y).uy. ). Since p1(1 ) >
€
pF(t,t) > u(t,t) for k > 1 by Proposition 2.8,

inf gt 1) > min 1 (2, 2), p(, y)]

and inf p*H(¢, 1) > min [p* (2, y), p(y, y)]. Thus
S

inf Mt ) > max [ sup  min(u®(z, 2), p(z,y)),
tes zeS—{z,y}
min (p*(z,z), p(z,y)), min (1 (z,y), 1y, y))]

= sup minfp" (2, 2), u(z,9)) = (1* o p) (z,y) = " (2, y).

That is, u**! is G-reflexive. By the mathematical induction, p" is G-
reflexive forn = 1,2,.... Thus tlng (Use, u"|(t,t) = 1tlng sup|p(t,t), (o
€ €

w(t,1),...]1 2 sup [inf u(t,t), inf (uo p)(t),...] 2 suplu(z,y),
(o) (#,9), -] = (U1 1") (2, ). Clearly [UZ2, j](z,) > 0. Hence
Up2, p" is G-reflexive. O]

PRrROPOSITION 3.2. Let pu and v be G-fuzzy congruences in a set X.
Then pNv is a G-fuzzy congruence.

Proof. 1t is clear that pu N v is G-reflexive and symmetric. By
Proposition 2.9, [(uNv)o(unNv)] C lpo(unuv)Nyvoe(pnv) C
[(po )N (pon)] N(ve )N (vor)] € [uN (now)|Nl(vop) Nv] C pnv.
That is, u N v is transitive. Clearly u N v is fuzzy left and right com-
patible. Thus p N v is a G-fuzzy congruence. 0J

It is easy to see that even though p and v are G-fuzzy congruences,
1 U v is not necessarily a G-fuzzy congruence. We provide an explicit
form of the G-fuzzy congruence generated by p U v in the following
proposition.
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PROPOSITION 3.3. Let o and v be G-fuzzy congruences on a semi-
group S. Then the G-fuzzy congruence generated by p U v in S is

ne1(pUr)" = pUr)Ul(pUr)oe(pur)]u....
Proof. Clearly (nUv)(z,x) > 0 and

inf (wUV)(%¢) = inf max(u(t,?),v(t,1))

- . :
> max (inf p(t,2), inf v(t, 1))

> max (u(z,y),v(z,y))
= (,U, U 1/)(33, y)

for all z # y in S. That is, u U v is G-reflexive. By Proposition 3.1,

o 1 (pUr)™ is G-reflexive. Clearly pUv is symmetric. By Proposition
2.6, U2 ;(p Uv)™ is symmetric. By Proposition 2.5, U5 (u U v)”
is transitive. Hence U2, (u U v)™ is a G-fuzzy equivalence relation
containing pu U v. It is straightforward to see that p U v is fuzzy left
and right compatible. By Proposition 2.7, U2, (U v)" is fuzzy left
and right compatible. Thus U2, (pu U v)" is a G-fuzzy congruence
containing pUwv. Let A be a G-fuzzy congruence in S containing p U v.
Then U2, (pUr)™ CUSL A = AU(AoA)U(AoAoA)U- - T AUAU- -+ =
A. Thus U2 (pUv)™ is the G-fuzzy congruence generated by p U v.0

We now turn to the characterization of the G-fuzzy congruence gen-
erated by a fuzzy relation on a semigroup.

DEFINITION 3.4. Let p be a fuzzy relation on a semigroup S and
let S = S U {e}, where e is the identity of S. We define the fuzzy
relation p* on S as

w(e,d) = U wu(a,b) for all ¢,d € S.
z,yes’,
ray=c,
rby=d

PRrROPOSITION 3.5. Let p and v be two fuzzy relations on a semi-
group S. Then

(1) pCp
2) ()t = ()
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(3) If p C v, then pu* C v*
(4) (nUV)* =p*Uv*

(5) p= p* if and only if p is fuzzy left and right compatible
(6) (w*)" =p~

Proof. See Proposition 3.5 of [5]. O

Samhan ([5]) found the fuzzy congruence generated by a fuzzy rela-
tion on a semigroup. Theorem 3.6 may be considered as a generaliza-
tion of this work in G-fuzzy congruences.

THEOREM 3.6. Let u be a fuzzy relation on a semigroup S.

(1) If p(x,y) > 0 for some x # y € S, then the G-fuzzy congruence
generated by p is US2; [p* U (u*)~t U %], where 0 is a fuzzy
relation on S such that 0(z,z) = sup p(x,y) for all z € S

THAYES
and 0(z,y) = 0(y,x) < min [u(x,y), u(y,z)] for all x,y € S
with x # y, and p* and 0* are fuzzy relations on S defined in
Definition 3.4.

(2) If p(x,y) =0 for all z # y € S and p(z,z) > 0 for all z € S,
then the G-fuzzy congruence generated by u is U, (u*)",
where p* is a fuzzy relation on S defined in Definition 3.4.

(3) If u(x,y) =0 for all x # y € S, pu(z,z) = 0 for some z € S,
and p*(z,z) > 0 for all z € S, then the G-fuzzy congruence
generated by p is US2, (u*)", where u* is a fuzzy relation on
S defined in Definition 3.4.

(4) If p(z,y) =0 for all x # y € S, p(z,z) = 0 for some z € 9,
and p*(z,z) = 0 for some z € S, then there does not exist the
G-fuzzy congruence generated by L.

Proof. (1) Since 0(z,z) > 0, 0*(z,z) > 0 for all z € S by Proposition
3.5 (1). Let x,y € S with z # y and let S* = S U {e}, where e is the
identity of S. From Definition 3.4, u*(x,y) = U, 4e51. p(a,b) and

cad=x,
cbd=y
0*(z,y) = U, gest 0(a,b). Since cad = = and ¢bd = y for ¢,d € S?,
c’ad:x,’
cbd=y

x # y implies a # b. Thus p*(x,y) < sup wp(z,y) = 0(t,t) for
TH#YES
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all t € S and 0*(x,y) < p*(z,y). That is, 1nf0*(z z) > 0(t,t) >
z€S

w(x,y) > 0*(x,y). Let py = p* U (u*)~1 UH*. Then

g (2, 2) = max(p* (2, 2), (W) " (2,2),0%(2,2)] >0
and

inf pu(t) > Inf 0%(¢, 1) > max[u*(z,y), (#) 7" (z,9), 0" (x,y)]

::Ml(xvy)

Thus p; is G-reflexive. By Proposition 3.1, Us2; uf is G-reflexive.
Since 0(z,y) = 0(y,x), § = 6~1. By Proposition 3 5(2), 0= (0" =
(0*)~1. Thus

pa(z,y) = max [p*(z,y), (W) (z,y), 0" (z,y)]
= max [(1*) " (y, 2), 1" (y, ), (0%) " (2, 9)]
= max|(n") " (y, ), u* (v, ), 0 (y, 2)] = pa (y, ).

Thus py is symmetric. By Proposition 2.6, U7 ; uf is symmetric. By
Proposition 2.5, Up2; uf is transitive. Hence Usl, pt is a G-fuzzy
equivalence relatlon containing p. By Proposition 3 5(2), (4), and (6),
pi= (U ()Tt ue)t = (ut U (p) U = (u) U ((pm)) U
O*) = p*U(p )y ue* = p*U(p*)"tUb* = py. Thus uy is fuzzy
left and right compatible by Proposition 3.5 (5). By Proposition 2.7,

oo 1 pi is fuzzy left and right compatible. Thus US2; pf is a G-fuzzy
congruence containing u. Let v be a G-fuzzy congruence containing
p. Then p(x,y) < v(z,y), p~ ' (z,y) = ply,z) < v(y,z) = vz,y),
and 0(z,y) < p(z,y) < v(z,y). That is, (nUp~" UO)(z,y) < v(z,y)
for all x,y € S such that z # y. Since v(a,a) > v(z,y) > u(x,y) for
all a,z,y € S such that z # y, 0(a,a) = sup u(z,y) < v(a,a) for

rH#YES

all a € S. Since v(a,a) > u(a,a) = p~*(a,a) and v(a,a) > 0(a,a)
for all a € S, max [u(a,a), u 1 (a,a),0(a,a)] < v(a,a) for all a € S.
Thus pU p~t U@ C v. By Proposition 3.5 (2), (3), and (4), pu1 =
w* U (,u*f1 Ue* = p*U(p )" ue = (pup tud)” C v*. Since
v is fuzzy left and right compatible, v = v* by Proposition 3.5 (5).
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Thus p; C v. Suppose ¥ C v. Then p¥(b,c) = (ub o 1) (b,c) =

sup min[u¥ (b, d), u1(d, )] < sup min [v(b,d),v(d,c)] = (v ov)(b,c) for
des des

all b,c € S. That is, ukﬂ C (vow). Since v is transitive, ,uk'“ Cv. By
the mathematical induction, ' C v for every natural number n. Thus

> [ U(E)TIU = Upy " = U (popn)U(piopiops) - C
V.

(2) Since p(z,z) > 0, p*(z,2) > 0 for all z € S by Proposition 3.5
(1). Let z,y € S with z # y. Since p*(z,y) < sup p(z,y) and

THAYES
p(x,y) =0, u*(x,y) = 0. Thus tigg,u*(t,t) > p*(z,y). Hence p* is G-
reflexive. Since p = p= %, pu* = (u=1)* = (u*)~! by Proposition 3.5 (2).
Thus p* is symmetric. By Proposition 2.5, Proposition 2.6, and Propo-
sition 3.1, U2, (u*)" is a G-fuzzy equivalence relation containing .
By Proposition 3.5 (5) and (6), p* is fuzzy left and right compatible.
By Proposition 2.7, US2; (u*)" is a G-fuzzy congruence containing p.
Let v be a G-fuzzy congruence containing p. Since pu C v, u* C v* by
Proposition 3.5 (3). Since v is fuzzy left and right compatible, v* = v
by Proposition 3.5 (5). Thus p* C v. By the mathematical induction as
shown in Theorem 3.6 (1), we may show that (¢*)™ C v for every natu-
ral number n. Hence US2 ; (u*)" = p*U(p*op*)U(p*op op™)--- Cv.

(3) The proof is similar to that of (2).

(4) Suppose ¢ is the G-fuzzy congruence generated by p. Then
&(z,2z) > 0 for every z € S. Let 6 be a fuzzy relation such that
0(a,b) = 5(0’ Y for all a,b € S. Then 0(z,z) > 0, and hence 6*(z,z) > 0
for all z € S by Proposition 3.5 (1). Let z,y € S with = # y. Since

p*(z,y) < sup p(z,y) and p(z,y) =0, p*(z,y) = 0. Since £ is fuzzy
T#YyeS
left and right compatible, * = £ by Proposition 3.5 (5). Since £ is

G-reflexive and £* = ¢, tingé*(t, t) > &*(x,y). Since 6*(a,b) = M
€

for all a,b € S, inf@*(t t) > 6*(z,y). Thus (u* U 6*)(z,2) > 0 for
all z € S and mf (,u Uo*)(t,t) > (p* U0*)(x,y). That is, u* U * is
G-reflexive. Slnce ¢ is symmetric, 6 is symmetric. Since 6 is symmetric
and p(z,y) =0, pUO = (nUO)~L. By Proposition 3.5 (2), (uU0)* =
[(pUO)~* =[(nU6)*]~t. Thus (nUO)* = u* UH* is symmetric By
Proposition 2.5, Proposition 2.6, and Proposition 3.1, L (prues)m

is a G-fuzzy equivalence relation containing u. By Propos1t10n 3.5 (4)
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and (6), (u*U6*)* = (u*)* U (0*)* = p* UO*. Thus p* UO* is fuzzy
left and right compatible by Proposition 3.5 (5). By Proposition 2.7,
U, (p* U0*)™ is a G-fuzzy congruence containing p. Since 0(a,b) =
€ab) < ¢(a,b) and p(a,b) < €(a,b) for all a,b € S, pUO C €. Let
p1 = p*U6*. By Proposition 3.5 (3) and (4), pup = p*U0* = (nUh)* C
&*. Since &* = &, 1 C €. By the mathematical induction as shown in
Theorem 3.6 (1), we may show that u} C £ for every natural number
n. Hence U2, [pn* UG*|" = U2, 1™ C & Let v # w € S. Then
p1 (v, w) = (U0 (v,w) = 0*(v,w) < tiélé@*(t,t) < pi(z, 2z) for every

z € S. Suppose pf(v,w) < ui(z,2) for every z € S. Then

pi (o, w) = Sup min (11 (v, 5), pua(s,w)]
sE
—max | swp  min(d(v,s), (s, w), min (4w, ), (o, w)),
seS—{v,w}

min (le(vvw)7ﬂl(wvw))]
< max [N1(272)7 Ml(zaz)a M’f(v7w)] = Nl(zwz)'

By the mathematical induction, pt(v,w) < ui(z,z) for every natural
number n. Clearly u¥(z,2) = pi(z,2) for k = 1. Suppose pf(z,2) =

pi(z,2). Since ph(z,5) < pi(z,2) for s # z € S, uhtl(z,2) =
sup min [pf(z,5), p1(s,2)] = max [ sup min(uf(z,s), pi(s,z2)),
sesS seS—{z}

min (u¥(z,2), u1(2,2))] = pi(2,2). By the mathematical induction,
pi(z,2) = pi(z, z) for every natural number n and every z € S. Let
p be in S with pu*(p,p) = 0. Since 6(a,b) = '5(‘;—’1)) and £ is fuzzy
left and right compatible, 6 is fuzzy left and right compatible. That
is, 0 = 0*. Thus m(p,p) = 0*(p,p) = O(p.p) = <22 < £(p,p).
Since pf(z, z) = pi1(z, z) for every natural number n and every z € S,
[UnZy (w"U07)"](p,p) = [UpZy m1"](p,p) = w1 (p, p) < &(p,p) for some
p € S such that p*(p,p) = 0. Hence U2, (u*UO*)™, which is a G-fuzzy
congruence containing u, is contained in . This contradicts that & is
the G-fuzzy congruence generated by pu. OJ

4. Lattices of G-fuzzy congruences

In this section we discuss some lattice theoretic properties of G-fuzzy



Generalized fuzzy congruences on semigroups 353

congruences. Let C(S) be the collection of all G-fuzzy congruences on
a semigroup S. It is easy to see that C'(.S) is not a lattice.

THEOREM 4.1. Let 0 < k < 1 and let Ci(S) = {u € C(S) :
p(e,c) =k for all c € S}. Then (C(S), <) is a complete lattice, where
< is a relation on the set of all G-fuzzy congruences on S defined by
p<viff u(z,y) <v(x,y) for all z,y € S.

Proof. Clearly < is a partial order relation. It is easy to check that
the relation o defined by o(x,y) = k for all x,y € S is in C;(S) and
the relation A\ defined by A(z,y) = k for z = y and A(z,y) = 0 for
x # y is in Ck(S). Also o is the greatest element and A is the least
element of C}(S) with respect to the ordering <. Let {u;}jecs be a
non-empty collection of G-fuzzy congruences in Cx(S). Let u(z,y) =
inf pi(x,y) for all x,y € S. It is easy to see that u(x,x) > 0 for all
j€

x 6 S, jnf u(t,t) = ply2) forall y # z € X, p = p=h play) <

p(zz, zy) and p(x,y) < p(zz,yz) for all z,y,z € S. po p(x,y) =

sup mln[mf pi(z, z), 1nf pi(z,y)] = sup inf inf mln[uj(x 2), wi(z,9)] <
zeX jeJ zeX JE€J i€J

sup inf mln[,u](x Z) HJ(Z y)] < mf Hj © HJ(%?J) < mf M](x,y) -
zeXx J€J JjedJ jeJ

p(x,y). That is, p € Ck(S). Since p is the greatest lower bound of
{1i}tjes, (Cr(S), <) is a complete lattice. O

We define addition and multiplication on Cy(S) by u+v =< pUr >,
and p-v = pNv, where < pUr >, is the G-fuzzy congruence generated
by pUwv.

DEFINITION 4.2. A lattice (L, +,-) is called modular if (x +y) -z <
x+ (y-z) forall z,y,z € L with z < 2.

LEMMA 4.3. Let u and v be G-fuzzy congruences on a semigroup
S such that
wu(c,c) =v(c,c) for all c € S.

If yov =vopu, then uowv is the G-fuzzy congruence on S generated
by pUwv.

Proof. Clearly (pov)(a, a) > 0 for all @ € S. Let z,y € S with
x #y. Since p(e, ¢) =v(e, ¢) forall c€ S, tlng wu(t,t) = tlng v(t,t) >
€ €
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max [p(z,y), v(z,y)]. Thus
inf (uov)(t,t) = inf sup min [u(t, 2), v(2,1)]

e
2 inf min [u(t,t), v(2,1)]

o .

> min [inf p(t,1), nfv(t,1)]
> max[u(z, y), v(z, y)].

Also

| N | .
inf (1o v)(t,1) > min [ infp(t,1), inf v(6,0)] > minfp(e, 2), v(z,y)

for all z € S such that z # x and z # y. That is,

ing (pov)(t,t) > sup  min |u(z,2),v(z,y)].

te zeS—{z,y}
Thus

inf (pov)(t,t)

> s min(u(r.2).v(2,9). ma((o, ), o(z.0)
zeES— 11,y

—max| sup  min(u(z, 2),v(z ), v w)s wley)]
ZGS—{x,y}

=max [ sup min (p(z,2),v(z,y)),min(u(z, ), v(z,y)),
zeS—{z,y}

min(u(z,y), v(y,y))]

= sup min[u(z, 2), v(z,y)] = (nov)(z,y).

That is, pov is G-reflexive. Since p and v are symmetric, (pov)~! =

viopt=vop=pov. Thus uo v is symmetric. Since p and v

are transitive and the operation o is associative, (uov) o (pov) =

po(wop)ov =po(pov)orv = (uop)o (rov) C pov. Hence

po v is a G-fuzzy equivalence relation. Since S is a semigroup, (u o

v)(z,y) = sup min[u(x,a),v(a,y)] < sup min|u(zz, za),v(za, zy)] <
a€s S

zac
sup min[u(zz,t),v(t, zy)| = (pov)(zz, zy). Thus pov is fuzzy left com-
tes
patible. Similarly we may show p o v is fuzzy right compatible. Hence



Generalized fuzzy congruences on semigroups 355

pov is a G-fuzzy congruence in S. Since v(y,y) = u(y,y) > p(x,y), (uo

v)(@,y) = sup minju(w, 2),v(z,y)] = min(u(z,y),v(y,y)) = w@y).
Since p(z, x) = v(z,x) > v(z,y), (pov)(z,y) = sup min|u(z, 2),v(z,y)] >

z€S
min(u(z, ), v(z, y)) = v(z,y).
Thus (110 1)(zy) > max(u(e,y), v(e,y)) = (U v)(z,y) for al
x,y € S such that x # y. Since p(c,c) = v(e,c) for all c € S, (po

v)(ec) = sup min[u(c, p), v(p, )] = min(u(c, ¢), v(c, ¢)) = (LUV)(c,c)

forall ce S. Thus pUv C powv. Let A be a G-fuzzy congruence in S
containing pUv. Since A is transitive, pov C (uUv)o(uUr) C Ao C .
Thus p o v is the G-fuzzy congruence generated by p U v. OJ

It is well known that if 4 and v are congruences on a semigroup S
and pov = vopu, then pov is the congruence on S generated by pUwv.
Lemma 4.3 may be considered as a generalization of this in G-fuzzy
congruences.

THEOREM 4.4. Let 0 < k <1 and let S be a semigroup and H be
a sublattice of (Cy(S),+,) such that pov = vop for all p,v € H.
Then H is a modular lattice.

Proof. Let p,v,p € H with p < p. Let z,y € S.

min[(x o v)(x,y), p(x,y)] = Sup min [u(z, 2),v(2,9), p(z, y)]

< iteqs) min[u(z, 2), p(z, 2), v(z,y), p(z,y)]

< Sugmin[ﬂ(w,Z), v(z,9), p(2, )]
ze

= [,u o min(l/, p)](% y)‘

Thus (pov)-p < po(v-p). Since pu, v € Ck(S), p(e,¢) = v(e,c) = k for
all c € S. By Lemma 4.3, pov is the G-fuzzy congruence generated by
pUr. That is, p+v = pov. Similarly we may show p+(v-p) = po(v-p).
Thus (u+v)-p<u+ (v-p). Hence H is modular. O

PROPOSITION 4.5. If S is a group, then pov = v oy for all p,v €
Ck(S).
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Proof. Straightforward. 0

COROLLARY 4.6. If S is a group and 0 < k < 1, then (Cy(S),+, -)
is modular.

Proof. By Theorem 4.4 and Proposition 4.5, (Cx(S),+, ) is modu-
lar. O
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