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ON GROUP ORDERS OF SOME CELLULAR
AUTOMATA

JAE-GYEOM KM

ABSTRACT. In this note, we will characterize group orders of hybrid
CA configured with rules 60 and 195 and that configured with rules
102 and 153.

1. Introduction

Cellular automata have been demonstrated by many researchers to
be a good computational model for physical systems simulation since
the concept of cellular automata first introduced by John Von Neumann
in the 1950’s. And cycle lengths and group orders of group cellular
automata have been studied [1-9]. In particular, group orders of uniform
CA configured with rules 60, 102, 153 or 195 are characterized in [6, 9].
In this note, we will characterize group orders of hybrid CA configured
with rules 60 and 195 and that configured with rules 102 and 153.

2. Preliminaries

A cellular automaton (CA) is an array of sites (cells) where each
site is in any one of the permissible states. At each discrete time step
(clock cycle) the evolution of a site value depends on some rule (the
combinational logic) which is a function of the present state of its k
neighbors for a k-neighborhood CA. For 2-state 3-neighborhood CA,
the evolution of the (i)th cell can be represented as a function of the
present states of (i — 1)th, (i)th, and (¢ + 1)th cells as: x;(t + 1) =

Received September 16, 2010. Revised November 8, 2010. Accepted November
11, 2010.

2000 Mathematics Subject Classification: 68Q80.

Key words and phrases: cellular automaton, group order.

This Research was supported by Kyungsung University Research Grants in 2010.



358 Jae-Gyeom Kim

flxio1(t), xi(t), z;41(t)}, where f represents the combinational logic. For
such CA, the modulo-2 logic is always applied.

For 2-state 3-neighborhood CA there are 23 distinct neighborhood
configurations and 22’ distinct mappings from all these neighborhood
configurations to the next state, each mapping representing a CA rule.
The CA, characterized by a rule known as rule 60, specifies an evolution
from neighborhood configuration to the next state as:

111 110 101 100 011 010 001 000
0 0 1 1 1 1 0 0 Decimal 60.

The corresponding combinational logic of rule 60 is

that is, the next state of (i)th cell depends on the present states of its
left and self neighbors.

A CA characterized by EXOR and/or EXNOR dependence is called
an additive CA. If in a CA the neighborhood dependence is EXOR, then
it is called a noncomplemented CA and the corresponding rule is referred
to as a noncomplemented rule. For neighborhood dependence of EXNOR
(where there is an inversion of the modulo-2 logic), the CA is called a
complemented CA. The corresponding rule involving the EXNOR func-
tion is called a complemented rule. In a complemented CA, single or
multiple cells may employ a complemented rule with EXNOR function.
There exist 16 additive rules which are: Rule 0, 15, 51, 60, 85, 90, 102,
105, 150, 153, 165, 170, 195, 204, 240 and 255.

If in a CA the same rule applies to all cells, then the CA is called
a uniform CA; otherwise the CA is called a hybrid CA. There can be
various boundary conditions; namely, null (where extreme cells are con-
nected to logic ‘0’), periodic (extreme cells are adjacent), etc. In the
sequel, we will always assume null boundary condition unless specified.

The logic functions for two complemented rules 195 and 163 and the
corresponding noncomplemented rules are also noted in Table 1.

Table 1. Logic functions

complemented noncomplemented
Rule | logic function | dependency | rule | logic function
195 | @1 (t) ® xi(t) | left & self | 60 |x;_1(t) & x;(¢)
153 | zi(t) ® 41 (t) | self & right | 102 | x;(t) & x4 (%)
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The characteristic matrix 7" of a noncomplemented CA is the transi-
tion matrix of the CA. The next state fi1(z) of an additive CA is given
by fiv1(z) = T x fi(x), where fi(x) is the current state, ¢ is the time
step. If all the states of the CA form a single or multiple cycles, then it
is referred to as a group CA. And the rule which is applied to a group
CA is referred to as a group rule. And the number of cells of a CA is
called the length of a CA.

LEMMA 2.1. [3] A noncomplemented CA is a group CA if and only if
T™ = I where T is the characteristic matrix of the CA, I is the identity
matrix and m is a positive integer.

Note that the least positive integer of such m’s is the group order of
the group CA in Lemma 2.1.

LEMMA 2.2. ([9]) CA rules 60, 102 and 204 form groups for all lengths
¢ with group order n = 2* where a =0, 1, 2, ---. And if the CA rule is

60 or 102 then g <l{<n.

LEMMA 2.3. ([3]) If T™ denote the application of the complemented
rule T for m successive cycles, then

[T f @) =+ T+ 1%+ + T [F(2)] + [T][f ()]
where T' is the characteristic matrix of the corresponding noncomple-
mented rule and [F(x)] is an (-dimensional vector ({ = number of cells)
responsible for inversion after EXORing. F(x) has ‘1’ entries (i.e.,
nonzero entries) for CA cell positions where EXNOR function is em-
ployed.

LEMMA 2.4. ([1]) State transitions in all additive CA (noncomple-
mented, complemented, or hybrid) can be expressed by the relation
noted in Lemma 2.3, where [F(x)] contains nonzero entries for the cell
positions with complemented rule. In the case of a CA where only non-
complemented rules are applied throughout its length, [F'(x)| turns out
to be a null vector.

LEMMA 2.5. ([2]) Let R be a group rule. Then any additive CA with
a rule vector which is a combination of R and R is a group CA, where
R denotes the complemented rule of R.

THEOREM 2.6. ([6]) A uniform CA of length { configured with rule
153 or 195 has group order 2% where 27! < ¢ < 2% And its state
transition diagram consists of equal cycles of length 2¢.
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3. Group orders of cellular automata

We will investigate group orders of hybrid CA configured with rules
60 and 195 at first. In the investigation, the matrices [T™] and [I + T +
-+ -+ T™1 play important roles by virtue of Lemma 2.3 and 2.4, where
T is the characteristic matrix with respect to the rule 60.

So we begin with characterizations of such matrices. Let T be the
characteristic matrix of a CA configured with rule 60. Then, by mathe-

matical induction, we can easily get 7% where a = 1, 2, --- as follows;
1, 1=17,
(T)y=q 1, i=j+2%,
0, otherwise,
or
100 0
010 0
0 01 0
000 1 O 0
72— | 000 0 10 0 | < (2%)th row
1 00 0 010 0
010 0 001 0 0
00 1 0 000 1 0 0
000 0 000 0 1 0
0 00 -+ 0 1 0 0 eevveeennns 1

which is an explicit formular for Lemma 2.1 and 2.2 where rule 60 is
applied. Thus we have the following lemma.

LEMMA 3.1. Let T be the characteristic matrix of a CA configured
with rule 60. Then

L, 1=y,
(T%)ij =1 i=j+2%
0, otherwise,

wherea =1, 2, ---.
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Now we have a lemma of which proof is completely the same as the
proof Lemma 3.3 in [6].

LEMMA 3.2. Let T be a matrix with modulo-2 logic. Then
I+ =T+T+ - +T*
wherea =1, 2, ---.

Note that (A + B)*" = A* + B* in modulo-2 logic where A and
B are matrices. Now we consider the matrix I + T where T' is the
characteristic matrix of a CA configured with rule 60. The entries of
I + T are as follows;

L, i=7+1,
0, otherwise.

(I+T); = {

So, in matrix multiplication (I + T)A = B, I + T pull down every row
one step and make the first row zero, or

0 =1
By=q, o
A(i—1)j, otherwise.
Thus we have the following lemma.

LEMMA 3.3. Let T' be the characteristic matrix of a CA configured
with rule 60. Then
1, 1=75+1
I —|— T t i — ’ ’
(( )i {0, otherwise
wheret =1, 2, -- -, in particular,
0

(I+T7)=0 and (I+T)"' = O 0

where ¢ x ¢ is the size of T'.

We are ready to deal with group orders of hybrid CA configured with
rules 60 and 195. Note that such CA are group CA by Lemma 2.5.

THEOREM 3.4. Let H be a hybrid CA of length 2* configured with
rules 60 and 195 where a = 1, 2, ---. Suppose that the rule applied to
the first cell of H is 195. Then its transition diagram consists of equal
cycles of length 2%+,
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Proof. Let T be the characteristic matrix of a CA of length 2% con-
figured with rule 60. And let [F(z)] be the 2%-dimensional vector corre-
sponding to H as in Lemma 2.3. Then the first entry of [F'(x)] is 1 by

Lemma 2.3. And let (Tv)m denote the application of the rule vector with
respect to H for m successive cycles. Then we have

(O™ @) = T+T+---+ T [F@)] + [T7)[f ()]
for all f(z) by Lemma 2.3. And so we have

(T) H ()]
=+ T+ +T"[F(2)] + [T*][f ()]
= [+ )2 ”][F(x)]HTQ”Hf(fc)] by Lemma 3.2
0
- 0 0 [F(x)] + [I][f(x)] by Lemma 3.1 and 3.3
10 -0
0 1
= 0 O 62 + [f(z)] for some ¢;
1 0 0 Cga
0
= || @)
1
# [f(2)]

for all f(x). But we have
(T)*][f ()
=+ T+ + T F@)] + [T f()
= [ +T)*" [F(2)] + [T*"][f(z)] by Lemma 3.2
= [0][F(z)] + [{][f(x)] by Lemma 3.1 and 3.3
[

for all f(x). Therefore the cycle length of f(z) is 2¢*! for all f(z). Hence
we have the conclusion. ]
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To proceed more, we need another technical lemma.

LEMMA 3.5. Let T' be the characteristic matrix of a CA of length 2¢
configured with rule 60 where a =1, 2, ---. Then we have

T fe,] = {[ei] ¥ leirgai], if1<i<20 !

le], otherwise
where e;’s are the standard unit vectors of dimension 2°.
Proof. 1t can be easily shown by Lemma 3.1. [

THEOREM 3.6. Let H be a hybrid CA of length 2* configured with
rules 60 and 195 where a = 1, 2, ---. Suppose that the rule applied to
the first cell of H is 60. Then the group order of H is 2°.

Proof. Let T, [F(z)] and (7)™ be as in the proof of Theorem 3.5.
Then the first entry of [F(z)] is 0 by Lemma 2.3 and we have

(T)*][f(=)]
=[I+T+- -+ T Y[F(z)] + [T*][f(z)] by Lemma 2.3
— (7 + TV F(@)] + [T)[f(@)] by Lemna 3.2

0
= 0 O [F(z)] + [I][f(x)] by Lemma 3.1 and 3.3
10 0
0 1
— 0 O C2 + [f(z)] for some ¢;
10 0 Coa
= [0+ [f ()]
= [f(z)]

for all f(z). Thus the cycle length of f(z) is a divisor of 2* for any
f(z). Therefore the group order of H is a divisor of 2*. Let (k)th entry
of [F(x)] be the first non-zero entry. Then we have 2 < k < 2% by the
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assumption. If 2 < k <21 +1, then

(T)* " ][e]
—[+T+--4+T* Y[F()]+[T* [ex] by Lemma 2.3
= [(I+T)* "Y[F(z)] +[T* '[ex] by Lemma 3.2

0
=+ T fe)
1 | «(k)th row k
Ck+1
0
|V +[T* [es] by L 3.3
- 1 | «(k+2%1—1)th row kDY Letima o.
Ck+1
([ 0
X + [ex] + [e ], if2<k<2e!
a—1 5 >~ >~
1| (k2o — Dthrow 0
Ck+1
N 0
0 + [ex] ifk=2"1+1
I |« (k+21—1)th row w
Ck41

by Lemma 3.5
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1| « (k)th row

1|« (k+2%1—1)th row

# lex].

And if k > 297! + 1, then
(T)*"[ei]
= [(I+T)* "Y[F(z)] + [T* '|[e] by Lemma 2.3 and 3.2
0
= [(I+T)* " (1) — (K)th row + [e1] + [ege-141] by Lemma 3.5
Ck+1

= [0] + [e1] + [e2a-141] Dby Lemma 3.3 because k + (27! — 1) > 2°

= [e1] + [ega-141]

# le1].
Thus there exists a state f(x) of which cycle length is greater than 247!
for any case of F'(x) in this theorem. Hence we have the proof. ]

Now we have an interesting corollary by Lemma 2.2 and Theorem 2.5,
3.4 and 3.6.

COROLLARY 3.7. Let H be a uniform or hybrid CA of length 2¢
configured with rules 60 or 195 where a = 1, 2, ---. If the rule applied
to the first cell of H is 60 [resp. 195, then the group order of H is 2*
[resp. 20F1].

Now we will concern with CA of which length is not a power of 2.
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THEOREM 3.8. Let H be a uniform or hybrid CA of length ¢ config-
ured with rules 60 and 195 where 2* < ¢ < 2"l anda =1, 2, ---. Then
the group order of H is 2¢*!,

Proof. Let T, [F(z)] and (T)™ be as in the proof of Theorem 3.5
except the sizes of T and [F(z)]. Then we have

(T

(T)*"[f ()]
(I+T)*"NF()]+[T*"[f(z)] by Lemma 2.3 and 3.2

[
= [
= [0][F(2)] + [T*""][f(z)] by Lemma 3.3 because 2°7" —1 > ¢
= [
= [
= [

0 + [T*"][f ()
I[f(x)] by Lemma 3.1

()]
for all f(z). So the group order of H is a divisor of 2. But we have
I)*)[f(x)]
= [(I +T)* Y[F(x)] + [T*][f(x)] by Lemma 2.3 and 3.2
0 0 o
0 0
=(2%)throw — |1 0
0 1 0 0
0 0 1 0 0 Cr
1 0 f(@)
0 1 0
0

+

(24 1)throw — |1 0

o - 0 1 0 --- 0 1 f(z)e
by Lemma 3.1 and 3.3
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O f(x)l

0 f ($j2ﬂ—1
= (2%)th row — C1 + f(z)2a

¢ f(@)oay1 + f(z)

Ce—z.u+1 f(x)e+ f(x)z—2a
f($)1
f (sza—l

= c1 + f(x)2a

ca + f(x)2041 + f(2)1

Ce—2a41 + f(x.)z + f(2) -2

and we can always find f(z) such that the first entry f(x); of [f(x)] is
not equal to the second entry ¢y of [F'(x)] that means f(x); +c2 = 1. So
there exists a state f(x) of which cycle length is greater than 2% for any
F(z). This completes the proof. O

Finally we will give some results on uniform or hybrid CA configured
with rules 102 or 153 which are parallel to Theorem 3.4 and 3.6, Corollary
3.7 and Theorem 3.8. Since the characteristic matrices of CA rules
60 and 102 are the transposes of each other, the discussion on some
properties related to CA rule 60 and the complemented CA rule 195 in
this section is parallel to that on the properties related to CA rule 102
and the complemented CA rule 153. So all of the results on CA rule 60
and the complemented CA rule 195 that was discussed in this section is
still valid for CA rule 102 and the complemented CA rule 153.

THEOREM 3.9. Let H be a hybrid CA of length 2* configured with
rules 102 and 153 where a = 1, 2, ---. Suppose that the rule applied to
the last cell of H is 153. Then its transition diagram consists of equal
cycles of length 24+,
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THEOREM 3.10. Let H be a hybrid CA of length 2% configured with
rules 102 and 153 where a =1, 2, ---. Suppose that the rule applied to
the last cell of H is 102. Then the group order of H is 2°.

COROLLARY 3.11. Let H be a uniform or hybrid CA of length 2¢
configured with rules 102 or 153 where a = 1, 2, ---. If the rule applied
to the last cell of H is 102 [resp. 153], then the group order of H is 2*
[resp. 2¢F1].

THEOREM 3.12. Let H be a uniform or hybrid CA of length ¢ con-
figured with rules 102 and 153 where 2% < £ < 2% anda =1, 2, ---.
Then the group order of H is 2¢*!,
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