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STABILITY OF QUADRATIC FUNCTIONAL

EQUATIONS IN RANDOM NORMED SPACES

Seung Won Schin, DoHyeong Ki, JaeWon Chang, Min June
Kim and Choonkil Park∗

Abstract. In this paper, we prove the generalized Hyers-Ulam sta-
bility of the following quadratic functional equations
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in random normed spaces.

1. Introduction

The stability problem of functional equations was originated from a
question of Ulam [29] in 1940, concerning the stability of group homo-
morphisms. Let (G1, .) be a group and let (G2, ∗, d) be a metric group
with the metric d(., .). Given ε > 0, does there exist a δ > 0 such that if
a mapping h : G1 → G2 satisfies the inequality d(h(x.y), h(x)∗h(y)) < δ
for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2

with d(h(x), H(x)) < ε for all x ∈ G1? In the other words, under what
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condition does there exist a homomorphism near an approximate homo-
morphism? The concept of stability for functional equation arises when
we replace the functional equation by an inequality which acts as a per-
turbation of the equation. Hyers [13] gave a first affirmative answer to
the question of Ulam for Banach spaces. Let f : E → E ′ be a mapping
between Banach spaces such that

‖f(x + y)− f(x)− f(y)‖ ≤ δ

for all x, y ∈ E and some δ > 0. Then there exists a unique additive
mapping T : E → E ′ such that

‖f(x)− T (x)‖ ≤ δ

for all x ∈ E. Moreover, if f(tx) is continuous in t ∈ R for each fixed x ∈
E, then T is R-linear. Th.M. Rassias [23] provided a generalization of
the Hyers’ theorem which allows the Cauchy difference to be unbounded.
Gajda [8] answered the question for the case p > 1, which was raised by
Th.M. Rassias. This new concept is known as generalized Hyers-Ulam
stability of functional equations (see [1]–[3], [6, 9], [14]–[16], [24, 25]).

The functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y)(1.1)

is called a quadratic functional equation. In particular, every solution of
the quadratic functional equation (1.1) is said to be a quadratic map-
ping. The generalized Hyers-Ulam stability problem for the quadratic
functional equation (1.1) was proved by Skof for mappings f : A → B,
where A is a normed space and B is a Banach space (see [28]). Cholewa
[5] noticed that the theorem of Skof is still true if relevant domain A
is replaced by an abelian group. In [7], Czerwik proved the generalized
Hyers-Ulam stability of the functional equation (1.1). Grabiec [10] has
generalized these results mentioned above.

The generalized Hyers-Ulam stability of different functional equations
in random normed and fuzzy normed spaces has been recently studied
in [17] and [20]–[22]. It should be noticed that in all these papers the
triangle inequality is expressed by using the strongest triangular norm
TM .
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The aim of this paper is to investigate the generalized Hyers-Ulam
stability of the following quadratic functional equations
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in random normed spaces in the sense of Sherstnev under arbitrary con-
tinuous t-norms.

In the sequel, we adopt the usual terminology, notations and conven-
tions of the theory of random normed spaces, as in [4, 18, 19, 26, 27].
Throughout this paper, ∆+ is the space of distribution functions, that
is, the space of all mappings F : R ∪ {−∞,∞} → [0, 1] such that F
is left-continuous and non-decreasing on R, F (0) = 0 and F (+∞) = 1.
D+ is a subset of ∆+ consisting of all functions F ∈ ∆+ for which
l−F (+∞) = 1, where l−f(x) denotes the left limit of the function f at
the point x, that is, l−f(x) = limt→x− f(t). The space ∆+ is partially
ordered by the usual point-wise ordering of functions, i.e., F ≤ G if and
only if F (t) ≤ G(t) for all t in R. The maximal element for ∆+ in this
order is the distribution function ε0 given by

ε0(t) =

{
0, if t ≤ 0,

1, if t > 0.

Definition 1.1. ([26]) A mapping T : [0, 1] × [0, 1] → [0, 1] is a
continuous triangular norm (briefly, a continuous t-norm) if T satisfies
the following conditions:
(a) T is commutative and associative;
(b) T is continuous;
(c) T (a, 1) = a for all a ∈ [0, 1];
(d) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are TP (a, b) = ab, TM(a, b) =
min(a, b) and TL(a, b) = max(a + b − 1, 0) (the Lukasiewicz t-norm).
Recall (see [11, 12]) that if T is a t-norm and {xn} is a given sequence of
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numbers in [0, 1], then T n
i=1xi is defined recurrently by T 1

i=1xi = x1 and
T n

i=1xi = T (T n−1
i=1 xi, xn) for n ≥ 2. T∞

i=nxi is defined as T∞
i=1xn+i−1. It is

known ([12]) that for the Lukasiewicz t-norm the following implication
holds:

lim
n→∞

(TL)∞i=1xn+i−1 = 1 ⇐⇒
∞∑

n=1

(1− xn) < ∞.

Definition 1.2. ([27]) A random normed space (briefly, RN-space)
is a triple (X, µ, T ), where X is a vector space, T is a continuous t-norm
and µ is a mapping from X into D+ such that the following conditions
hold:
(RN1) µx(t) = ε0(t) for all t > 0 if and only if x = 0;
(RN2) µαx(t) = µx(

t
|α|) for all x ∈ X, α 6= 0;

(RN3) µx+y(t + s) ≥ T (µx(t), µy(s)) for all x, y ∈ X and all t, s ≥ 0.

Every normed space (X, ‖.‖) defines a random normed space (X,µ, TM),
where

µx(t) =
t

t + ‖x‖
for all t > 0, and TM is the minimum t-norm. This space is called the
induced random normed space.

Definition 1.3. Let (X, µ, T ) be an RN-space.
(1) A sequence {xn} in X is said to be convergent to x in X if, for
every ε > 0 and λ > 0, there exists a positive integer N such that
µxn−x(ε) > 1− λ whenever n ≥ N .
(2) A sequence {xn} in X is called a Cauchy sequence if, for every ε > 0
and λ > 0, there exists a positive integer N such that µxn−xm(ε) > 1−λ
whenever n ≥ m ≥ N .
(3) An RN-space (X, µ, T ) is said to be complete if and only if every
Cauchy sequence in X is convergent to a point in X.

Theorem 1.4. ([26]) If (X, µ, T ) is an RN-space and {xn} is a se-
quence such that xn → x, then limn→∞ µxn(t) = µx(t) almost every-
where.

This paper is organized as follows: In Section 2, we prove the gener-
alized Hyers-Ulam stability of the quadratic functional equation (1.2) in
RN-spaces. In Section 3, we prove the generalized Hyers-Ulam stability
of the quadratic functional equation (1.3) in RN-spaces.

Throughout this paper, assume that X is a real vector space and that
(Y, µ, T ) is a complete RN-space.
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2. Generalized Hyers-Ulam stability of the quadratic func-
tional equation (1.2) in random normed spaces

For a given mapping f : X → Y , consider the mapping Pf : Xn → Y ,
defined by

Pf(x1, x2, · · · , xn) = cf

(
n∑

i=1

xi

)
+

n∑
j=2

f

(
n∑

i=1

xi − (n + c− 1)xj

)

−(n + c− 1)

(
f(x1) + c

n∑
i=2

f(xi) +
n∑

i<j,j=3

(
n−1∑
i=2

f(xi − xj)

))

for all x1, · · · , xn ∈ X.
In this section, we prove the generalized Hyers-Ulam stability of the

functional equation Pf(x1, x2, · · · , xn) = 0 in complete RN-spaces.

Theorem 2.1. Let f : X → Y be an even mapping for which there
is a ρ : Xn → D+

(ρ(x1, x2, · · · , xn) is denoted by ρx1,x2,··· ,xn) such that

µPf(x1,x2,··· ,xn)(t) ≥ ρx1,x2,··· ,xn(t)(2.1)

for all x1, x2, · · · , xn ∈ X and all t > 0. Let v = 2− c− n > 1. If

lim
n→∞

T∞
k=1

(
ρ0,vn+k−1x,0,0,··· ,0

(
v2n+k (v − 1) t

))
= 1,(2.2)

lim
n→∞

ρvnx1,vnx2,··· ,vnxn(v2nt) = 1(2.3)

hold for all x, y ∈ X and all t > 0, then there exists a unique quadratic
mapping Q : X → Y such that

µf(x)−Q(x)(t) ≥ T∞
k=1

(
ρ0,vk−1x,0,0,··· ,0(v

k(v − 1)t)
)

(2.4)

for all x ∈ X and all t > 0.

Proof. Putting x2 = x and x1 = x3 = x4 = · · · = xn = 0 in (2.1), we
get

µf((2−c−n)x)−(2−c−n)2f(x)(t) ≥ ρ0,x,0,0,··· ,0(t)(2.5)

for all y ∈ X and all t > 0. Replacing 2− c− n by v in (2.5), we get

µf(vx)−v2f(x)(t) ≥ ρ0,x,0,0,··· ,0(t)(2.6)

for all y ∈ X and all t > 0. Thus we have

µ f(vx)

v2 −f(x)
(t) ≥ ρ0,x,0,0,··· ,0

(
v2t

)
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for all x ∈ X and all t > 0. Hence

µ f(vk+1x)

v2(k+1)
− f(vkx)

v2k

(t) ≥ ρ0,vkx,0,0,··· ,0
(
v2(k+1)t

)

for all x ∈ X, all t > 0 and all k ∈ N. From 1
v−1

> 1
v

+ 1
v2 + · · ·+ 1

vn

( v > 1 ), it follows that

µ f(vnx)

v2n −f(x)
(t) ≥ T n

k=1

(
µ f(vkx)

v2k − f(v(k−1)x)

v2(k−1)

(
(v − 1) t

vk

))
(2.7)

≥ T n
k=1

(
ρ0,vk−1x,0,0,··· ,0

(
vk (v − 1) t

))

for all x ∈ X and all t > 0. In order to prove the convergence of the

sequence {f(vnx)
v2n }, replacing x with vmx in (2.7), we obtain that

µ f(vn+mx)

v2(n+m)
− f(vmx)

v2m (t)
(2.8)

≥ T n
k=1

(
ρ0,vk+m−1x,0,0,··· ,0

(
vk+2m (v − 1) t

))
.

Since the right hand side of the inequality (2.8) tends to 1 as m and n

tend to infinity, the sequence {f(vnx)
v2n } is a Cauchy sequence. Thus we

may define Q(x) = limn→∞
f(vnx)

v2n for all x ∈ X.
Now we show that Q is an quadratic mapping. Replacing xi with vnxi

(i = 1, 2, · · · , n) in (2.1), respectively, we get

µPf(vnx1,vnx2,··· ,vnxn)

v2n

(t) ≥ ρvnx1,vnx2,··· ,vnxn(v2nt).(2.9)

Taking the limit as n → ∞, we find that Pf(vnx1,vnx2,··· ,vnxn)
v2n

(t) tends to
0, which implies that the mapping Q : X → Y is quadratic. Letting the
limit as n →∞ in (2.8), we get (2.4).

Next, we prove the uniqueness of the quadratic mapping Q : X → Y
subject to (2.4). Let us assume that there exists another quadratic
mapping R : X → Y which satisfies (2.4). Since Q(vnx) = v2nQ(x),
R(vnx) = v2nR(x) for all x ∈ X and all n ∈ N, from (2.4), it follows
that

µQ(x)−R(x)(vt) = µQ(vnx)−R(vnx)(v
2n+1t)(2.10)

≥ T (µQ(vnx)−f(vnx)(v
2nt), µf(vnx)−R(vnx)(v

2nt))

≥ T
(
T∞

k=1

(
ρ0,vn+k−1x,0,0,··· ,0

(
v2n+k (v − 1) t

))
,

T∞
k=1

(
ρ0,vn+k−1x,0,0,··· ,0

(
v2n+k (v − 1) t

)))

for all x ∈ X and all t > 0. Letting n →∞ in (2.10), we conclude that
Q = R.
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Theorem 2.2. Let f : X → Y be an even mapping for which there
is a ρ : Xn → D+

( ρ(x1,x2,··· ,xn) is denoted by ρx1,x2,··· ,xn ) such that

µPf(x1,x2,··· ,xn)(t) ≥ ρx1,x2,··· ,xn(t)(2.11)

for all x1, x2, · · · , xn ∈ X and all t > 0. (Let v = 2− c− n, 0 < v < 1)
If

lim
n→∞

T∞
k=1

(
ρ0, x

vn+k ,0,0,··· ,0

(
(v − 1) t

v2n+k−1

))
= 1,(2.12)

lim
n→∞

ρ x1
vn ,

x2
vn ,··· , xn

vn

(
t

v2n

)
= 1(2.13)

hold for all x ∈ X and all t > 0, then there exists a unique quadratic
mapping Q : X → Y such that

µf(x)−Q(x)(t) ≥ T∞
k=1

(
ρ0, x

vk ,0,0,··· ,0

(
(v − 1) t

vk−1

))
(2.14)

for all x ∈ X and all t > 0.

Proof. Putting x2 = x and x1 = x3 = x4 = · · · = xn = 0 in (2.11), we
get

µf((2−c−n)x)−(2−c−n)2f(x)(t) ≥ ρ0,x,0,0,··· ,0(t)(2.15)

for all x ∈ X and all t > 0. Replacing 2 − c − n by v and x by x
v

in
(2.15), we get

µf(x)−v2f(x
v )

(t) ≥ ρ0, x
v
,0,0,··· ,0(t)(2.16)

for all x ∈ X and all t > 0. Hence

µv2kf( x

vk )−v2(k+1)f( x

vk+1 )
(t) ≥ ρ0, x

vk+1 ,0,0,··· ,0

(
t

v2k

)

for all x ∈ X, all t > 0 and all k ∈ N. From 1
1−v

> 1 + v + · · ·+ vn−1

( 0 < v < 1 ), it follows that

µf(x)−v2nf( x
vn )(t)(2.17)

≥ T n
k=1

(
µv2(k−1)f( x

vk−1 )−v2kf( x

vk )
(
vk−1 (1− v) t

))

≥ T n
k=1

(
ρ0, x

vk ,0,0,··· ,0

(
(v − 1) t

vk−1

))
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for all x ∈ X and all t > 0. In order to prove the convergence of the
sequence {v2nf

(
x
vn

)}, replacing x with x
vm in (2.17), we obtain that

µv2mf( x
vm )−v2(m+n)f( x

vm+n )(t) ≥ T n
k=1(

ρ0, x

vk+m ,0,0,··· ,0

(
(v − 1) t

vk+2m−1

))
.

(2.18)

Since the right hand side of the inequality (2.18) tends to 1 as m and n
tend to infinity, the sequence {v2nf

(
x
vn

)} is a Cauchy sequence. Thus

we may define Q(x) = limn→∞ v2nf
(

x
vn

)
for all x ∈ X.

Now we show that Q is a quadratic mapping. Replacing xi with xi

vn

(i = 1, 2, · · · , n) in (4.1), respectively, we get

µv2nPf( x1
vn ,

x2
vn ,··· , xn

vn )(t) ≥ ρ x1
vn ,

x2
vn ,··· , xn

vn

(
t

v2n

)
.(2.19)

Taking the limit as n → ∞, we find that v2nPf
(

x1

vn , x1

vn , · · · , x1

vn

)
tends

to 0, which implies that the mapping Q : X → Y is quadratic. Letting
the limit as n →∞ in (2.18), we get (2.14).

The rest of the proof is similar to the proof of Theorem 2.1.

3. Generalized Hyers-Ulam stability of the quadratic func-
tional equation (1.3) in random normed spaces

For a given mapping Q : X → Y , consider the mapping DQ : Xn →
Y , defined by

DQ(x1, x2, · · · , xn) : = Q

(
n∑

i=1

dixi

)
+

∑
1≤i<j≤n

didjQ(xi − xj)

−
(

n∑
i=1

di

)(
n∑

i=1

diQ(xi)

)

for all x1, x2, · · · , xn ∈ X and let d =
∑n

i=1 di

In this section, we prove the generalized Hyers-Ulam stability of the
functional equation DQ(x1, x2, · · · , xn) = 0 in complete RN-spaces.

Theorem 3.1. Let Q : X → Y be an even mapping for which there
is a ρ : Xn → D+ (ρ(x1, x2, · · · , xn) is denoted by ρx1,x2,··· ,xn) satisfying
Q(0) = 0 and d > 1. If

µDQ(x1,x2,··· ,xn) ≥ ρx1,x2,··· ,xn(t)(3.1)
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for all x1, x2, · · · , xn ∈ Xand all t > 0, and

lim
n→∞

ρd(n−1)x,··· ,d(n−1)x((d
2 − 1)t) = 1(3.2)

for all x, y ∈ X and all t > 0, then there exists a unique quadratic
mapping R : X → Y such that

µR(x)−Q(x)(t) = T∞
k=1(ρdk−1x,dk−1x,··· ,dk−1x(d

2 − 1))(3.3)

for all x ∈ X and all t > 0.

Proof. Putting x1 = x2 = · · · = xn = x in (3.1), we get

µQ(dx)−d2Q(x)(t) ≥ ρx,x,··· ,x(t)(3.4)

and so

µQ(dx)/d2−Q(x)(
t

d2
) ≥ ρx,x,··· ,x(t)(3.5)

for all x ∈ X and all t > 0. Let

ψx(t) = ρx,x,··· ,x(t)

Replacing x by dnx and t by d2(n+1)t in (3.5), we get

µQ(dn+1x)/d2−Q(dnx)(d
2nt) ≥ ψx(d

2(n+1)t),

µQ(dn+1x)/d2(n+1)−Q(dnx)/d2n(t) ≥ ψx(d
2(n+1)t)(3.6)

for all n ∈ N , x ∈ X and all t > 0. It follows from (3.6) and 1 ≥
(d2 − 1)( 1

d2 + 1
d4 + · · ·+ 1

d2n ) that

µQ(dnx)/d2n−Q(x)(t) = µ(Q(dnx)/d2n−Q(d(n−1)x)/d2(n−1)+···+Q(dx)/d2−Q(x))(t)

≥ T n
k=1

(
µ(Q(dkx)/d2k−Q(d(k−1)x)/d2(k−1)

(
(d2 − 1)t

d2k

))
(3.7)

≥ T n
k=1

(
ψd(k−1)x((d

2 − 1)t)
)

= T n
k=1

(
ρd(k−1)x,d(k−1)x,··· ,d(k−1)x((d

2 − 1)t)
)

for all x ∈ X and all n ∈ N . Thus we have

µQ(dnx)/d2n−Q(dm)x/d2m(t)(3.8)

≥ T n
k=m

(
ρd(k−1)x,d(k−1)x,··· ,d(k−1)x((d

2 − 1)t)
)
.

Since the right hand side of the inequality (3.8) tends to 1 as m,n tend

to infinity, the sequence (Q(dnx)
d2n ) is a Cauchy sequence. Thus we may

define R(x) = limn→∞
Q(dnx)

d2n for all x ∈ X. Then

µR(x)−Q(x)(t) = T∞
k=1

(
ρd(k−1)x,d(k−1)x,··· ,d(k−1)x((d

2 − 1)t)
)

(3.9)
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Now we show that R is a quadratic mapping. Putting x1 = x2 = · · · =
xn = dnx in (3.1), we get

µDQ(dnx,dnx,··· ,dnx)

d2n
(t) ≥ ρdnx,dnx,··· ,dnx(t).

Taking the limit as n → ∞, we find that R : X → Y satisfies (3.1) for
all x, y ∈ X. Since Q : X → Y is even, R : X → Y is even. So the
mapping R : X → Y is quadratic. Letting the limit as n →∞ in (3.9),
we get (3.3).

Next, we prove the uniqueness of the quadratic mapping R : X → Y
subject to (3.3). Let us assume that there exists another quadratic
mapping L : X → Y which satisfies (3.3). Since R(dnx) = d2nR(x),
L(dnx) = d2nL(x) for all x ∈ X and all n ∈ N, from (3.8), it follows that

µR(x)−L(x)(2t) = µR(dnx)−L(dnx)(2 · d2nt)(3.10)

≥ T (µR(dnx)−Q(dnx)(d
2nt), µQ(dnx)−L(dnx)(d

2nt))

≥ T (T∞
k=1

(
ρdn+(k−1)x,dn+(k−1)x,··· ,dn+(k−1)x(d

2 − 1)d2nt)
)
,

(T∞
k=1

(
ρdn+(k−1)x,dn+(k−1)x,··· ,dn+(k−1)x((d

2 − 1)d2nt)
)

for all x ∈ X and all t > 0. Letting n →∞ in (3.10), we conclude that
R = L.

Theorem 3.2. Let Q : X → Y be an even mapping for which there
is a ρ : Xn → D+ (ρ(x1, x2, · · · , xn) is denoted by ρx1,x2,··· ,xn) satisfying
Q(0) = 0 and 0 < d < 1. If

µDQ(x1,x2,··· ,xn) ≥ ρx1,x2,··· ,xn(t)(3.11)

for all x1, x2, · · · , xn ∈ X and all t > 0, and

lim
n→∞

ρ x
dn , x

dn ,··· , x
dn

((1− d2)t) = 1(3.12)

for all x, y ∈ X and all t > 0, then there exists a unique quadratic
mapping R : X → Y such that

µR(x)−Q(x)(t) = T∞
k=1

(
ρ x

dk , x

dk ,··· , x

dk
((1− d2)t)

)
(3.13)

for all x ∈ X and all t > 0.

Proof. Putting x1 = x2 = · · · = xn = x in (3.11), we get

µQ(dx)−d2Q(x)(t) ≥ ρx,x,··· ,x(t)(3.14)
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Replacing x with x
d

in (3.14)

µQ(x)−d2Q(x
d
)(t) ≥ ρx

d
, x
d
,··· , x

d
(t)(3.15)

for all x ∈ X and all t > 0. Let

ψx(t) = ρx,x,··· ,x(t)

Replacing x by x
dn and t with t

d2n in (3.15), we get

µQ( x
dn )−Q( x

dn+1 )d2(
t

d2n
) ≥ ψ x

dn+1
(

t

d2n
),

µQ( x
dn )d2n−Q( x

dn+1 )d2n+2(t) ≥ ψ x
dn+1

(
t

d2n
)(3.16)

for all n ∈ N , x ∈ X and all t > 0. It follows from (3.16) and 1 ≥
( 1

d2 − 1)(d2 + d4 + · · ·+ d2n) that

µQ( x
dn )d2n−Q(x)(t) = µ(Q( x

dn )d2n−Q( x

d(n−1)
)d2(n−1)+···+Q(x

d
)d2−Q(x))(t)

≥ T n
k=1

(
µ(Q( x

dk )d2k−Q( x

d(k−1)
)d2(k−1)

(
(

1

d2
− 1)d2kt

))
(3.17)

≥ T n
k=1

(
ψ x

dk
((1− d2)t)

)

= T n
k=1

(
ρ x

dk , x

dk ,··· , x

dk
((1− d2)t)

)

for all x ∈ X and all n ∈ N . Thus we have

µQ( x
dn )d2n−Q( x

dm )d2m(t) ≥ T n
k=m

(
ρ x

dk , x

dk ,··· , x

dk
((1− d2)t)

)
.(3.18)

Since the right hand side of the inequality (3.18) tends to 1 as m,n tend
to infinity, the sequence (Q( x

dn )d2n) is a Cauchy sequence. Thus we may
define R(x) = limn→∞ Q( x

dn )d2n for all x ∈ X. Then

µR(x)−Q(x)(t) = T∞
k=1

(
ρ x

dk , x

dk ,··· , x

dk
((1− d2)t)

)
(3.19)

Now we show that R is a quadratic mapping. Putting x1 = x2 = · · · =
xn = x

dn in (3.11), we get

µDQ( x
dn , x

dn ,··· , x
dn )d2n(t) ≥ ρ x

dn , x
dn ,··· , x

dn
(t).

Taking the limit as n →∞, we find that R : X → Y satisfies (3.13) for
all x, y ∈ X. So the mapping R : X → Y is quadratic. Letting the limit
as n →∞ in (3.18), we get (3.13).

The rest of the proof is similar to the proof of Theorem 3.1.
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