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AFFINE HOMOGENEOUS DOMAINS IN THE COMPLEX PLANE

Kang-Hyurk Lee

Abstract. In this paper, we will describe affine homogeneous domains in the com-
plex plane. For this study, we deal with the Lie algebra of infinitesimal affine
transformations, a structure of the hyperbolic metric involved with affine automor-
phisms. As a consequence, an affine homogeneous domain is affine equivalent to the
complex plane, the punctured plane or the half plane.

1. Introduction

For a domain (connected open set) Ω in the complex plane C, the (holomorphic)
automorphism group of Ω, denoted by Aut(Ω), is the group of self-biholomorphisms
of Ω under the law of the mapping composition. If a given domain is the whole C,
then the automorphism group Aut(C) is exactly the holomorphic affine transformation
group Aff(C) of C:

Aff(C) = {z 7→ az + b : a ∈ C∗, b ∈ C} .
Here C∗ = C \ {0}. For a proper domain Ω, the affine automorphism group

Aff(Ω) = Aut(Ω) ∩ Aff(C)

should be a proper subgroup of Aut(Ω) since an orbit Aff(C) · p = {f(p) : f ∈ Aff(C)}
is C for any p ∈ Ω. If Aff(Ω) acts transitively on Ω, i.e. Aff(Ω) · p = Ω for p ∈ Ω, then
we say that Ω is affine homogeneous. The complex plane C is affine homogeneous
and there are two typical affine homogeneous domains. One is the punctured plane
C∗ whose automorphism group is of the form,

Aut(C∗) = {z 7→ az : a ∈ C∗} ∪ {z 7→ a/z : a ∈ C∗}
So Aff(C∗) = {z 7→ az : a ∈ C∗} acts on Ω transitively. Note that Aff(C∗) is generated
by the rotation

(1) Rt : z 7→ eitz (t ∈ R) ,

and the dilation

(2) Dt : z 7→ etz (t ∈ R) .
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Another affine homogeneous domain is the left half-plane H = {z ∈ C : Re z < 0}
whose automorphism group is the projective special linear group PSL(2,R) which is a
3-dimensional Lie group. The affine automorphism group Aff(H) is the 2-dimensional
subgroup generated by the dilation Dt in (2) and the translation

(3) Tit : z 7→ z + it (t ∈ R)

whose action on H is also transitive.
If a domain Ω is affine equivalent to another domain Ω′, that is, there is an affine

mapping F ∈ Aff(C) with F (Ω) = Ω′, then the pushing-forward group

F∗ (Aff(Ω)) =
{
F ◦ f ◦ F−1 : f ∈ Aff(Ω)

}
coincides with Aff(Ω′). Therefore a domain which is affine equivalent to C∗ or H, is
affine homogeneous.

In this paper, we will show that C, C∗ and H constitute the complete list of affine
homogeneous domains in C up to the affine equivalence.

Theorem 1.1. An affine homogeneous, proper domain in C is affine equivalent to
C∗ or H.

Maybe, there are many approaches to get this result. The aim of the paper is
indeed to give a geometric approach that can be extended even in the case of the
multi-dimensional complex affine spaces.

For a simply connected, proper domain Ω which is so biholomorphic to H, the
domain Ω is affine equivalent to H if Ω admits a potential function of the hyperbolic
metric whose gradient length is identically constant by Corollary 1.3 of [4]. The exis-
tence of such potential function allows us to construct a complete holomorphic vector
field on Ω. Realizing this vector field as an infinitesimal parabolic automorphisms of
the unit disc ∆, the affine equivalence to H follows. The relation between potential
functions and complete holomorphic vector fields has been improved for the multi-
dimensional complex geometry under the name of potential rescaling (see [3,7]). But
this approach is not applicable for the characterization of affine homogeneous domains
in Cn. Thus we will improve the method of [4] using the affine geometry of C. Es-
pecially, we will mainly use the hyperbolic metric of a domain in C omitting at least
two points and a structure of the Lie algebra of infinitesimal affine automorphisms.

In Section 2, we will introduce the Lie algebra of infinitesimal affine automorphisms,
the hyperbolic structure of domains, and their relations in case of the unit disc. Then
Theorem 1.1 will be proved in Section 3.

2. Lie algebra of the affine automorphism groups

In this section, we will consecutively introduce infinitesimal automorphisms, a
structure of the affine transformation group Aff(C), the hyperbolicity of domains,
a certain structure of Poincaré metric, and the affine geometry of the left half-plane.

2.1. Infinitesimal automorphisms. Let X be a Riemann surface. An 1-parameter
family of automorphisms of X is a family {Vs : s ∈ R} ⊂ Aut(X) with parameter s
satisfying

Vs ◦ Vt = Vs+t
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for any s, t ∈ R. Then the family {Vs : s ∈ R} is a subgroup of Aut(X). By an
infinitesimal generator of {Vs}, we means that a (1, 0)-vector field V of X such that
Vs is the flow of the corresponding real tangent vector field ReV = V + V , that is,

(ReV)(x) = dγx

(
d

ds

∣∣∣∣
s=0

)
for any x ∈ X,

where γx : R→ X is the curve given by γx(s) = Vs(x). For a local coordinate function
z near x ∈ X, the value of V at x is written by

V(x) =

(
d

ds

∣∣∣∣
s=0

Vs(x)

)
∂

∂z

∣∣∣∣
x

.

Here we regards Vs as a s-parametrized local holomorphic functions near x.
An (1, 0)-vector field V of X is an infinitesimal automorphisms of X if it is a

complete holomorphic vector field, more precisely,

1. the corresponding real vector field ReV = V + V is complete,
2. in any local holomorphic coordinate function z, V can be written by

V = f
∂

∂z

for some holomorphic function f .

One can easily see that a flow of an infinitesimal automorphism of X is an 1-parameter
family of automorphisms of X. Therefore the set of complete holomorphic vector fields
of X, denoted by aut(X), can be identified with the set of 1-parameter automorphism
families. Theories of Riemann surfaces say that the automorphism group Aut(X) is
always a Lie group. Therefore we can regard aut(X) as the Lie algebra of Aut(X)
when a bracket structure of aut(X) is given by the Lie bracket of (1, 0)-vector fields.

If two (1, 0)-vector fields V and iV are complete and holomorphic (V , iV ∈ aut(X)),
then [ReV ,Re iV ] = 0 implies that Vs ◦ (iV)t = (iV)t ◦Vs for any s, t ∈ R. So we have
a C-parameter subgroup of Aut(X) generated by

Vζ = Vs ◦ (iV)t

for ζ = s+ it. Simultaneously, each x ∈ X gives a entire curve

ux : ζ 7→ Vζ(x) ,

because

1. Vζ ◦ Vξ = Vζ+ξ for any ζ, ξ ∈ C,
2. the Cauchy-Riemann equation holds:

dux

(
∂

∂ζ

∣∣∣∣
0

)
=

1

2

(
dux

(
∂

∂s

∣∣∣∣
0

)
− idux

(
∂

∂t

∣∣∣∣
0

))
=

1

2
((ReV)(x)− i(Re iV)(x)) =

1

2
((ReV)(x)− iJ(ReV)(x))

where J is the complex structure of X.

As we will see in Section 2.3, there is no nontrivial entire curve in a hyperbolic
surface X; thus aut(X) for hyperbolic X is a real Lie algebra without nontrivial com-
plex subalgebra. This is a quite distinguished phenomenon from the non-hyperbolic
surface, for instance C.
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2.2. The automorphism group of C: the group of affine transformations.
By a classical theory of Complex Analysis, the automorphism group of the complex
plane C coincides with the group of affine transformations of C. Since the aim of this
research is the affine homogenuity, we will especially denote the automorphism group
of C by Aff(C). Typical affine transformations are the complex multiplication

Ma : z 7→ az (a ∈ C∗)

and the translation

Tb : z 7→ z + b (b ∈ C) .

The group of complex multiplications is the C∗ parameter family, so isomorphic to the
multiplicative group C∗. And the group of translations is isomorphic to the additive
group C. One can easily see that the translation group is normal so Aff(C) ' C∗nC.
The linear group expression of Aff(C) is the matrix multiplication group{(

a b
0 1

)
: a ∈ C∗, b ∈ C

}
,

where Ma and Tb correspond to

(
a 0
0 1

)
and

(
1 b
0 1

)
, with respectively. Therefore

Aff(C) is a complex Lie group biholomorphic to C∗ ×C. As a real Lie group, Aut(C)
is generated by

Rt , Dt , Tt , Tit (t ∈ R)

where Rt and Dt are the rotation and the dilation as in (1) and (2), respectively.
Their infinitesimal generators are

(4) R = iz
∂

∂z
, D = z

∂

∂z
, T =

∂

∂z
, iT = i

∂

∂z

which form a real basis of the real 4-dimensional Lie algebra aff(C) = aut(C). Note
that D and T form a complex basis of aff(C).

In case of the Riemann sphere CP1, the automorphism group is the Möbius trans-
formation group, usually denoted also by PSL(2,C), which is a complex 3-dimensional
Lie group.

2.3. Hyperbolic Riemann surfaces and their automorphism groups. Let X
be a Riemann surface with a hermitian metric ds2. For an expression

ds2 = λ |dz|2

by a local coordinate function z, the gaussian curvature κ of ds2 is written by

(5) κ = −1

λ

∂2

∂z∂z̄
log λ .

If there is a complete hermitian metric with κ ≡ −2, then the metric is called a
hyperbolic metric and the surface is hyperbolic. By Ahlfors’ Schwarz lemma in [1], a
hyperbolic metric is uniquely determined so there is no confusion of notation when
we denote by ds2

X the hyperbolic metric of a given hyperbolic surface X.
By the uniformization theorem for Riemann surfaces (see [6,8]), a simply connected,

hyperbolic Riemann surface is biholomorphic and isometric to the Poincaré disc model
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(∆, ds2
∆) which is the unit disc ∆ = {z ∈ C : |z| < 1} endowed with the Poincaré

metric

(6) ds2
∆ =

1(
1− |z|2

)2 |dz|
2 .

Moreover, a Riemann surface X is hyperbolic if and only if X is a quotient of ∆, i.e.
there is a discrete subgroup Γ ⊂ Aut(∆) such that X is biholomorphic to the quotient
space ∆/Γ. Since every automorphism of ∆ is an isometry of the Poincaré metric, the
quotient ∆/Γ is a Riemannian quotient space, so the hyperbolic metric of X = ∆/Γ
is the pushing-forward metric of the Poincaré metric,

ds2
X = π∗ds

2
∆

where π : ∆→ ∆/Γ = X is the quotient mapping.
The Riemann sphere CP1 and the complex plane C, the other models in the uni-

formization theorem, can not admit a complete hermitian metric with strictly negative
curvature. And their automorphism groups are complex Lie groups. Since there is no
nontrivial entire curve in a hyperbolic Riemann surface X by Ahlfors’ Schwarz lemma,
the automorphism group of X is purely real, that is, there is no complex subalgebra
in aut(X).

Let us see Aut(∆), the automorphism group of ∆. This is a real 3-dimensional,
connected subgroup of the isometry group Isom(∆, ds2

∆). The Lie algebra aut(∆) has
three nontrivial elements R,H,P where

1. R is the infinitesimal generator of the rotation as in (4),
2. H and P are defined by

(7) H = (z2 − 1)
∂

∂z
and P = i(z + 1)2 ∂

∂z
.

The vector field H generates hyperbolic automorphisms leaving two boundary points
1,−1 fixed and P generates parabolic automorphisms leaving −1 fixed (see [4]). One
can easily see that R,H,P are linearly independent over R so form a basis of aut(∆).

2.4. A certain potential function of the Poincaré metric and the automor-
phism group of the unit disc. Let X be a hyperbolic Riemann surface with the
hyperbolic metric ds2

X . When we write ds2
X = λ |dz|2 in the local holomorphic coor-

dinate function z, Equation (5) and the curvature condition κ ≡ −2 implies that

∂2

∂z∂z̄
log λ = 2λ ,

so the function (1/2) log λ is a local Kähler potential of ds2
X . Any other potential of

ds2
X is always locally given by (1/2) log λ+|f |2 where f is a local holomorphic function

on the domain of z. We call (1/2) log λ the local canonical potential with respect to
the coordinate function z. Especially, the canonical potential of a domain Ω ⊂ C
is the canonical potential of ds2

Ω which is globally given by the standard coordinate
function of C.

For a (local) real-valued differentiable function ψ on X, the gradient length ‖∂ψ‖X
of ψ is the length of gradient vector field measured by the hyperbolic metric which
can be locally written by

‖∂ψ‖2
X =

∥∥∥∥∂ψ∂z dz
∥∥∥∥2

X

=
∂ψ

∂z

∂ψ

∂z̄

1

λ
.
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We will describe the structure of aut(∆) in terms of a certain potential function ϕ of
the Poincaré metric whose gradient length ‖∂ϕ‖∆ is constant.

On the unit disc, the canonical potential function of the Poincaré metric ds2
∆ in (6)

is

ϕ∆ =
1

2
log

1(
1− |z|2

)2 = − log
(
1− |z|2

)
.

Let us define

(8) ϕ0 =
1

2
log

|1 + z|4(
1− |z|2

)2 = ϕ∆ + log |1 + z|2

which is also a global potential of the Poincaré metric ds2
∆. The gradient length of

the canonical potential ϕ∆ is not constant but that of ϕ0 is constant:

‖∂ϕ∆‖2
∆ =

∂ϕ∆

∂z

∂ϕ∆

∂z̄

1

λ∆

= |z|2 , ‖∂ϕ0‖2
∆ ≡ 1 .

By a result of Kai-Ohsawa [5], the constant 1 is invariant, that is, if there is a potential
function ψ of ds2

∆ with constant ‖∂ψ‖∆ ≡ c, then c = 1. The theorem of Kai-Ohsawa
holds for bounded homogeneous domains in Cn and their Bergman potentials. In the
1-dimensional case, a bounded homogeneous domain is only the unit disc ∆ up to
the biholomorphic equivalence and its Bergman metric is just the Poincaré metric.
When we focus on the unit disc only, we have proved that ϕ0 is the unique potential
of constant gradient length, up to constant and up to rotational symmetry.

Theorem 2.1 (Theorem 2.2 in [4]). If a function ψ on ∆ is a potential of ds2
∆ with

‖∂ψ‖∆ ≡ 1, then there is a constant c and θ ∈ R such that

ψ = ϕ0 ◦ Rθ + c =
1

2
log

∣∣1 + eiθz
∣∣4(

1− |z|2
)2 + c .

For the basis {H,P ,R} of aut(∆) as we introduced in Section 2.3, R = iz∂/∂z
gives a zero vector at z = 0 but H = (z2−1)∂/∂z and P = i(z+1)2∂/∂z are nowhere
vanishing on ∆. The potential function ϕ0 can characterize these two elements H,P .
Since

Hϕ0 = (z2 − 1)
(1 + z̄)

(1 + z)(1− |z|2)
=
|z|2 + z − z̄ − 1

1− |z|2
,

Pϕ0 = i(z + 1)2 (1 + z̄)

(1 + z)(1− |z|2)
= i
|1 + z|2

1− |z|2

so we have

(ReH)ϕ0 ≡ −2 and (ReP)ϕ0 ≡ 0 .

But

(ReR)ϕ0 = i
z(1 + z̄)2

|1 + z|2 (1− |z|2)
− i z̄(1 + z)2

|1 + z|2 (1− |z|2)
=

z − z̄
|1 + z|2

is not identically constant. Moreover
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Theorem 2.2 (Section 4 in [4]). A complete holomorphic vector field V ∈ aut(∆)
satisfies (ReV)ϕ0 ≡ c for some constant c if and only if

V = − c
2
H + tP

for some t ∈ R.

2.5. Affine automorphism group of the left half-plane H. The left half-plane
H = {w ∈ C : Rew < 0} which is affine homogeneous, is biholomorphic to the unit
disc ∆ by the Cayley transform F : H→ ∆ defined by

(9)

F : H −→ ∆

w 7−→ z =
1 + w

1− w
.

Then the hyperbolic metric of H is

ds2
H = F ∗ds2

∆ =
1

(w + w̄)2
|dw|2

and the canonical potential ϕH is

ϕH =
1

2
log

1

(w + w̄)2
= − log(−(w + w̄))

which satisfies ‖∂ϕH‖H ≡ 1. In fact, the canonical potential ϕH coincides with the
pulling back of ϕ0 (Equation (8)) on ∆ by F , i.e.

F ∗ϕ0 = ϕH .

In [4], we showed that

(10) (F−1)∗H = D = z
∂

∂z
, (F−1)∗P = iT = i

∂

∂z
.

These two vector fields D and P generate affine transformations Dt and Tit on C,
respectively, thus

D , iT ∈ aff(H) = aut(H) ∩ aff(C) .

In the proof of Theorem 1.1, we can easily see that the aff(H) is of 2-dimension, so
{D, iT } is a basis of aff(H).

3. Proof of Theorem 1.1

Let Ω be an affine homogeneous, proper domain in C. If C \Ω is just an one point
set, Ω is affine equivalent to the punctured plane C∗; thus we may assume that Ω
omits at least two points of C. By the little Picard theorem (Theorem 5 of Chapter
8 in [2]), there is no nonconstant entire curve in Ω. This means that Ω is not covered
by C, so the universal covering of Ω is the unit disc. Therefore Ω is hyperbolic and
admits the hyperbolic metric ds2

Ω. We will show consecutively

1. there is an affine translation in Aff(Ω), i.e. aT ∈ aff(Ω) for some a ∈ C, and Ω
is simply connected so biholomorphic to the unit disc,

2. aT annihilates the canonical potential function ϕΩ of the hyperbolic metric and
‖∂ϕΩ‖Ω is constant,

3. there is a biholomorphism G : Ω → ∆ which sends aT to a parabolic vector
field, i.e. G∗(aT ) = tP for some t ∈ R,
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4. the biholomorphism G−1 ◦F : H→ Ω is affine where F is the Cayley transform
of (9).

Step 1. Let us consider the Lie algebra aff(Ω) = aut(Ω) ∩ aff(C) of Aff(Ω) whose
real dimension is less than or equal to 4 = dimR aff(C). The transitivity of the action
by Aff(Ω) on Ω implies that the real dimension of aff(Ω) is at least real 2. Since
aff(C) is an algebra over C, iaff(Ω) = {iV : V ∈ aff(Ω)} is a real subalgebra whose
real dimension is the same as dimR aff(Ω). When we assume that dimR aff(Ω) ≥ 3,
the complex subalgebra aff(Ω) ∩ iaff(Ω) of aff(Ω) has positive dimension. This is a
contradiction to the hyperbolicity of Ω as we mentioned at the end of Section 2.1.
Therefore aff(Ω) is a purely real subalgebra of dimR = 2.

Let V ,W ∈ aff(C) form a basis of aff(Ω). Then the vector fields V and W can be
written as

V = (αz + β)
∂

∂z
, W = (µz + ν)

∂

∂z
for some α, β, µ, ν ∈ C because they are infinitesimal affine transformations of C. Let
us consider

[V ,W ] = µ(αz + β)
∂

∂z
− α(µz + ν)

∂

∂z
= (βµ− αν)

∂

∂z
∈ aff(Ω) .

If βµ − αν = 0, then W is a complex multiple of V . This means that aff(C) is a
complex algebra. Therefore the complex number a = βµ− αν is not zero and

[V ,W ] = a
∂

∂z
= aT ∈ aff(Ω)

Now we get the translation

Tsa(z) = z + sa (s ∈ R)

as an affine automorphism of Ω.
If γ is a loop (a closed curve) in Ω, then the subset D =

⋃
s∈R Tsa(γ) of Ω is a

closed strip (a closed region bounded by two parallel lines), so D is simply connected.
Therefore γ can be contracted to a point in D ⊂ Ω, i.e. Ω is simply connected. By
the Riemann mapping theorem, Ω is biholomorphic to the unit disc ∆.

Step 2. Now let us consider the hyperbolic metric ds2
Ω of Ω and write it by

ds2
Ω = λΩ |dz|2 .

An automorphism f of Ω is an isometry with respect to ds2
Ω by Ahlfors’ Schwarz

lemma, so it follows that f ∗ds2
Ω = ds2

Ω, i.e.

(λΩ ◦ f) |f ′|2 = λΩ

where f ′ is the complex derivative of the holomorphic function f . If f is an affine
transformation, then f ′ ≡ b for some b 6= 0; thus the canonical potential

ϕΩ =
1

2
log λΩ

satisfies

(11) ϕΩ ◦ f + log |b| = ϕΩ .

Differentiating it, we get f ∗(∂ϕΩ) = ∂ϕΩ, so

‖∂ϕΩ‖Ω (f(p)) = ‖f ∗(∂ϕΩ)‖Ω (p) = ‖∂ϕΩ‖Ω (p)
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for any p ∈ Ω because f is isometric. Since Ω is affine homogeneous, we get ‖∂ϕΩ‖Ω

is identically constant.
For the affine transformation Tsa of Ω, its complex derivative T ′sa is identically 1.

Thus Equation (11) implies that

ϕΩ ◦ Tsa = ϕΩ .

This implies that

(12) (Re aT )ϕΩ =
d

ds

∣∣∣∣
s=0

ϕΩ ◦ Tsa =
d

ds

∣∣∣∣
s=0

ϕΩ ≡ 0 .

Step 3. For a biholomorphism G : Ω→ ∆, let us define ψ : ∆→ R by

ψ = (G−1)∗ϕΩ = ϕΩ ◦G−1 =
1

2
log(λΩ ◦G−1) .

Since G is isometric from (Ω, ds2
Ω) to (∆, ds2

∆) where ds2
∆ = λ∆ |dz|2 is the Poincaré

metric in (6), we have G∗ds2
∆ = ds2

Ω which is written by

(λ∆ ◦G)

∣∣∣∣∂G∂z
∣∣∣∣2 = λΩ and λ∆ = (λΩ ◦G−1)

∣∣∣∣∂G−1

∂ζ

∣∣∣∣2
where z and ζ are coordinate functions on Ω and ∆, respectively. From the fact that
(1/2) log λ∆ is the potential of ds2

∆, it follows that

λ∆ =
1

2

∂2

∂ζ∂ζ̄
log λ∆ =

1

2

∂2

∂ζ∂ζ̄
log(λΩ ◦G−1) =

∂2ψ

∂ζ∂ζ̄
.

This means that ψ is also a potential of the Poincaré metric. Moreover ‖∂ψ‖∆ is
constant because

‖∂ψ‖∆ (p) =
∥∥(G−1)∗∂ϕΩ

∥∥
∆

(p) = ‖∂ϕΩ‖Ω (G−1(p))

for any p ∈ ∆. As we mentioned in Section 2.4,

1. the constant for ‖∂ψ‖∆ is 1 by Kai-Ohsawa [5],
2. ψ = ϕ0 ◦ Rθ + c for some c ∈ R and for ϕ0 of (8) by Theorem 2.1.

Replacing G by Rθ ◦G, we may let ψ = ϕ0 + c. Since (Re aT )ϕΩ ≡ 0 from (12), the
complete holomorphic vector field V = G∗(aT ) satisfies

(ReV)ϕ0 = (ReV)ψ = (V + V)ψ =
(
G∗(aT ) +G∗(aT )

)
ψ

= (aT + aT )G∗ψ = (aT + aT )ϕΩ ≡ 0 .

By Theorem 2.2,

(13) G∗(aT ) = V = tP
for some t 6= 0.

Step 4. Let F : H→ ∆ be the Cayley transform given in (9) and let

H = G−1 ◦ F : H→ Ω

which is a biholomorphism. From (10) and (13),

F∗T = P , (G−1)∗P =
a

t
T , so H∗T =

a

t
T
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where a and t are nonzero constants. The last equation can be written by

∂H

∂z
=
a

t
;

thus H(z) = (a/t)z + c for some c ∈ C. This completes the proof.
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