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FUZZY CONNECTIONS AND COMPLETENESS IN
COMPLETE RESIDUATED LATTICES

YoNG CHAN KiM* AND YOUNG SUN KiMm

ABSTRACT. In this paper, we investigate the properties of fuzzy
Galois (dual Galois, residuated, dual residuated) connections in a
complete residuated lattice L.

1. Introduction

Galois connection is an important mathematical tool for algebraic
structure, data analysis and knowledge processing [1-5,7-11]. Orlowska
and Rewitzky [9] investigated the algebraic structures of operators of
Galois-style (Galois, dual Galois, residuated, dual residuated) connec-
tions on set. Héjek [6] introduced a complete residuated lattice L which
is an algebraic structure for many valued logic. Recently, Yao and Lu
[11] introduced Galois connections and fuzzy completeness in a complete
residuated lattice L. Bélohlavek [1-3] developed the notion of fuzzy con-
texts using Galois connections with R € L**Y on a complete residuated
lattice L.

In this paper, we investigate the properties of fuzzy Galois (dual Ga-
lois, residuated, dual residuated) connections as an extension of Yao and
Lu [11] in a complete residuated lattice L.
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2. Preliminaries

DEFINITION 2.1. ([6,11]) An algebra (L,A,V,®,—,0,1) is called a
complete residuated lattice if it satisfies the following conditions:
(Cl) L =(L,<,V,A,1,0) is a complete lattice with the greatest element
1 and the least element 0;
(C2) (L,®,1) is a commutative monoid;
(C3) zoy<ziffx <y— zforx,y,z€ L.

REMARK 2.2. ([6]) (1) A completely distributive lattice L = (L, <
,V, AN =0©,—,1,0) is a complete residuated lattice defined by

r—y= zlaxNz<yy.
V=l

In particular, the unit interval ([0,1],V,A = ®,—,0,1) is a complete
residuated lattice defined by

T =y = zlx Nz <yj}.
V{1

(2) The unit interval ([0,1],V, A\, ®, —,0,1) with a left-continuous t-
norm ® is a complete residuated lattice defined by

x—>y:\/{z|x®z§y}.

In this paper, we assume (L, A, V,®,—,0, 1) is a complete residuated
latttice.

DEFINITION 2.3. ([11]) Let X be a set. A functionex : X x X — L
is called:

(E1) reflexive if ex(z,z) =1 for all z € X,

(E2) transitive if ex(z,y) ©® ex(y, z) < ex(z,z2), for all z,y,z € X.

(E3) if ex(z,y) = ex(y,x) = 1, then z = y.

If ex satisfies (E1) and (E2), ex is a fuzzy preorder and (X, ex) is
a fuzzy preorder set. If e satisfies (E1), (E2) and (E3), ex is a fuzzy
partially order and (X, ex) is a fuzzy partially order set (simply, fuzzy
poset).

EXAMPLE 2.4. (1) We define a function e, : Lx L — L asep(x,y) =
x — y. Then ey, is a partial order.

(2) We define a function epx : LX x L* — L as e;x(A,B) =
A.ex(A(z) = B(z)). Then (LX,epx) is a fuzzy poset.

(3) If (X, ex) is a fuzzy poset and we define a function ey’ (z,y) =
ex(y,x), then (X, ey') is a fuzzy poset.
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DEFINITION 2.5. Let (X,ex) and (Y,ey) be a fuzzy poset and f :
X =Y and g:Y — X maps.

(1) (ex, f,g,ey) is called a Galois connection if for all z € X,y € Y,

ey(yv f(:l')) = eX(‘ra g(y)>
(2) (ex, f,g,ey) is called a dual Galois connection if for all x € X,y €

Y
ey (f(z),y) = ex(g(y), z).
(3) (ex, f,g,ey) is called a residuated connection if for all v € X,y €
Y

Y

Y

ey (f(x),y) = ex(z, 9(y)).
(4) (ex, f,g,ey) is called a dual residuated connection if for all x €
X,yeyY,
ey (y, f(z)) = ex(9(y), ).
(5) f is an order preserving map if ey (f(x1), f(x2)) > ex(x1,z5) for
all T1,T2 € X.
(6) f is an order reversing map if ey (f(x1), f(x2)) > ex(xq,x1) for all
T1,T9 € X.

3. Fuzzy connections and completeness in complete residu-
ated lattices

DEFINITION 3.1. ([10]) Let (X, ex) be a fuzzy poset and A € L*.

(1) A point zy is called a join (or supremum) of A, denoted by o = LA,
if it satisfies
(J1) A(x) < ex(x,zq),
(12) Ayex (A) = ex(z,9)) < ex(z0,1).
A point 1 is called a meet (or infimum) of A, denoted by x; =
MA, if it satisfies
(M1) A(x) < ex(xy,z),
(M2) Aoy () — ex(4,7)) < ex(y,21).
The pair (X, ex) is called a fuzzy complete lattice if for all A €
LY, UA and MA exist.
(2) o = max A is called a maximal element if A(xg) =1 and A(y) <
ex(y, o), for ally € X.
(3) 1 = min A is called a minimal element if A(z,) = 1 and A(y) <
ex(z1,y), forally € X.
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REMARK 3.2. Let (X,ex) be a fuzzy poset and A € LX. If xq is a
join of A, then it is unique because ex(xo,y) = ex(yo,y) for all y € X,
put y = g or y = yo, then ex(xo,y0) = ex(yo,v0) = 1 implies z¢ = yo.
Similarly, if a meet of A exist, then it is unique.

THEOREM 3.3. Let (X, ex) be a fuzzy poset and A € L*.
(1) xo is a join of A iff \,.(A(x) = ex(z,y)) = ex(zo,y).
(2) @1 is a meet of A iff A\, (A(z) — ex(y,x)) = ex(y,x1).
(3) xog = max A iff A(zg) =1 and xo = UA.

(4) x;y = min A iff A(z1) =1 and z, = MNA.

Proof. (1) (=) Let g be a join of A. Then A(z) < ex(x,zo). Thus,
A(z) © ex(zo,y) < ex(z,m0) © ex(zo,y) < ex(z,y). Hence ex(zo,y) <
Nipex(A(x) = ex(z,y)). By (J2), the equality holds.

(<) Since A, cy(A(x) = ex(z,20)) = ex(wo,z0) = 1, then A(z) <
ex(z,xo). Hence the result holds.

(2) (=) Let 21 be a meet of A. Then A(z) < ex(z1,z). Thus,

ex(y,71) © A(r) <ex(y,r1) © ex(z1,7) < ex(y,r). Hence ex(y,z1) <
Nsex(A(r) = ex(z,y)). By (M2), the equality holds.
(<) Since A, cy(A(z) = ex(z1,2)) = ex(@1,21) = 1, then A(z) <
ex(z1,z). Hence the result holds.
(3) Let o = max A. Then
N\ (A(z) = ex(z, ) < A(xo) — ex (w0, x) = ex (0, 2),
zeX
/\ (A(z) — ex(z,x)) > /\ (ex(z,20) = ex(z,7)) = ex(xo, ).
zeX zeX

Thus ex(zo, ) = A\,cx(A(2) = ex(z,2)). So, zo = UA.

Let A(zg) = 1 and xp = UA. Then ex(zo,20) = A,cx(A(2) —
ex(z,x0)) = 1 implies A(z) < ex(z,20). Then xy = max A

(4) Tt is similarly proved as (3). O

REMARK 3.4. Let (X, ex) be a fuzzy poset and A € L~

(1) Since \,cx(ex(z,y) — ex(x,2)) = ex(y, 2), then, by Theorem 3.3
(1), y = Ulex)? where (ex)"(x) = ex(r.y).

(2) Since \,cx(ex(y, 2) = ex(x,2)) = ex(x,y), then, by Theorem 3.3
(3), y = Nlex)y where (ex)y(x) = ex(y, ).

REMARK 3.5. Let (L, ey) be a fuzzy poset and A € L.
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(1) If g is a join of A, then A\ ., (A(x) — er(z,y)) = N,er(Alz) —
(= y)) = \/xeL( A(z)) = y = er(zo,y) = o = y. So,
7o = UA = V01 (2 © A(x)).

(2) If 2y is a meet of A iff N\ ., (A(x) = er(y, 7)) = N,ep(Alz) —

(y = 7)) =y = Ner(Al@) = 2) = ex(y,71) = y — 21, then
1 =NA= N\, (Alz) = z).

EXAMPLE 3.6. Let X = {a,b,c} be a set. Define a binary operation
® (called Lukasiewicz conjection) on L = [0, 1] by

rO©y=max{0,x+y—1}, r - y =min{l —z +y, 1}
Let (X ={a,b,c},ex) be a fuzzy poset as follows:

ex(a,a) =1, ex(a,b) = 0.6, ex(a,b) =0.5
ex(b,a) =0.8, ex(b,b) =1, ex(b,c)=0.7
ex(c,a) =0.9, ex(c,b) = 0.6, ex(c,c)=1.

(1) For A= (ex)* = (1,0.8,0.9)", we have a = UA = max A from
N\(A(z) = ex(z,2)) = ex(a, 2).
(2) For A= (ex)® = (0.6,1,0.6)", we have b = UA = max A from
N(A@) = ex(x,2)) = ex(b, 2).
(3) For A = (ex)® = (0.5,0.7,1)!, we have ¢ = UA from
/\ (A(z) = ex(z,y)) = ex(UA, y) = ex(c,y).

zeX
(4) For A = (ex), = (1,0.6,0.5)", we have a = MA = min A from

N(A(x) = ex(z,2)) = ex(z,a).
(5) For A = (ex), = (0.8,1,0.7)", we have b = MA = min A from
A (A(z) = ex(z, 7)) = ex(z,b).
(6) For A = (ex). = (0.9,0.6,1), we have c = MA = min A from
(

A(z) — ex(z,2)) = ex(z,c).

8
m
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(7) For A= (0.5,0.8,0.6)", MA and UA do not exist from:

0.9 = /\(A(x) — ex(z,¢)) #ex(y,c), Yy € {a,b,c}

0.8 = /\(A(x) — ex(a,x)) # ex(a,y),Vy € {a,b, c}.

Hence (X, ex) is not fuzzy complete.

THEOREM 3.7. Let (X, ex) and (Y,ey) be complete.

(1) (ex, f,g,ey) is a Galois connection iff f is an order reversing map
and ¢g(y) = max f<((ey),) iff g is an order reversing map and
() = max g ((ex)z).

(2) (ex, f,g,ey) is a dual Galois connection iff f is an order reversing
map and g(y) = min [ ((ey)Y) iff g is an order reversing map and
f(x) = min g™ ((ex)").

(3) (ex, f,qg,ey) is a residuated connection iff f is an order preserving
map and g(y) = max f<((ey)Y) iff g is an order preserving map
and f(x) = ming* ((ex)s)-

(4) (ex, f,g,ey) is a dual residuated connection iff f is an order pre-
serving map and g(y) = min f ((ey),) iff g is an order preserving
map and f(x) = max g ((ex)).

Proof. (1) We only show that (ex, f, g,ey) is a Galois connection iff
f is an order reversing map and g(y) = max < ((ey),) because other
case is similarly proved.

(=) Since ex(z,g(f(z))) = ey (f(z), f(x)) = 1, we have
ey(f(x), f(y)) = ex(y,9(f(x)))
> ex(y,2) © ex(z,g(f(x))) = ex(y, ).

Hence f is an order reversing map. Moreover, g(y) = max f ((ey),)
because

f((ey)y)(g(y) = (ev)y(f(g(y))
= ey(y, f(9(y)))
= ex(9(),9(y)) =1,

F((ev)y) (@) = (ev)y(f(2)) = ev(y, f(z)) = ex(x, 9(y))-

(<) Since ¢g(y) = max f< ((ey),), we have

ey (y, f(x)) = (ev)y(f(2)) = f*((ev)y)(x) < ex(x, 9(y))-
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(GY)y)
(ey)y(f(g9(y)) = ev(y, f(g(y
f(@) @ey(y, flg(y)) <

Since g(y) max

F((ev)y)(9(y)

ex(z,9(y)) < ev(f9(y)

Thus ex(z,9(y)) = ey (y, f(x)).

(2) We only show that (ex, f, g, ey) is a dual Galois connection iff f
is an order reversing map and g(y) = min f* ((ey)?) because other case
is similarly proved.

(=) Since ex(g(f(x)),x) = ey (f(z), f(x)) = 1, we have
ey (f(x), f(y)) = ex(9(f(y)),x)
2 ex( (f(W),y) ©ex(y,z) = ex(y,x).

Hence f is an order reversing map. Moreover, g(y) = min f< ((ey)Y)
because

F((ev)")(9(y))

(
) = ) =
ey (Y, f( ))-

1
5y
b-<
—~
-
Yy
)
o~ =
NS

F((ey)") ()
(<) Since g(y) = min f<((ey)Y), we have
ey (f(z),y) = (ev)"(f(x)) = " ((ev)")(z) < ex(g(y), @)
Since g(y) = min [ ((ey)),
Fo((ex)")(g(y)) = (ev)’(f(9()) = ev (f(9(y)), y) = 1.
f

ex(9(y), =) <ey(f(x), f(9(y) ©ey(f(9(y),y) < ev(f(x)y).

Thus, ey (f(2),y) = ex(9(y), ).

(3) It follows from Theorem 3.4 in [11].

(4) First, we show that (ex, f, g, ey) is a dual residuated connection
iff f is an order preserving map and g(y) = min f ((ey),)-

(=) Since ex(g(f(x)),x) = ey(f(x), f(x)) = 1, we have

ey (f(2), f(y)) = ex(9(f(x)),y)

> ex(z,y) ©ex(g(f(2)),2) = ex(z,y).
We obtain ¢(y) = min f<((ey),) because

Fo((ev)y)(9()) = (ex)y(f(9()))
ex(9(y), 9(y))
( v)y(f(2)) =
ex(9(y), ©).

(y, f(9(y)))

=ey
=1,
ey (¥,

F((ey)y)(x) f(z))
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(<) Since ¢g(y) = min f<((ey),), we have

ex(y, f(x)) = (ex)y(f(x)) = f* ((ex)y)(z) < ev(g(y), 2).
Since g(y) = min [ ((ey)y),

F((ex)y)(9(y)) = (ex)y(f(9(y)) = ex(y, f9(y))) = 1.

ex(9(y), x) <ey(f(9(w), f(x) © ey (y, f9(y))) < ey (y, f(2)).

Hence ex(g(y), ) = ev(y, f(x)).
Second, we show that ( , [y g,ey) is a dual residuated connection iff
g is an order preserving map and f(z) = max g ((ex)”).

(=) Since ey (y, f(9(y))) = ex(9(y), 9(y)) = 1, we have
ex(9(x), 9(y)) = ey (x, f(9(y))) = ev(z,y) © ev (4, 9(f () = ey (2,y).

We obtain f(z) = max g ((ex)”) because
9" ((ex)")(f(x)) = (ex)"(9(f(x))) = ey (9(f(x)), )
= ey(f(x), f(x)) =1,
9" ((ex)")y) = ( x)"(9() = ex(9(y), ) = ex (y, f(x)).

(<) Since f(x) = max g ((ex)”), we have
ex(9(y),x) = (ex)*(9(y)) = g ((ex)")(y) < ey (y, f(x))-
Since f(x) = max g ((ex)”),
9" ((ex)")(f (@) = (ex)*(9(f(2)) = ex(9(f(2)),z) = 1.

ey (y, f(z)) <ex(g(y), 9(f(x))) ©®ex(9(f(x)), ) <ex(9(y),z).
Hence ex(g(y), z) = ey (y, f(x)). O

THEOREM 3.8. Let (X, ex) and (Y, ey) be complete.

(1) (ex, f,g,ey) is a Galois connection iff f(UA) = Mf~7(A) for all
Ae L¥ iff g(UB) =Ng™(B) for all B LY.

(2) (ex, f,g,ey) is a dual Galois connection iff f(MA) = Uf~(A) for
all A e LX iff g(MB) = Ug~(B) for all B € LY.

(3) (ex, f,g,ey) is a residuated connection iff f(LUA) = Uf~(A) for all
Ae LY iff gNB) =Mg~(B) for all B € LY.

(4) (ex, f,g,ey) is a dual residuated connection iff, for all A € L,
f(NA) =nf~(A) iff g(UB) = Ug™(B) for all B € LY.
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Proof. (1) First, we will show that (ex, f, g, ey) is a Galois connection
iff f(UA)="1f7(A) for all A € L.
(=) Put yo =1f7(A). Then

ev(ym0) = NU7(A)E) = ev(y,2))

zeY

= AV A@) = ex(y, f(2)))

ze€Y  f(z)==z

= A\ A (A@) = ev(y, f(2)))

2€Y f(x)=z

A (AG) - exo,91)

rzeX

= ex(UA, g(y)) = ey(y, f(LA)).

Hence yo = f(LA) =117 (A).
(<) Put A = (ex)?. Since U(ex)? = y from Remark 3.4(1), we have
fly) = f(U(ex)?) =Nf~7((ex)?). By the definition of Mf~((ex)Y),

ev(f(y), [(@) = [7((ex))(f(@) =\ (ex)'(2) = ex(x,p).
f(z)=f(=z)

Thus, f is order-reversing.
Define g : ¥ — X as g(y) = Uf“((ey),). By the definition of
g(y1) =Uf((ey)y, ), we have

ex(9() 9w2)) = N FT((ex)y)(z) = ex(z,9(1)))

z€Y

> AU Uev)n)2) = F((ev),n)(2))

zeY

— /\(ey(yl,f(z)) — ey (y2, f(2)))

z€Y
> ey (Y2, y1)-

Thus, ¢ is order-reversing. Since

Fg()) = FUFT((ex)y)) = TS (F ((ex)y))
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ev(y, flaw) = N7 Uer)y))(z) = ev(y, )

zeY

= ACV ()G = ev(y.2)

2€Y f(x)=z

= /\( \/ ey (y, f(z)) — ev(y,2))

z€Y f(x)=z

= Aler(y f(@) = ex(y. f()) = L.

zeX

Since g(f(x)) = Uf((ey) ()

ex(z,9(f(2)) = f((ex)sw)(@) = (ev) ) (f(2)) = 1,
ex(z,9(y)) < ev(flg(w)), [(2)) = ex (f(9(y)), [ ()
© ey(y, [(9(y)) < ev(y, f(2)),
ey (y, f(x)) < ex(9(f(2)),9(y)) = ex(9(f(x)), 9(v))
© ey(z,g(f(2)) < ex(z,9(y))-
Thus ex(x,g(y)) = ey (y, f(x)).
Second, (ex, f,g,ey) is a Galois connection iff g(LUB) = Mg~ (B) for

all Be LY.
(=) Put 9 = Mg~ (B). Then

ex(z,20) = N\ (g7(B)(2) = ex(,2))
= AV B) = ex(z,9()))

(<) Put B = (ey)Y. Then g(y) = g(U(ey)?) = Mg~ ((ey)?). By the
definition of Mg~ ((ey)Y),
ex(9(y), g(w)) = g7 ((ex)")(g(w)) = (ey)?(2) = ey (w,y).

Thus, g is order-reversing.
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Define f : X — Y as f(x) = Ug“((ex).). By the definition of
f(xl) = I_Ig‘_((ex)m), we have

ey (f(@1), f(@2) = (97 ((ex)a)(2) = ey (2. f(2)))

zeY

> A7 ((ex)a)(2) = 97 ((ex)22)(2))

zeY

= /\(eX(azl,g(z)) — ex(x2,9(2)))

zZ€Y
> ex(za,11).

Thus, f is order-reversing. Since

9(f(x)) = g(Ug™((ex)a)) = Mg~ (9" ((ex)a))
ex(z,9(f(@)) = N7 (g7 ((ex)a))(2) = ex(a,2))
= ACV (57 (ex)a)(w) = ex(z,2))

ev(y, f(9(y)) = g7 ((ex)gw)(y) = (ex)gw(9(y)) = 1,
ex(z,9(y) < ev(f(9(y), f(z)) =ex(f(9(y)), f(x))
© ey(y, f(9(y)) < ev(y, f(z))
ev(y, f(z)) < ex(9(f(2)),9(y)) = ex(9(f(2)),9(y))
© ey(z,9(f(2))) < ex(z,9(y)).
Thus ex(z,g(y)) = ey (y, f(z)).

(2) and (3) are similarly proved in (1) and Theorem 3.5 in [11], re-
spectively.

(4) First, (ex, f,g,ey) is a dual residuated connection iff f(MA) =
Mf~(A) for all A e LX.
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(=) Put y, =1f7(A). Then

ev(yy) = NUT(AE) = erly, 2)

zeY

= AV A@) = ev(y, f(2)))
2eX f()=>

= A A\ A@) = ex(gy),z))
zeX f(x)=2

= N\ (A@@) = ex(g(y), 2))

= ex(g(y),NA) = ey (y, f(MA)).

Hence y; = f(MA) =17 (A).
(<) Put A = (ex),. Since M(ex), = z, then f(x) = f(MN(ex),) =
Mf~7((ex)z). By the definition of Mf~((ex).),

ey (f(2), f(2) = [7((ex))(f(2) =\ (ex)ald) = ex(a,2).

Thus, f is an order preserving map.
Define g : ¥ — X as g(y) = Mf“((ey),). By the definition of
9(y2) = NS ((ey)y,), we have

ex(9) 92)) = N\ (F((ey)y)(2) = ex(g9(m1), 2))

zeX

> N\ (er)e) (=) = [ ((ev)n)(2)

zeX

— /\ (ey(y2, f(2)) = ey (v1, f(2)))
> ey (Y1, ¥2)-

Thus, g is an order preserving map. Since

Flg()) = F(OF((ex)y)) = N7 (F ((ex)y))



Fuzzy connections and completeness in complete residuated lattices 113

ey, f9) = N (er))(z) = ev(y,2))

zeX

= ACV U (en)@) = ex(v.2)

z€X f(x)=z

= AV er(y f(2) = ev(y, f@) = 1.

2€X f(x)=z

Since g(f(x)) = Nf((ev) @)

ex(9(y),z) < ex(f(9(y)), [(x)) =ex(f(9(y)), [(x))
© ey(y, f(9(y)) < ev(y, f(z))

ey(y, f(x)) < ex(9(y),9(f(2))) = ex(g(y), 9(f()))
© ey(9(f(x)),z) < ex(g(y),z).

Thus ex(g(y), x) = ey (y, f(x)).

Second, (ex, f,g,ey) is a dual residuated connection iff g(LB) =
Lig~(B) for all B € LY.

(=) Put o = Ug~(B). Then ¢g(LB) = Ug~(B) from:

ex(@o,x) = N(g7(B)(z) = ex(z,2))

zeX

= AWV Bly) = ex(9(y),2))

zeX  g(y)=2

= N N\ B = exvly flz)

zeX g(y)==

- /\ (B(y) = ev(y, f(2)))

yey

= ey(UB, f(2)) = ex(9(UB), x).

Thus, zo = g(UB) = Ug~(B).
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(<) Put B = (ey)¥. Since U(ey)? =y, we have g(y) = g(U(ey)Y) =
Ug~((ey)Y). By the definition of Lig~ ((ey)Y),

ex(9(y),9(2))

€y (w> y)

N (97 ((ex)?)(p) = ex(p. 9(2)))

peX

ACV (er)!(w) = ex(g(w), 9(2)))

pEX g(w)=p

A N (ev(w,y) = ex(g(w),g(2)))

peX g(w)=p

N (ev(w,y) = ex(g(w). 9(2))

weyY

N (ex(9(y), 9(2)) = ex(g(w), 9(2))

z€Y

ex(g(w), g(y))-

Thus, ¢ is order-preserving.
Define f : X — Y as f(z) = Ug* ((ex)”). Since ey(f(x),w) <

9= ((ex)")(2) = ex (2,

w),

g ((ex))(2) < N (ex(g(w), @) = ev(z,w)) = ev (2, 9(y)).

weyY

Thus, g is order-preserving, by the definition of f(x;) = Ug* ((ex)™),

ey (f(z1), f(x2))

A (g7 (ex)™)(2) = ev(z, f(x2)))

zeX

A (g7 ((ex)™)(2) = g7 ((ex)™)(2))

A (ex(g(2), 21) = ex(g(2), 22))

ex(x1, ).
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Since g(f(x)) = g(Ug™ ((ex)")) = Ug~ (g™ ((ex)")), we have

ex(9(f(@)).2) = N7 (g7 ((ex))(z) = ex(z2))

zeX

= ALV 6 (ex)DE) = ex(z)

zeX g(y)==

= AV ex(g(v).2) = ev(g(y),2) = L.

zeX g(y)==
Since f(g(y)) = Ug" ((ex)?™),
ey(y, o) > g ((ex)?™)(y) = (ex)?™(g(y)) =1,

ex(9ly) 7)< ev(Flo), F(@) = e (Flow), F())
© ev(y, fl9(y)) <ey(y, [(x))
ev(y, f(z)) < ex(9(),9(f(x))) = ex(9(y), 9(f(x)))
® ey(g(f(x)),z) <ex(g(y),z)
Thus ex(g(y), x) = ey (y, f(x)).
0
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