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HIGHER CYCLOTOMIC UNITS FOR MOTIVIC

COHOMOLOGY

Sung Myung

Abstract. In the present article, we describe specific elements in
a motivic cohomology group H1

M
(
SpecQ(ζl), Z(2)

)
of cyclotomic

fields, which generate a subgroup of finite index for an odd prime
l. As H1

M
(
SpecQ(ζl), Z(1)

)
is identified with the group of units in

the ring of integers in Q(ζl) and cyclotomic units generate a sub-
group of finite index, these elements play similar roles in the motivic
cohomology group.

1. Introduction

When K = Q(ζm) is a cyclotomic field, Dirichlet’s Unit Theorem
implies that the group O×K of units in the ring of integers in K is a
finitely generated abelian group of rank φ(m)/2 − 1. This is proved by
using Dirichlet’s regulator map O×K onto a full lattice in a hyperplane in
the vector space Rφ(m) ([7]).

In [5], a chain complex for motivic cohomology of a regular local ring
R, by Goodwillie and Lichtenbaum, is defined to be the chain complex
associated to the simplicial abelian group d 7→ K0(R∆d, G∧tm ), together
with a shift of degree by −t. Here, K0(R∆d, G∧tm ) is the Grothendieck
group of the exact category of projective R-modules with t commuting
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automorphisms factored by the subgroup generated by classes of the ob-
jects one of whose t automorphisms is the identity map. Walker showed,
in Theorem 6.5 of [10], that it agrees with motivic cohomology given by
Voevodsky and thus various other definitions of motivic cohomology for
smooth schemes over an algebraically closed field.

A higher regulator map is originally invented by A. Borel in [3]. Bloch
([1]) introduced a single-valued analogue D2 of the dilogarithm function
to describe the regulator map onK3(C) explicitly. The author ([9]) intro-
duced another way to formulate a single-valued dilogarithm function and
use it to explicitly define a motivic regulator map for H1

M
(
SpecC, Z(2)

)
defined via Goowillie-Lichtenbaum complex.

The purpose of this paper is to find a set of rational generators of
the motivic cohomology H1

M
(
SpecQ(ζ), Z(2)

)
for an odd prime l. As

cyclotomic units play such roles in H1
M
(
SpecQ(ζl), Z(2)

)
' O×Q(ζl)

, we

term these generators as higher cyclotomic units.

2. The group H1
M
(
SpecK, Z(1)

)
For a field K, let K0(K∆d, G∧tm ) be the abelian group generated

by symbols (A1, . . . , At) where A1, . . . , At are commuting matrices in
GLn(K[T1, . . . , Td] for some n ≥ 1 subject to the relations:
(A1, . . . , At) = (C−1A1C, . . . , C

−1AtC) for any C ∈ GLn(K[T1, . . . , Td],

(A1, . . . , At) + (B1, . . . , Bt) =

((
A1 0
0 B1

)
, . . . ,

(
A1 0
0 B1

))
and (A1, . . . , At) = 0 if some Ai is the identity matrix. In particular, by
the second relation, any element in K0(K∆d, G∧tm ) may be represented
by a single symbol (A1, . . . , At).

Then, H1
M
(
SpecK, Z(1)

)
is the cokernel of the homomorphism

∂ : K0(K∆1, G∧1m )→ K0(K∆0, G∧1m ).

More explicitly the symbol represented by an invertible n × n matrix
A(T ) is mapped to (A(1)) − (A(0)). But, the units in the ring K[T ] is
the same as the units in the field K. Therefore, detA(0) = detA(1) in
K×. Hence determinant induces a map H1

M
(
SpecK, Z(1)

)
onto K×.

On the other hand, the Whitehead group K1(K) is defined as the
quotient group GL(K)/E(K) where E(K) is a subgroup of GL(K) gen-
erated by elementary matrices eij(r) whose diagonal entries are all 1
and whose (i, j) component is r and 0 everywhere else. Let A(T ) be
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the matrix of the same size as eij(r) and whose diagonal entries are
all 1 and whose (i, j) component is rT and 0 everywhere else. Then
A(0) is the identity matrix while A(1) is the elementary matrix eij(r).
So, any symbol represented by an elementary matrix is in the image of
∂ : K0(K∆1, G∧1m ) → K0(K∆0, G∧1m ). Therefore, we have a map from
K1(K) onto H1

M
(
SpecK, Z(1)

)
which fits into a commutative diagram

K1(K) // //

'
��

H1
M
(
SpecK, Z(1)

)
vvvv

K×

Therefore, H1
M
(
SpecK, Z(1)

)
' K1(K) ' K×. Now define a homomor-

phism RLog : H1
M
(
SpecC, Z(1)

)
→ (R,+) by sending the symbol A to

log | detA|.
If K is a number field, any embedding σ of K into C induces a map

H1
M
(
SpecK, Z(1)

)
→ H1

M
(
SpecC, Z(1)

)
. Let σ1, . . . , σr be real em-

beddings of K and σr+1, . . . , σr+s be complex embeddings of K so that
r1 + 2r2 = [K : Q]. Then

R = (RLog ◦ σ1, . . . , RLog ◦ σr1 , 2RLog ◦ σr+1, . . . , 2RLog ◦ σr+s)
is the usual Dirichlet reulgator map. R : O×K → Rr1+r2 is a map onto
a full lattice in a hyperplane in Rr1+r2 with a finite kernel. In fact, the
kernel is the set of roots of unity in O×K .

3. Generators and Relations in H1
M
(
SpecK, Z(2)

)
K0(C∆1, G∧2m ) can be recognized as the abelian group generated by

pairs (A,B)
(
=
(
A(T ), B(T )

))
and certain explicit relations, where

A, B are commuting matrices in GLn(C[T ]) for n ≥ 0. On the other
hand, K0(C∆2, G∧2m ) is recognized as the abelian group generated by
the symbols

(
A(X, Y ), B(X, Y )

)
with commuting A(X, Y ), B(X, Y ) ∈

GLn(C[X, Y ]) and certain relations, and the boundary map ∂ on the
Goodwillie-Lichtenbaum motivic complex sends the symbol

(
A(X, Y ),

B(X, Y )
)

to
(
A(1−T, T ), B(1−T, T )

)
−
(
A(0, T ), B(0, T )

)
+
(
A(T, 0),

B(T, 0)
)

in K0(C∆1, G∧2m ). The same symbol (A,B) will denote the ele-
ment in K0(C∆1, G∧2m )/∂K0(C∆2, G∧2m ) represented by (A,B), by abuse
of notation. The motivic cohomology group H1

M
(
SpecC, Z(2)

)
is a sub-

group of this quotient group.
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In H1
M
(
SpecC, Z(2)

)
, note that we have the following two simple

relations for any two commuting matrices A, B in GLn(C[T ]):

− (A(T ), B(T )) = (A(1− T ), B(1− T ))(1)(
A1(T ), B1(T )

)
+
(
A2(T ), B2(T )

)
=
(
A1(T )⊕A2(T ), B1(T )⊕B2(T )

)
.

The first relation can be shown by applying the boundary map ∂ to the
symbol

(
A(X), B(X)

)
in K0(C∆2, G∧2m ) and by noting that (A,B) = 0

in H1
M
(
SpecC, Z(2)

)
when A and B are constant matrices. The fact

that (A,B) = 0 for constant matrices A and B is obtained simply by
applying the boundary map ∂ to the symbol

(
A, B

)
in K0(C∆2, G∧2m ).

Hence, an element of H1
M
(
SpecC, Z(2)

)
can be represented by a single

expression (A,B), where A, B are commuting matrices in GLn(C[T ])
for some positive integer n.

4. Motivic Regulator Map for H1
M
(
SpecK, Z(2)

)
For A ∈ GLn(C[T ]), let PA(λ) be the characteristic polynomial as-

sociated with A. It is a polynomial in λ of degree n with coefficients
in C[T ]. Let x be a point in C and Ox be the local ring of germs of
analytic functions at x. Identifying T with the identity function C→ C
embeds C[T ] into Ox. Then for commuting matrices A,B ∈ GLn(C[T ]),
let x ∈ C be such that PA(λ) = (λ−a1(T ))(λ−a2(T )) · · · (λ−an(T )) and
PB(λ) = (λ− b1(T ))(λ− b2(T )) · · · (λ− bn(T )) for some a1(T ), . . . , an(T )
and b1(T ), . . . , bn(T ) ∈ Ox. Then there exists S ∈ GLn(Ox) such that
S−1AS and S−1BS are upper triangular matrices in GLn(Ox),i.e., A,B
are simultaneously triangularizable in GLn(Ox) ([8] or [9]).

Let (λ1(T ), λ2(T ), . . . , λn(T )) and (µ1(T ), µ2(T ), . . . , µn(T )) be the
ordered n-tuples of diagonal entries of S−1AS and S−1BS Then, the set
of pairs {(λ1, µ1), (λ2, µ2), . . . , (λn, µn)} of elements of Ox is determined
only by A, B and x ∈ C and is independent of the choice of S.

For A ∈ GLn(C[T ]), let PA = PA,1PA,2 · · ·PA,s be the factorization
of the characteristic polynomial PA of A into irreducible polynomials in
C[λ, T ]. The discriminant discA,i of each irreducible polynomial PA,i is a
nonzero polynomial in C[T ]. Let SA = {z ∈ C| discA,i = 0 for some i}.
Then SA is a finite set.

Now divide the unit interval [0, 1] into subintervals [t0, t1], [t0, t1], . . . ,
[tr−1, tr] such that each open interval (ti−1, ti) is contained in a simply
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connected open subset U of C − (SA ∪ SB). Using the analytic con-
tinuation, we have the set {(λi,1, µi,1), . . . , (λi,n, µi,n)} of pairs of ana-
lytic functions on U which are locally pairs. At each x ∈ U , there is
S ∈ GLn(O(V )) for some open neighborhood V ⊆ U of x such that
S−1AS and S−1BS are both upper triangular matrices in GLn(O(V )).
Here, O(V ) denotes the ring of analytic functions on V . For each subin-
terval (ti−1, ti), let {(λi,1, µi,1), (λi,2, µi,2), . . . , (λi,n, µi,n)} be the set of
pairs of elements in O(U) which are locally ordered n-tuples of diagonal
entries of S−1AS and S−1BS. Then λi,l and µi,l are smooth maps from
(ti−1, ti) into C− {0} and may be thought of as paths into C− {0}.

For paths γ and σ in C − {0}. Let D(γ1, γ2) be the real number
defined by

D(γ, σ) = Im

(∫ 1

0

log |γ(t)| σ
′(t)

σ(t)
dt−

∫ 1

0

log |σ(t)| γ
′(t)

γ(t)
dt

)
For two commuting matrices A,B ∈ GLn(C[T ]), we define

D(A,B) =
r∑
i=1

n∑
l=1

D(λi,l, µi,l)

Then the integral which defines each term D(λi,l, µi,l) is convergent and
thus D gives a map from the set of pairs of commuting matrices in
GLn(C[T ]) into R.

For notational convenience, we write

D(A,B) =
n∑
l=1

D(λl, µl)

where, for each t,

{
(
λ1(t), µ1(t)

)
,
(
λ2(t), µ2(t)

)
, . . . ,

(
λn(t), µn(t)

)
}

are pairs of eigenvalues of A(t) and B(t), which are piecewise smooth
paths.

For any continuous piecewise smooth path σ from [0, 1] into C, we
may divide the interval [0, 1] into subintervals [t0, t1], [t0, t1], . . . , [tr−1, tr]
such that, for each i = 1, . . . , r, σ

(
(ti−1, ti)

)
is contained in an open

subset U of C such that there is S ∈ GLn
(
O(U)

)
such that S−1AS

and S−1BS are upper triangular matrices in GLn
(
O(U)

)
. Then we may

define D
(
A(σ), B(σ)

)
as the sum
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D
(
A(σ), B(σ)

)
=

r∑
i=1

n∑
l=1

D
(
λi,l ◦ σ, µi,l ◦ σ

)
.

A proof of the following theorem was given in [8].

Theorem 4.1. With the same notation as above, for two commuting

matrices A,B ∈ GLn(C[T ]), we define D(A,B) =
n∑
l=1

D(λl, µl). Then

D gives a homomorphism from H1
M
(
SpecC, Z(2)

)
into R. In fact, it is

a homomorphism on K0(C∆1,G∧2m )/∂K0(C∆2,G∧2m ).

We also have the following fundamental properties of our D-map ([8]
or [9]):

(i) (Skew-Symmetry) D(A,B) = −D(B,A) for commuting matrices
A, B ∈ GLn(C[T ]).

(ii) (Vanishing of Constant Matrix) D(A,B) = 0 if A,B ∈ GLn(C[T ])
are commuting and either A or B is in GLn(C).

(iii) (Bilinearity) D(A1A2, B) = D(A1, B) + D(A2, B) whenever A1,
A2, B ∈ GLn(C[T ]) are commute with each other.

(iv) (Vanishing of Matrices with Real Coefficients) D(A,B) = 0 if
A,B ∈ GLn(R[T ])

5. Technique of constructing elements in H1
M
(
SpecK, Z(2)

)
In [9], the following technical lemma was introduced to construct ex-

plicit elements in the motivic cohomology group H1
M
(
SpecK, Z(2)

)
. Let

K be a subfield of C.

Lemma 5.1. Let a1, a2, . . . , an and b1, b2, . . . , bn be elements in C not
equal to either 0 or 1. Suppose also that a1a2 · · · an = b1b2 · · · bn and (1−
a1)(1−a2) · · · (1−an) = (1−b1)(1−b2) · · · (1−bn). If all the elementary
symmetric functions evaluated at a1, a2, . . . , an and b1, b2, . . . , bn are in
K, then there is a matrix A(T ) in GLn(K[T ]) such that I−A(T ) is also
invertible and the eigenvalues of A(0) and A(1) are a1, a2, . . . , an and
b1, b2, . . . , bn, respectively.

We use this construction to define a map θ : B(K) → H1
M
(
SpecK,

Z(2)
)
, which will be used to compare the Bloch’s dilogarithmic map to

our motivic regulator map.
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The group B(K) of a field K is defined as the kernel of the homomor-
phism

A(K)
λ−→ K× ∧Z K×

where A(K) is a free abelian group generated by the symbols [a] with
a ∈ K − {0, 1}, K× ∧Z K× is K× ⊗Z K

× divided by the subgroup
generated by a⊗ (−a) with a ∈ K× and where λ([a]) = a ∧ (1− a) ([4]
or [2])).

Define θ1 : A(K) → K0(K∆1, G∧2m ) by θ1([a]) = 2
(
A(a, T ), I −

A(a, T )
)

for every a ∈ K − {0, 1}, where

A(a, T ) =

 0 1 0
0 0 1
−4a (4− a)T + a (a− 4)T + 4

 .

Then θ1 induces a map A(K) → K0(K∆1, G∧2m )/∂K0(K∆2, G∧2m ),
which we denote again by θ1 by abuse of notation.

In [9], it was shown that there exists a map θ : B(K)→ H1
M
(
SpecK,

Z(2)
)

as a lifting of θ1 and we have the following commutative diagram.

B(K) �
� //

θ
��

A(K)

θ1
��

H1
M
(
SpecK, Z(2)

)
� � // K0(K∆1, G∧2m )/∂K0(K∆2, G∧2m )

.

6. Compatibility With Bloch-Wigner Function

Bloch-Wigner function D2 : C → R may be defined as below ([2] or
[6]). When |z − 1

2
| < 1

2
, it is given by

D2(z) = −Im

∫ z

0

log(1− t) dt
t

+ arg(1− z) log |z|

where the principal branches of log and arg are used. Then it can be
shown that D2 as a real analytic function is invariant under the con-
tinuation along small loops around 0 and 1. Thus D2 is extended to a
single-valued, real analytic function on C− {0, 1}. The function D2 ex-
tends to a continuous function on all of C by setting D2(0) = D2(1) = 0.
Then we have the following basic properties of the Bloch-Wigner func-
tion:

(i) D2 vanishes on the real line.
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(ii) For any z ∈ C, we have

D2(z) +D2(1− z) = D2(z) +D2(1/z) = D2(z) +D2(z̄) = 0.

(iii) (Duplication Formula (c.f. [4])) For any z ∈ C, we have

D2(z) +D2(−z) =
1

2
D2(z

2).

Then the most important lemma which shows the connection between
our D-map and the Bloch-Wigner function is as follows ([9])

Lemma 6.1. Let γ1 be a path from [0, 1] into C− {0, 1} and γ2(t) =
1− γ1(t) for every t ∈ [0, 1]. Then

D(γ1, γ2) = D2(γ1(1))−D2(γ1(0)),

where D is as in Section 4.

Corollary 6.2. Let A(T ) be an invertible matrix in GLn(K[T ])
such that I−A(T ) is also invertible. Let A(1) and A(0) have eigenvalues
b1, b2, . . . , bn and a1, a2, . . . , an in C, respectively. Then

D
(
A(T ), I − A(T )

)
=

n∑
i=1

D2(bi)−
n∑
i=1

D2(ai).

Proposition 6.3. The Bloch-Wigner function D2 : B(K)→ R is the
composite D ◦ θ where The map θ : B(K)→ H1

M
(
SpecK, Z(2)

)
is given

in Section 5.

Proof. In the construction of θ, the matrix A(a, T ) was such that

D
(
A(T ), I − A(T )

)
= D2(−2) +D2(2) +D2(a)

−D2(4)−D2(
√
a)−D2(−

√
a)

= D2(a)−D2(
√
a)−D2(−

√
a) =

1

2
D2(a).

by the Duplication Formula of D2. Hence, θ1([a]) = 2(A, I − A) will
yield D2(a) under D.
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7. Higher Cyclotomic Units

Let ζm be a primitive m-th root of unity where m is an odd positive
integer. and let K = Q(ζm) be a cyclotomic field.

Let ZD = Ker
(
D : K0(K∆1, G∧2m )→ R

)
. The the image ∂ZD of ZD

under the boundary homomorphism ∂ : K0(K∆1, G∧2m )→ K0(K∆0, G∧2m ).
Then we have the following lemma ([9]).

Lemma 7.1. ∂ZD contains elements of the following forms and for
any element of these forms, we may find an explicit z ∈ ZD whose image
under ∂ is equal to the element.

(i) (AB,C) − (A,C) − (B,C) and (C,AB) − (C,A) − (C,B), for
commuting matrices A, B, C ∈ GLn(K);

(ii) (x, 1− x)− (y, 1− y), for x, y ∈ K ∩ R+ − {1}.

Proof. (i) Let A(T ) be the 2n× 2n matrix

(
0 I
−AB T (I + AB) + (1− T )(A+B)

)
.

Then, A(T ) is in GL2n(K[T ]),
(
A(T ), C ⊕ C

)
is in ZD since C is a

constant matrix. But, the boundary of
(
A(T ), C ⊕ C

)
is (I ⊕ AB,C ⊕

C) − (A ⊕ B,C ⊕ C) = (AB,C) − (A,C) − (B,C). The proof for
(C,AB)− (C,A)− (C,B) is similar.

For (ii), note that Bloch-Wigner function vanishes on the real line
and that a square root of a positive real number is a real number. Apply
Lemma 5.1 to a1 = x, a2 =

√
y, a3 = −√y, b1 = −

√
x, b2 =

√
x, b3 =

y. to get A(T ) ∈ GL3((K ∩ R)[T ]). Then z = 2
(
A(T ), I − A(T )

)
is in
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ZD. But, by the theory of rational canonical form, ∂z is equal to

2

(
(y, 1− y) +

((
0 1
x 0

)
,

(
1 −1
−x 1

)))
−
(

(x, 1− x) +

((
0 1
y 0

)
,

(
1 −1
−y 1

)))
=

((
y 0
0 y

)
,

(
1− y 0

0 1− y

))
−
((

y 0
0 y

)
,

(
1 −1
−y 1

))
−
((

x 0
0 x

)
,

(
1− x 0

0 1− x

))
+

((
x 0
0 x

)
,

(
1 −1
−x 1

))
=

((
y 0
0 y

)
,

(
1 1
y 1

))
−
((

x 0
0 x

)
,

(
1 1
x 1

))
=

((
y 0
0 y

)
,

( −y
1−y

1
1−y

0 1

)(
1 1
y 1

)( −y
1−y

1
1−y

0 1

)−1)

−

((
x 0
0 x

)
,

( −x
1−x

1
1−x

0 1

)(
1 1
x 1

)( −x
1−x

1
1−x

0 1

)−1)

=

((
y 0
0 y

)
,

(
0 1

y − 1 2

))
−
((

x 0
0 x

)
,

(
0 1

x− 1 2

))
.

By taking the boundary of the element

((
y 0
0 y

)
,

(
0 1

y − 1 (2− y)T + 2(1− T )

))
−
((

x 0
0 x

)
,

(
0 1

x− 1 (2− x)T + 2(1− T )

))
,
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which is in ZD by the fundamental property (iv) of the D-map in Section
4, we see that

∂z =

((
y 0
0 y

)
,

(
0 1

y − 1 2− y

))
−
((

x 0
0 x

)
,

(
0 1

x− 1 2− x

))
=

((
y 0
0 y

)
,

(
1 −1
0 1

)(
0 1

y − 1 2− y

)(
1 1
0 1

))
−
((

x 0
0 x

)
,

(
1 −1
0 1

)(
0 1

x− 1 2− x

)(
1 1
0 1

))
=

((
y 0
0 y

)
,

(
1− y 0

0 1

))
−
((

x 0
0 x

)
,

(
1− x 0

0 1

))
= (y, 1− y)− (x, 1− x)

in modulo ∂ZD. So, (ii) is the boundary of 2
(
A(T ), I − A(T )

)
.

Proposition 7.2. (m-th Roots of Unity) If ζm is a primitive m-the
root of unity for an odd integer m > 0, there exists an explicit element
h(ζm) in H1

M
(
SpecQ(ζm), Z(2)

)
whose value under the dilogarithm D is

equal to mD2(ζm).

Proof. Let ζ be a primitive 2m-th root of unity such that ζ2 = ζm.
Then

a1 = 4, a2 = ζ, a3 = −ζ, b1 = −2, b2 = 2, b3 = ζ2

satisfy the conditions of Lemma 5.1 with K = Q(ζm). Actually,

a1 = x2, a2 = y, a3 = −y, b1 = −x, b2 = x, b3 = y2

for any x, y ∈ K would do. Let A(T ) = A(ζ2, T ) where A(a, T ) is the
matrix used to define θ1 in Section 5. Then by the calculation in the
proof of Proposition 6.3, we have 2D

(
A(T ), I − A(T )

)
= D2(ζm) and

thus 2mD
(
A(T ), I − A(T )

)
= mD2(ζm)

Now the only possible problem is that its image 2m
(
A(1), I−A(1)

)
−

2
(
A(0), I − A(0)

)
under ∂ might not be 0 in K0

(
Q(ζm)∆0, G∧2m

)
, so

2m
(
A(T ), I−A(T )

)
might not represent an element in H1

M
(
SpecQ(ζm),

Z(2)
)
. So we need to find an element z in K0(Q(ζm)∆1, G∧2m ) whose

image under the boundary map ∂ is equal to 2m
(
A(0), I − A(0)

)
−

2m
(
A(1), I−A(1)

)
and D(z) = 0. Then, 2m(A(T ), I−A(T ))−z would
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represent an element of H1
M
(
SpecQ(ζm), Z(2)

)
and its value under D

would be mD2(ζm). But,

2
(
A(1), I − A(1)

)
− 2
(
A(0), I − A(0)

)
= 2(−2, 3) + 2(2,−1) + 2(ζ2, 1− ζ2)− 2(4,−3)

−2

((
0 1
ζ2 0

)
,

(
1 −1
−ζ2 1

))
.

Therefore, it is enough to prove that 2mw is in ∂ZD, where

w = (−2, 3)+(2,−1)+(ζ2, 1−ζ2)−(4,−3)−

((
0 1
ζ2 0

)
,

(
1 −1
−ζ2 1

))
.

But,

2mw = m
(
(4, 3) + (2, 1)− (4, 9)

)
+ (1, 1− ζ2)

−

((
0 1
ζ2 0

)2m

,

(
1 −1
−ζ2 1

))

modulo ∂ZD by Lemma 7.1 (i). Here

(
0 1
ζ2 0

)2m

=

(
ζ2 0
0 ζ2

)m
=(

1 0
0 1

)
. So,

2mw = m
(
(4, 3)− (4, 9)

)
= −m(4, 3)

modulo ∂ZD, again by Lemma 7.1 (i). But if we apply Lemma 7.1 (ii)
with x = 2 and y = 3 and multiply by 2, we get (4, 3) = 0 modulo ∂ZD.
Therefore, 2mw = 0 modulo ∂ZD. Hence, by the proof of Lemma 7.1,
there exists an explicit zZD such that h(ζm) = 2m(A(T ), I −A(T ))− z
has the required property.

Note that we were able to construct an element h(ζm) in
H1
M
(
SpecQ(ζm), Z(2)

)
whose image under D is mD2(ζm), where ζm is

a primitive m-th root of unity.
Now, let m = l be an odd prime and let {σ1, σ̄1, . . . , σr2 , σ̄r2}, where

r2 = φ(l)/2, be the set of the complex embeddings of Q(ζl). Then, we
have a homomorphism D from H1

M
(
SpecQ(ζl), Z(2)

)
into Rr2 which is

defined by
D(a) =

(
Dσ1(a), . . . , Dσr2(a)

)
.

If ζl is an l-th primitive root of unity, then the element l[ζl] ∈ A(K)
is mapped to l(ζl∧ (1− ζl)) = ζ ll ∧ (1− ζl) = 0 under the homomorphism
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λ : A(K)K× ∧ZK× as in Section 5. Therefore, l[ζl] is an element of the
Bloch’s group B(K).

Theorem 7.2.4 in [2] states that the images of l[σ1(ζ)], l[σ2(ζ)], . . . ,
l[σr2(ζ)] ∈ B(K) under the given map B(K)→ K3(Q(ζ))Q form a basis
of the target group and after the Borel’s regulator map, their images
generate a lattice of maximal rank in Rr

2. Therefore, we obtain the
following theorem.

Theorem 7.3. (Rational Generators of H1
M
(
SpecQ(ζm), Z(2)

)
) For

an odd prime l, h(σ1ζm), . . . , h(σr2ζl) rationally generates
H1
M
(
SpecQ(ζm), Z(2)

)
,i.e., they generate a subgroup of finite index in

H1
M
(
SpecQ(ζm), Z(2)

)
.

Note that by the construction of our map θ : B(K)→ H1
M
(
SpecQ(ζl),

Z(2)
)

in Section 5, θ(l[ζl]) is equal to h(ζl) modulo an element z whose
value under D is 0, i.e., a torsion element.
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