PERTURBATION ANAYSIS FOR THE MATRIX EQUATION $X=I-A^{*} X^{-1} A+B^{*} X^{-1} B$

Hosoo Lee

Abstract

The purpose of this paper is to study the perturbation analysis of the matrix equation $X=I-A^{*} X^{-1} A+B^{*} X^{-1} B$. Based on the matrix differentiation, we give a precise perturbation bound for the positive definite solution. A numerical example is presented to illustrate the shrpness of the perturbation bound.

1. Introduction

We consider the matrix equation

$$
\begin{equation*}
X=Q-A^{*} X^{-1} A+B^{*} X^{-1} B \tag{1.1}
\end{equation*}
$$

where A, B are arbitrary $n \times n$ matrices. Some special cases of Equation (1.1) are problems of practical importance, such as the matrix equation $X+M^{*} X^{-1} M=Q$ that arises in the control theory, ladder networks, dynamic programming, stochastic filtering, statistics, and so on [5, 8, 10]. The matrix equation $X-M^{*} X^{-1} M=Q$ arises in the analysis of stationary Gaussian reciprocal processes over a finite interval $[1,7]$.

In [2], Berzig, Duan and Samet established the existence and uniqueness of a positive definite solution of (1.1) via the Bhaskar-Lakshkanthan coupled fixed point theorem([3]).

[^0]Theorem 1.1 ([2]). If there exist $a, b>0$ satisfying following conditions
(i) $a^{-1} A^{*} A+a I \leq Q \leq b I$,
(ii) $b A^{*} A-a B^{*} B \leq a b(Q-a I)$,
(iii) $b B^{*} B-a A^{*} A \leq a b(b I-Q)$,
(iv) $A^{*} A<\frac{a^{2}}{2} I, B^{*} B<\frac{a^{2}}{2} I$
then (1.1) has a unique solution $X \in[a I, \infty)$ and

$$
X \in\left[Q+b^{-1} B^{*} B-a^{-1} A^{*} A, Q+a^{-1} B^{*} B-b^{-1} A^{*} A\right] .
$$

The following result is immediate consequence of Theorem 1.1.
Theorem 1.2. If there exist $0<a \leq \frac{2}{3}$ such that

$$
A^{*} A \leq \frac{a^{2}}{2} I, \quad B^{*} B \leq \frac{a^{2}}{2} I,
$$

then the matrix equation

$$
\begin{equation*}
X=I-A^{*} X^{-1} A+B^{*} X^{-1} B \tag{1.2}
\end{equation*}
$$

has a unique solution $X_{U} \in[a I, \infty)$ and

$$
\begin{equation*}
X_{U} \in\left[I+\frac{2}{2+a} B^{*} B-\frac{1}{a} A^{*} A, I+\frac{1}{a} B^{*} B-\frac{2}{2+a} A^{*} A\right] . \tag{1.3}
\end{equation*}
$$

In this paper, we study the perturbation analysis of the matrix equation (1.2). Based on the matrix differentiation, we firstly give a differential bound for the unique solution of (1.2) in certain set, and then use it to derive a precise perturbation bound. A numerical example is used to show that the perturbation bound is very sharp.

Throughout this paper, we write $B>0(B \geq 0)$ if the matrix B is positive definite (semidefinite). If $B-C$ is positive definite (semidefinite), then we write $B>C(B \geq C)$. If a positive definite matrix X satisfies $B \leq X \leq C$, we denote that $X \in[B, C]$. The symbols $\lambda_{1}(B)$ and $\lambda_{n}(B)$ denote the maximal and minimal eigenvalues of an $n \times n$ Hermitian matrix B, respectively. The symbol $\|B\|$ denotes the spectral norm of the matrix B.

2. Perturbation Analysis for the Matrix equation (1.2)

Based on the matrix differentiation, we firstly give a differential bound for the unique positive definite solution X_{U} of (1.2), and then use it to derive a precise perturbation bound for X_{U} in this section.

Definition 2.1. ([6, 9]) Let $F=\left(f_{i j}\right)_{m n}$, then the matrix differentiation of F is $d F=\left(d f_{i j}\right)_{m n}$. For example, let

$$
F=\left(\begin{array}{cc}
s+t & s^{2}-2 t \\
2 s+t^{3} & t^{2}
\end{array}\right)
$$

Then

$$
d F=\left(\begin{array}{cc}
d s+d t & 2 s d s-2 d t \\
2 d s+3 t^{2} d t & 2 t d t
\end{array}\right) .
$$

Lemma 2.2 ($[6,9]$). The matrix differentiation has the following properties:
(1) $d A=0$ for a constant matrix A;
(2) $d(\alpha X)=\alpha(d X)$, where α is a complex number;
(3) $d(X+Y)=d X+d Y$;
(4) $d(X Y)=(d X) Y+X(D Y)$;
(5) $d\left(X^{*}\right)=(d X)^{*}$;
(6) $d\left(X^{-1}\right)=-X^{-1}(D X) X^{-1}$.

Theorem 2.3. If there exist $0<a \leq \frac{1}{2}$ such that

$$
\begin{equation*}
\|A\|^{2} \leq \frac{a^{2}}{2}, \quad\|B\|^{2} \leq \frac{a^{2}}{2} \tag{2.4}
\end{equation*}
$$

then then (1.2) has a unique solution $X_{U} \in[a I, \infty)$, and it satisfies

$$
\begin{equation*}
\left\|d X_{U}\right\| \leq \frac{2 a(\|A\|\|d A\|+\|B\|\|d B\|)}{a^{2}-\|A\|^{2}-\|B\|^{2}} . \tag{2.5}
\end{equation*}
$$

Proof. Since

$$
\begin{aligned}
& \lambda_{1}\left(A^{*} A\right) \leq\left\|A^{*} A\right\| \leq\|A\|^{2}, \\
& \lambda_{1}\left(B^{*} B\right) \leq\left\|B^{*} B\right\| \leq\|B\|^{2}
\end{aligned}
$$

then

$$
\begin{align*}
& A^{*} A \leq \lambda_{1}\left(A^{*} A\right) I \leq\left\|A^{*} A\right\| I \leq\|A\|^{2} I, \\
& B^{*} B \leq \lambda_{1}\left(B^{*} B\right) I \leq\left\|B^{*} B\right\| I \leq\|B\|^{2} I . \tag{2.6}
\end{align*}
$$

Combining (2.4) and (2.6) we haver

$$
A^{*} A \leq \frac{a^{2}}{2} I, \quad B^{*} B \leq \frac{a^{2}}{2} I .
$$

Then by Theorem 1.2 we have that (1.2) has a unique solution X_{U} in $[a I, \infty)$, which satisfies

$$
\begin{equation*}
X_{U} \in\left[I+\frac{2}{2+a} B^{*} B-\frac{1}{a} A^{*} A, I+\frac{1}{a} B^{*} B-\frac{2}{2+a} A^{*} A\right] . \tag{2.7}
\end{equation*}
$$

Since X_{U} is the unique solution of (1.2) in $[a I, \infty)$,

$$
\begin{equation*}
X_{U}+A^{*} X_{U} A-B^{*} X_{U} B=I \tag{2.8}
\end{equation*}
$$

It is known that the elements of X_{U} are differentiable functions of the elements of A and B. Differentianting (2.8), and by Lemma 2.2, we have

$$
\begin{aligned}
& d X_{U}+\left(d A^{*}\right) X_{U}^{-1} A-A^{*} X_{U}^{-1}\left(d X_{U}\right) X_{U}^{-1} A+A^{*} X_{U}^{-1}(d A) \\
& \quad-\left(d B^{*}\right) X_{U}^{-1} B+B^{*} X_{U}^{-1}\left(d X_{U}\right) X_{U}^{-1} B-B^{*} X_{U}^{-1}(d B)=0,
\end{aligned}
$$

which implies that

$$
\begin{align*}
& d X_{U}-A^{*} X_{U}^{-1}\left(d X_{U}\right) X_{U}^{-1} A+B^{*} X_{U}^{-1}\left(d X_{U}\right) X_{U}^{-1} B \tag{2.9}\\
= & -\left(d A^{*}\right) X_{U}^{-1} A-A^{*} X_{U}^{-1}(d A)+\left(d B^{*}\right) X_{U}^{-1} B+B^{*} X_{U}^{-1}(d B) .
\end{align*}
$$

By taking spectral norm for both sides of (2.9), we have that

$$
\begin{align*}
& \left\|-\left(d A^{*}\right) X_{U}^{-1} A-A^{*} X_{U}^{-1}(d A)+\left(d B^{*}\right) X_{U}^{-1} B+B^{*} X_{U}^{-1}(d B)\right\| \tag{2.10}\\
& \leq\left\|\left(d A^{*}\right) X_{U}^{-1} A\right\|+\left\|A^{*} X_{U}^{-1}(d A)\right\|+\left\|\left(d B^{*}\right) X_{U}^{-1} B\right\|+\left\|B^{*} X_{U}^{-1}(d B)\right\| \\
& \leq\left\|d A^{*}\right\|\left\|X_{U}^{-1}\right\|\|A\|+\left\|A^{*}\right\|\left\|X_{U}^{-1}\right\|\|d A\|+\left\|d B^{*}\right\|\left\|X_{U}^{-1}\right\|\|B\| \\
& \quad+\left\|B^{*}\right\|\left\|X_{U}^{-1}\right\|\|d B\| \\
& =2\left\|X_{U}^{-1}\right\|(\|d A\|\|A\|+\|d B\|\|B\|) \\
& \leq \frac{2}{a}(\|d A\|\|A\|+\|d B\|\|B\|)
\end{align*}
$$

and

$$
\begin{align*}
& \left\|d X_{U}-A^{*} X_{U}^{-1}\left(d X_{U}\right) X_{U}^{-1} A+B^{*} X_{U}^{-1}\left(d X_{U}\right) X_{U}^{-1} B\right\| \\
& \geq\left\|d X_{U}\right\|-\left\|A^{*} X_{U}^{-1}\left(d X_{U}\right) X_{U}^{-1} A\right\|-\left\|B^{*} X_{U}^{-1}\left(d X_{U}\right) X_{U}^{-1} B\right\| \\
& \geq\left\|d X_{U}\right\|-\left\|A^{*}\right\|\left\|X_{U}^{-1}\right\|\left\|d X_{U}\right\|\left\|X_{U}^{-1}\right\|\|A\| \\
& \quad-\left\|B^{*}\right\|\left\|X_{U}^{-1}\right\|\left\|d X_{U}\right\|\left\|X_{U}^{-}\right\|\|B\| \tag{2.11}\\
& =\left(1-\|A\|\left\|^{2}\right\| X_{U}^{-1}\left\|^{2}-\right\| B\| \|^{2}\left\|X_{U}^{-U}\right\|^{2}\right)\left\|d X_{U}\right\| \\
& \geq\left(1-\frac{\|A\|^{2}}{a^{2}}-\frac{\|B\|^{2}}{a^{2}}\right)\left\|d X_{U}\right\| .
\end{align*}
$$

Due to (2.4) we have

$$
\begin{equation*}
1-\frac{\|A\|^{2}}{a^{2}}-\frac{\|B\|^{2}}{a^{2}}>0 \tag{2.12}
\end{equation*}
$$

Combination (2.10),(2.11) and noting (2.12), we have

$$
\left(1-\frac{\|A\|^{2}}{a^{2}}-\frac{\|B\|^{2}}{a^{2}}\right)\left\|d X_{U}\right\| \leq \frac{2}{a}(\|d A\|\|A\|+\|d B\|\|B\|)
$$

which implies to

$$
\left\|d X_{U}\right\| \leq \frac{2 a(\|A\|\|d A\|+\|B\|\|d B\|)}{a^{2}-\|A\|^{2}-\|B\|^{2}}
$$

Theorem 2.4. Let \tilde{A}, \tilde{B} be perturbed matrices of A, B in (1.2) and $\Delta A=\tilde{A}-A, \Delta B=\tilde{B}-B$. If there exist $0<a \leq \frac{1}{2}$ such that

$$
\begin{align*}
& \|A\|^{2} \leq \frac{a^{2}}{2}, \quad\|B\|^{2} \leq \frac{a^{2}}{2} \tag{2.13}\\
& 2\|A\|\|\Delta A\|+\|\Delta A\|^{2}<\frac{a^{2}}{2}-\|A\|^{2} \tag{2.14}\\
& 2\|B\|\|\Delta B\|+\|\Delta B\|^{2}<\frac{a^{2}}{2}-\|B\|^{2}, \tag{2.15}
\end{align*}
$$

then then (1.2) and its perturbed equation

$$
\begin{equation*}
\tilde{X}=I-\tilde{A}^{*} \tilde{X}^{-1} \tilde{A}+\tilde{B}^{*} \tilde{X}^{-1} \tilde{B} \tag{2.16}
\end{equation*}
$$

have a unique solutions X_{U} and \tilde{X}_{U} in $[a I, \infty)$, respectively, which satisfy

$$
\left\|\tilde{X}_{U}-X_{U}\right\| \leq S_{e r r}
$$

where

$$
S_{\text {err }}=\frac{2 a\left(\|A\|\|\Delta A\|+\|\Delta A\|^{2}+\|B\|\|\Delta B\|+\|\Delta B\|^{2}\right)}{a^{2}-(\|A\|+\|\Delta A\|)^{2}-(\|B\|+\|\Delta B\|)^{2}} .
$$

Proof. Set $A(t)=A+t \Delta A$ and $B(t)=B+t \Delta B, t \in[0,1]$ then by (2.14)

$$
\begin{align*}
\|A(t)\|^{2} & =\|A+t \Delta A\|^{2} \leq(\|A\|+t\|\Delta A\|)^{2} \\
& =\|A\|^{2}+2 t\|A\|\|\Delta A\|+t^{2}\|\Delta A\|^{2} \\
& \leq\|A\|^{2}+2\|A\|\|\Delta A\|+\|\Delta A\|^{2} \tag{2.17}\\
& <\|A\|^{2}+\frac{a^{2}}{2}-\|A\|^{2}=\frac{a^{2}}{2},
\end{align*}
$$

similarly, by (2.15) we have

$$
\begin{equation*}
\|B(t)\|^{2}<\frac{a^{2}}{2} \tag{2.18}
\end{equation*}
$$

By (2.17), (2.18) and Theorem 2.3 we derive that for arbitrary $t \in[0,1]$, the matrix equation

$$
X=I-A(t)^{*} X^{-1} A(t)+B(t)^{*} X^{-1} B(t)
$$

has a unique solution $X_{U}(t)$ in $[a I, \infty)$, especially,

$$
X_{U}(0)=X_{U}, \quad X_{U}(1)=(\tilde{X})_{U},
$$

where X_{U} and \tilde{X}_{U} are the unique solutions of (1.2) and (2.16), respectively.

From Theorem 2.3 it follows that

$$
\begin{aligned}
\left\|\tilde{X}_{U}-X_{U}\right\| & =\left\|X_{U}(1)-X_{U}(0)\right\|=\left\|\int_{0}^{1} d X_{U}(t)\right\| \leq \int_{0}^{1}\left\|d X_{U}(t)\right\| \\
& \leq \int_{0}^{1} \frac{2 a(\|A(t)\|\|d A(t)\|+\|B(t)\|\|d B(t)\|)}{a^{2}-\|A(t)\|^{2}-\|B(t)\|^{2}} \\
& \leq \int_{0}^{1} \frac{2 a(\|A(t)\|\|\Delta A\| d t+\|B(t)\|\|\Delta B\| d t)}{a^{2}-\|A(t)\|^{2}-\|B(t)\|^{2}} \\
& \leq \int_{0}^{1} \frac{2 a(\|A(t)\|\|\Delta A\|+\|B(t)\|\|\Delta B\|)}{a^{2}-\|A(t)\|^{2}-\|B(t)\|^{2}} d t .
\end{aligned}
$$

Noting that

$$
\begin{aligned}
& \|A(t)\|=\|A+t \Delta A\| \leq\|A\|+t\|\Delta A\|, \\
& \|B(t)\|=\|B+t \Delta B\| \leq\|B\|+t\|\Delta B\|,
\end{aligned}
$$

and combining Mean Value Theorem of Integration, we have

$$
\begin{aligned}
& \left\|\tilde{X}_{U}-X_{U}\right\| \\
\leq & \int_{0}^{1} \frac{2 a(\|A(t)\|\|\Delta A\|+\|B(t)\|\|\Delta B\|)}{a^{2}-\|A(t)\|^{2}-\|B(t)\|^{2}} d t \\
\leq & \int_{0}^{1} \frac{2 a((\|A\|+t\|\Delta A\|)\|\Delta A\|+(\|B\|+t\|\Delta B\|)\|\Delta B\|)}{a^{2}-(\|A\|+t\|\Delta A\|)^{2}-(\|B\|+t\|\Delta B\|)^{2}} d t \\
\leq & \frac{2 a((\|A\|+\xi\|\Delta A\|)\|\Delta A\|+(\|B\|+\xi\|\Delta B\|)\|\Delta B\|)}{a^{2}-(\|A\|+\xi\|\Delta A\|)^{2}-(\|B\|+\xi\|\Delta B\|)^{2}} \\
& \times(1-0)(0<\xi<1) \\
\leq & \frac{2 a((\|A\|+\|\Delta A\|)\|\Delta A\|+(\|B\|+\|\Delta B\|)\|\Delta B\|)}{a^{2}-(\|A\|+\|\Delta A\|)^{2}-(\|B\|+\|\Delta B\|)^{2}}=S_{\text {err }} .
\end{aligned}
$$

3. Numerical Experiments

In this section, we use a numerical example to confirm the correctness of Theorem 2.4 and the precision of the perturbation bound for the unique positive definite solution X_{U} of (1.2).

Example 3.1. Consider the matrix equation

$$
X=I-A^{*} X^{-1} A+B^{*} X^{-1} B
$$

and its pertubed equation

$$
\begin{equation*}
\tilde{X}=I-\tilde{A}^{*} \tilde{X}^{-1} \tilde{A}+\tilde{B}^{*} \tilde{X}^{-1} \tilde{B} \tag{3.19}
\end{equation*}
$$

where

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
0.1 & 0.05 & 0 \\
0 & 0.05 & -0.02 \\
0.05 & -0.05 & -0.05
\end{array}\right), \tilde{A}=A+\left(\begin{array}{ccc}
0.5 & 0.1 & -0.1 \\
-0.1 & 0.5 & 0.5 \\
-0.2 & 0.1 & -0.1
\end{array}\right) \times 10^{-j}, \\
& B=\left(\begin{array}{ccc}
-0.05 & 0.1 & 0 \\
-0.05 & 0 & -0.05 \\
0.05 & 0 & -0.1
\end{array}\right), \tilde{B}=B+\left(\begin{array}{ccc}
0.1 & 0.02 & 0.05 \\
-0.2 & 0.12 & 0.14 \\
-0.25 & 0.2 & 0.26
\end{array}\right) \times 10^{-j}, \\
& j \in \mathbb{N} .
\end{aligned}
$$

It is easy to verify that the conditions (2.13)-(2.15) are satisfied with $a=0.5$, then (1.2) and its perturbed equation (3.19) have unique positive definite solutions X_{U} and \tilde{X}_{U}, respectively. From Berzig, Duan and Samet [2] it follows that the sequence $\left\{X_{k}\right\}$ and $\left\{Y_{k}\right\}$ generated by the iterative method

$$
\begin{aligned}
& X_{0}=0.5 I, \quad Y_{0}=5 I, \\
& X_{k+1}=I-A^{*} X_{k}^{-1} A+B^{*} Y_{k}^{-1} B \\
& Y_{k+1}=I-A^{*} Y_{k}^{-1} A+B^{*} X_{k}^{-1} B, \quad k=0,1,2, \ldots .
\end{aligned}
$$

both convege to X_{U}. Choose $\tau=1.0 \times 10^{-15}$ as the termination scalar, that is,

$$
\begin{aligned}
R\left(X_{k}\right) & =\left\|X_{k}+A^{*} X_{k}^{-1} A-B^{*} X_{k}^{-1} B-I\right\| \\
R\left(Y_{k}\right) & =\left\|Y_{k}+A^{*} Y_{k}^{-1} A-B^{*} Y_{k}^{-1} B-I\right\|
\end{aligned}
$$

and

$$
R(X)=\max \left\{R\left(X_{k}\right), R\left(Y_{K}\right)\right\} \leq \tau=1.0 \times 10^{-15}
$$

By using the iterative method we can get the computed solution X of (1.2). Since $R(X)<1.0 \times 10^{-15}$, then the computed solution X has a very high precision. For simplicity, we write the computed solution as
the unique positive definite solution X_{U}. Similarly, we can also get the unique positive definite solution \tilde{X}_{U} of the perturbed equation (3.19).

Some numerical results on the perturbation bounds for the unique positive definite solution X_{U} are listed in Table 1. From Table 1, we see that Theorem 2.4 gives a precise perturbation bound for the unique positive definite solution of (1.2).

Table 1. Numerical results for the different value of j

j	2	3	4	5	6				
$\left\\|\tilde{X}_{U}-X_{U}\right\\| /\left\\|X_{U}\right\\|$	1.644×10^{-3}	1.604×10^{-4}	1.600×10^{-5}	1.599×10^{-6}	1.600×10^{-7}				
$S_{\text {err }} /\left\\|X_{U}\right\\|$	7.867×10^{-3}	7.356×10^{-4}	7.305×10^{-5}	7.300×10^{-6}	7.299×10^{-7}				

References

[1] P. Benner and H. Fabbender, On the solution of the rational matrix equation $X=Q+L X^{-1} L^{*}$, EURASIP J. Adv. Signal Pro. 1 (2007), 1-10 .
[2] M. Berzig, X. Duan and B. Samet, Positive definite solution of the matrix equation $X=Q-A^{*} X^{-1} A+B^{*} X^{-1} B$ via Bhaskar-Lakshmikantham fixed point theorem, Math. Sci. (Springer) 6 (2012), Art. 27.
[3] T.G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 13791393.
[4] X. Duan and Q. Wang, Perturbation analysis for the matrix equation X $\sum_{i=1}^{m} A_{i}^{*} X A_{i}+\sum_{j=1}^{n} B_{j}^{*} X B_{j}=I$, J. Appl. Math. 2012 (2012), Art. ID 784620.
[5] J.C. Engwerda, A.C.M. Ran, and A.L. Rijkeboer, Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation $X+A^{*} X^{-1} A=Q .$, Linear Algebra Appl. 186 (1993), 255-275.
[6] B.R. Fang, J.D. Zhou, and Y.M. Li, Matrix Theory, Tsinghua University Press, Beijing, China, 2006.
[7] A. Ferrante and B.C. Levy, Hermitian solutions of the equations $X=Q+$ $N X^{-1} N^{*}$, Linear Algebra Appl. 247 (1996), 359-373.
[8] V.I. Hasanov, Positive definite solutions of the matrix equations $X \pm A^{*} X^{-q} A=$ Q, Linear Algebra Appl. 404 (2005), 166-182.
[9] T.P. Minka, Old and new matrix algebra useful for statistics, December 2000. Notes.
[10] X. Zhan, Computing the extreme positive definite solutions of a matrix equation, SIAM J. Sci. Comput. 17 (1996), 632-645.

Hosoo Lee
School of General Education
College of Basic Studies
Yeungnam University
Gyengsan 712-749, Korea
E-mail: hosoo@yu.ac.kr

[^0]: Received October 7, 2013. Revised March 20, 2014. Accepted March 20, 2014. 2010 Mathematics Subject Classification: 15A24, 65F35.
 Key words and phrases: Nonlinear matrix equation, positive definite solution, perturbation analysis.
 (c) The Kangwon-Kyungki Mathematical Society, 2014.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

