t-SPLITTING SETS S OF AN INTEGRAL DOMAIN D SUCH THAT D_S IS A FACTORIAL DOMAIN

GYU WHAN CHANG

Abstract. Let D be an integral domain, S be a saturated multiplicative subset of D such that D_S is a factorial domain, $\{X_\alpha\}$ be a nonempty set of indeterminates, and $D[[X_\alpha]]$ be the polynomial ring over D. We show that S is a splitting (resp., almost splitting, t-splitting) set in D if and only if every nonzero prime t-ideal of D disjoint from S is principal (resp., contains a primary element, is t-invertible). We use this result to show that $D \{0\}$ is a splitting (resp., almost splitting, t-splitting) set in $D[[X_\alpha]]$ if and only if D is a GCD-domain (resp., UMT-domain with $Cl(D[[X_\alpha]])$ torsion, UMT-domain).

1. Introduction

Let D be an integral domain with quotient field K, and let $F(D)$ be the set of nonzero fractional ideals of D. For each $I \in F(D)$, let $I^{-1} = \{x \in K \mid xI \subseteq D\}$, $I_v = (I^{-1})^{-1}$ and $I_t = \bigcup\{I_v \mid J \in F(D), J \subseteq I, \text{ and } J \text{ is finitely generated}\}$. An ideal $I \in F(D)$ is called a t-ideal if $I_t = I$, and a t-ideal is a maximal t-ideal if it is maximal among proper integral t-ideals. It is well known that each nonzero principal
ideal is a t-ideal; each proper integral t-ideal is contained in a maximal t-ideal; a prime ideal minimal over a t-ideal is a t-ideal; and each maximal t-ideal is a prime ideal. We say that an $I \in F(D)$ is t-invertible if $(II^{-1})_t = D$; equivalently, if $II^{-1} \not\subseteq P$ for every maximal t-ideal P of D. Let $T(D)$ be the group of t-invertible fractional t-ideals of D under the t-multiplication $A \ast B = (AB)_t$, and let $Prin(D)$ be its subgroup of principal fractional ideals. The (t)-class group of D is an abelian group $\text{Cl}(D) = T(D)/Prin(D)$. The readers can refer to [12] for any undefined notation or terminology.

Let S be a saturated multiplicative subset of an integral domain D. As in [3], we say that S is a t-splitting set if for each $0 \neq d \in D$, we have $dD = (AB)_t$ for some integral ideals A, B of D, where $A_t \cap sD = sA_t$ for all $s \in S$ and $B_t \cap S \neq \emptyset$. We say that S is an almost splitting set of D if for each $0 \neq d \in D$, there is an integer $n = n(d) \geq 1$ such that $d^n = sa$ for some $s \in S$ and $a \in N(S)$, where $N(S) = \{0 \neq x \in D | (x, s')_t = D$ for all $s' \in S\}$. A splitting set is an almost splitting set in which $n = n(d) = 1$ for every $0 \neq d \in D$. Let \overline{S} be the saturation of a multiplicative set S of D. Note that a splitting set is saturated, while both t-splitting sets and almost splitting sets need not be saturated. Also, note that S is t-splitting (resp., almost splitting) if and only if \overline{S} is; so we always assume that S is saturated. It is known that an almost splitting set is t-splitting [7, Proposition 2.3]; hence

splitting set \Rightarrow almost splitting \Rightarrow t-splitting set.

Moreover, if $\text{Cl}(D)$ is torsion, then a t-splitting set is almost splitting [7, Corollary 2.4] and if $\text{Cl}(D) = 0$, then splitting set \iff almost splitting \iff t-splitting set.

Let X be an indeterminate over D and $D[X]$ be the polynomial ring over D. An upper to zero in $D[X]$ is a nonzero prime ideal Q of $D[X]$ with $Q \cap D = (0)$, and D is called a UMT-domain if each upper to zero in $D[X]$ is a maximal t-ideal of $D[X]$. We say that D is a Pr"ufer v-multiplication domain (PrvMD) if each nonzero finitely generated ideal of D is t-invertible. As in [15], we say that D is an almost GCD-domain (AGCD-domain) if for each $0 \neq a, b \in D$, there is an integer $n = n(a, b) \geq 1$ such that $a^nD \cap b^nD$ is principal. Clearly, GCD-domains are AGCD-domains. It is known that AGCD-domains are UMT-domains with torsion class group [5, Lemma 3.1]; D is a PrvMD if and only if D is an integrally closed UMT-domain [13, Proposition 3.2]; and D is a
GCD-domain if and only if \(D \) is a PrMD and \(Cl(D) = 0 \) [6, Corollary 1.5].

In [9, Theorem 2.8], the authors proved that if \(D_S \) is a principal ideal domain (PID), then \(S \) is a \(t \)-splitting set of \(D \) if and only if every nonzero prime ideal of \(D \) disjoint from \(S \) is \(t \)-invertible. They used this result to show that \(D \setminus \{0\} \) is a \(t \)-splitting set of \(D[X] \) if and only if \(D \) is a UMT-domain [9, Corollary 2.9]. Also, in [8, Theorem 2], the author showed that if \(D_S \) is a PID, then \(S \) is an almost splitting set of \(D \) if and only if every nonzero prime ideal of \(D \) disjoint from \(S \) contains a primary element. (A nonzero element \(a \in D \) is said to be primary if \(aD \) is a primary ideal.)

The purpose of this paper is to show that the results of [9, Theorem 2.8] and [8, Theorem 2] are also true when \(D_S \) is a factorial domain (note that a PID is a factorial domain). Precisely, we show that if \(D_S \) is a factorial domain, then \(S \) is a splitting (resp., almost splitting, \(t \)-splitting) set in \(D \) if and only if every nonzero prime \(t \)-ideal of \(D \) disjoint from \(S \) is principal (resp., contains a primary element, is \(t \)-invertible). Let \(\{X_\alpha\} \) be a nonempty set of indeterminates over \(D \), and note that \(D[\{X_\alpha\}]_{D\setminus\{0\}} \) is a factorial domain. Hence, we then use the results we obtained in this paper to show that \(D \setminus \{0\} \) is a splitting (resp., almost splitting, \(t \)-splitting) set in \(D[\{X_\alpha\}] \) if and only if \(D \) is a GCD-domain (resp., UMT-domain and \(Cl(D[\{X_\alpha\}]) \) is torsion, UMT-domain).

2. Main Results

Let \(D \) be an integral domain, \(D^* = D \setminus \{0\} \), \(\{X_\alpha\} \) be a nonempty set of indeterminates over \(D \), and \(D[\{X_\alpha\}] \) be the polynomial ring over \(D \).

We begin this section with nice characterizations of splitting sets, almost splitting sets, and \(t \)-splitting sets which appear in [2, Theorem 2.2], [4, Proposition 2.7], and [3, Corollary 2.3], respectively.

Lemma 1. Let \(S \) be a saturated multiplicative subset of \(D \).

1. \(S \) is a splitting (resp., \(t \)-splitting) set of \(D \) if and only if \(dD_S \cap D \) is principal (resp., \(t \)-invertible) for every \(0 \neq d \in D \).
2. \(S \) is an almost splitting set of \(D \) if and only if for every \(0 \neq d \in D \), there is a positive integer \(n = n(d) \) such that \(d^nD_S \cap D \) is principal.

Note that if \(D_S \) is a PID, then every nonzero prime ideal \(P \) of \(D \) disjoint from \(S \) has height-one, and thus \(P \) is a \(t \)-ideal. Hence, our first
result is a generalization of [9, Theorem 2.8] that if D_S is a PID, then S is a t-splitting set in D if and only if every nonzero prime ideal of D disjoint from S is t-invertible. The proof is similar to those of [9, Theorem 2.8] and [8, Theorem 2].

Theorem 2. Let D be an integral domain and S be a saturated multiplicative subset of D such that D_S is a factorial domain. Then S is a t-splitting set in D if and only if every prime t-ideal of D disjoint from S is t-invertible.

Proof. (\Rightarrow) Assume that S is a t-splitting set of D, and let P be a prime t-ideal of D with $P \cap S = \emptyset$. Then $(PD_S)_t = PD_S$ [3, Theorem 4.9], and hence $PD_S = pD_S$ for some $p \in P$ since D_S is a factorial domain. Thus, by Lemma 1, $P = PD_S \cap D = pD_S \cap D$ is t-invertible.

(\Leftarrow) Let $0 \neq d \in D$. Then $dD_S = p_1^{e_1} \cdots p_k^{e_k}D_S$ for some $p_i \in D$ and positive integers e_i such that every p_i is a prime element in D_S and $p_iD_S \neq p_jD_S$ if $i \neq j$. Let P_i be the prime ideal of D such that $P_iD_S = p_iD_S$. Clearly, P_i is minimal over dD_S, and hence P_i is a t-ideal. Moreover, $P_i \cap S = \emptyset$; so P_i is t-invertible by assumption (and hence a maximal t-ideal [13, Proposition 1.3]). Note that $(P_i^{e_i})_t$ is P_t-primary [1, Lemma 1] because P_t is a maximal t-ideal. Also, $(P_i^{e_i})_tD_S = p_i^{e_i}D_S$, and thus $P_i^{e_i}D_S \cap D = (P_i^{e_i})_t$ and $(P_i^{e_i})_t$ is t-invertible. Hence

$$dD_S \cap D = p_1^{e_1} \cdots p_k^{e_k}D_S \cap D = (p_1^{e_1}D_S \cap \cdots \cap p_k^{e_k}D_S) \cap D = (P_1^{e_1}D_S \cap \cdots \cap P_k^{e_k}D_S) \cap D = (P_1^{e_1}D_S \cap D) \cap \cdots \cap (P_k^{e_k}D_S \cap D) = (P_1^{e_1})_t \cap \cdots \cap (P_k^{e_k})_t = ((P_1^{e_1})_t \cdots (P_k^{e_k})_t)_t.$$

Thus, S is a t-splitting set by Lemma 1. \hfill \square

The next result is a generalization of [9, Corollary 2.9] that D^* is a t-splitting set in $D[X]$, where X is an indeterminate over D, if and only if D is a UMT-domain.

Corollary 3. D^* is a t-splitting set in $D[\{X_\alpha\}]$ if and only if D is a UMT-domain.

Proof. (\Rightarrow) Let $X \in \{X_\alpha\}$, and let P be a nonzero prime ideal of $D[X]$ with $P \cap D = (0)$. Then P is a prime t-ideal of $D[X]$, and hence
\(Q := P[Y],\) where \(Y = \{X_n\} \setminus \{X\}\), is a prime \(t\)-ideal of \(D[\{X_n\}]\) [11, Lemma 2.1(1)] such that \(Q \cap D^* = \emptyset\). Hence, \(Q\) is \(t\)-invertible by Theorem 2 because \(D[\{X_n\}] = (QQ^{-1})_t = ((P[Y])(P[Y])^{-1})_t = (((P[Y])(P^{-1}[Y])_t = ((PP^{-1})[Y])_t = (PP^{-1})[Y] [11, Lemma 2.1(1)]. Hence, \(P\) is \(t\)-invertible, and thus \(P\) is a maximal \(t\)-ideal of \(D[X]\).

(\(\Leftarrow\)) Let \(Q\) be a prime \(t\)-ideal of \(D[\{X_n\}]\) such that \(Q \cap D^* = \emptyset\). Since \(Q \neq (0)\), there are \(X_1, \ldots, X_n \in \{X_n\}\) such that \(Q \cap D[X_1, \ldots, X_{n-1}] = (0)\), but \(Q \cap D[X_1, \ldots, X_n] \neq (0)\). Let \(R = D[X_1, \ldots, X_{n-1}]\) and \(P = Q \cap R[X_n]\). Then \(R\) is a UMT-domain [11, Theorem 2.4] and \(P\) is an upper to zero in \(R[X_n]\). Hence, \(P\) is a \(t\)-invertible prime \(t\)-ideal. Let \(Z = \{X_n\} \setminus \{X_1, \ldots, X_n\}\), and note that \(P[Z] \subseteq Q\) and \(P[Z]\) is a \(t\)-invertible prime \(t\)-ideal of \(D[\{X_n\}]\) (see the proof of \((\Rightarrow)\) above). Hence, \(P[Z]\) is a maximal \(t\)-ideal of \(D[\{X_n\}]\), and thus \(Q = P[Z]\) and \(Q\) is \(t\)-invertible. Thus, by Theorem 2, \(D^*\) is a \(t\)-splitting set.

We next give an almost splitting set analog of Theorem 2. Even though the proof is a word for word translation of the proof of [8, Theorem 2], we give it for the completeness of this paper.

Theorem 4. Let \(D\) be an integral domain and \(S\) be a saturated multiplicative subset of \(D\) such that \(D_S\) is a factorial domain. Then \(S\) is an almost splitting set in \(D\) if and only if every prime \(t\)-ideal of \(D\) disjoint from \(S\) contains a primary element.

Proof. \((\Rightarrow)\) Assume that \(S\) is an almost splitting set of \(D\), and let \(P\) be a prime \(t\)-ideal of \(D\) disjoint from \(S\). Then \(PD_S = pD_S\) for some \(p \in P\) (see the proof of Theorem 2), and since \(S\) is almost splitting, by Lemma 1, there is a positive integer \(n\) such that \(P \supseteq p^nD_S \cap D = qD\) for some \(q \in D\). Clearly, \(q\) is a primary element. Thus, \(P\) contains a primary element \(q\).

\((\Leftarrow)\) Let \(0 \neq d \in D\). Then \(dD_S = p_1^{e_1} \cdots p_k^{e_k} D_S\), where every \(e_i\) is a positive integer and the \(p_i\)'s are non-associate prime elements in \(D_S\) (see the proof of Theorem 2). Let \(P_i\) be the prime ideal of \(D\) such that \(P_iD_S = p_iD_S\). Then \(P_i\) is a prime \(t\)-ideal of \(D\) and \(P_i \cap S = \emptyset\): so \(P_i\) contains a primary element \(q_i\). Clearly, \(q_iD_S = p_i^{n_i} D_S\) for some positive integer \(n_i\). Let \(n = n_1 \cdots n_k\) and \(m_i = \frac{n}{n_i} e_i\). Then \(p_i^{m_i} D_S = q_i^{m_i} D_S\), and
hence
\[
d^n D_S \cap D = ((p_1^{m_1}) D_S \cap \cdots \cap (p_k^{m_k}) D_S) \cap D \\
= ((q_1^{m_1} D_S) \cap \cdots \cap (q_k^{m_k} D_S)) \cap D \\
= (q_1^{m_1} D_S \cap D) \cap \cdots \cap (q_k^{m_k} D_S \cap D) \\
= (q_1^{m_1} D) \cap \cdots \cap (q_k^{m_k} D) \\
= (q_1^{m_1} \cdots q_k^{m_k}) D,
\]
where the fourth and last equalities follow from the fact that each \(q_i^{m_i} \) is a primary element with \(\sqrt{q_i^{m_i} D} \neq \sqrt{q_j^{m_j} D} \) for \(i \neq j \). Therefore, \(S \) is an almost splitting set by Lemma 1.

Let \(N(D^*) = \{ f \in D'[\{X_\alpha\}] \mid (f, d)_v = D[\{X_\alpha\}] \text{ for all } d \in D^* \} \). It is clear that \((f, d)_v = D[\{X_\alpha\}] \) for all \(d \in D^* \) if and only if \(c(f)_v = D \), where \(c(f) \) is the ideal of \(D \) generated by the coefficients of \(f \). Hence, \(Cl(D[\{X_\alpha\}]_{N(D^*)}) = 0 \) [14, Theorem 2.14]. The next result is a generalization of [5, Theorem 2.4].

Corollary 5. \(D^* \) is an almost splitting set in \(D[\{X_\alpha\}] \) if and only if \(D \) is a UMT-domain and \(Cl(D[\{X_\alpha\}]) \) is torsion.

Proof. (\(\Rightarrow \)) If \(D^* \) is an almost splitting set in \(D[\{X_\alpha\}] \), then \(Cl(D[\{X_\alpha\}]_{D^*}) = Cl((D[\{X_\alpha\}])_{N(D^*)}) = 0 \). Thus, \(Cl(D[\{X_\alpha\}]) \) is torsion [7, Theorem 2.10(2)]. Also, since almost splitting sets are \(t \)-splitting sets, \(D \) is a UMT-domain by Corollary 3.

(\(\Leftarrow \)) Assume that \(D \) is a UMT-domain and \(Cl(D[\{X_\alpha\}]) \) is torsion. Then \(D^* \) is a \(t \)-splitting set by Corollary 3, and since \(Cl(D[\{X_\alpha\}]) \) is torsion, \(D^* \) is an almost splitting set.

Corollary 6. If \(D \) is integrally closed, then \(D^* \) is an almost splitting (resp., a \(t \)-splitting) set in \(D[\{X_\alpha\}] \) if and only if \(D \) is an AGCD-domain (resp., a PeMD).

Proof. Note that \(Cl(D[\{X_\alpha\}]) = Cl(D) \) [10, Corollary 2.13]; an integrally closed UMT-domain is a PeMD; and an integrally closed AGCD-domain is a PeMD with torsion class group. Hence, the result follows directly from Corollaries 3 and 5.

Theorem 7. Let \(D \) be an integral domain and \(S \) be a saturated multiplicative subset of \(D \) such that \(D_S \) is a factorial domain. Then \(S \) is a splitting set in \(D \) if and only if every prime \(t \)-ideal of \(D \) disjoint from \(S \) is principal.
Proof. (⇒) Let \(P \) be a prime \(t \)-ideal of \(D \) with \(P \cap S = \emptyset \). Then \(PD_S = pD_S \) for some prime element \(p \) of \(D_S \) (see the proof of Theorem 2), and thus \(PD_S \cap D = pD_S \cap D \) is principal by Lemma 1.

(⇐) An argument similar to the proof (⇐) of Theorem 4 shows that \(dD_S \cap D \) is principal for every \(0 \neq d \in D \). Thus, by Lemma 1, \(S \) is a splitting set.

Let \(X \) be an indeterminate over \(D \). In [9, p. 77] (cf. [2, Example 4.7]), it was noted that \(D^* \) is a splitting set in \(D[X] \) if and only if \(D \) is a GCD-domain.

Corollary 8. \(D^* \) is a splitting set in \(D[\{X_\alpha\}] \) if and only if \(D \) is a GCD-domain.

Proof. If \(D^* \) is a splitting set in \(D[\{X_\alpha\}] \), then \(Cl(D) = Cl(D[\{X_\alpha\}]) = 0 \) [2, Corollary 3.8] because \(Cl(D[\{X_\alpha\}]_{D^*}) = Cl(D[\{X_\alpha\}]_{N(D^*)}) = 0 \). Hence, \(D \) is integrally closed [10, Corollary 2.13] and \(D \) is a UMT-domain by Corollary 3. Thus, \(D \) is a GCD domain because \(D \) is an integrally closed UMT-domain with \(Cl(D) = 0 \). Conversely, assume that \(D \) is a GCD-domain. Then \(D^* \) is a \(t \)-splitting set in \(D[\{X_\alpha\}] \) by Corollary 3 and \(Cl(D[\{X_\alpha\}]) = Cl(D) = 0 \). Thus, \(D^* \) is a splitting set.

Let \(S \) be a saturated multiplicative subset of an integral domain \(D \) such that \(D_S \) is a factorial domain. The proofs of Theorems 2, 4, and 7 show that \(S \) is splitting (resp., almost splitting, \(t \)-splitting) if and only if for every nonzero prime element \(p \) of \(D_S \), the ideal \(pD_S \cap D \) is principal (resp., contains a primary element, \(t \)-invertible).

Acknowledgement. The author would like to thank the referees for their several helpful comments and suggestions.

References

Department of Mathematics
Incheon National University
Incheon 406-772, Korea
E-mail: whan@incheon.ac.kr