Korean J. Math. **21** (2013), No. 4, pp. 455–462 http://dx.doi.org/10.11568/kjm.2013.21.4.455

t-SPLITTING SETS S OF AN INTEGRAL DOMAIN DSUCH THAT D_S IS A FACTORIAL DOMAIN

GYU WHAN CHANG

ABSTRACT. Let D be an integral domain, S be a saturated multiplicative subset of D such that D_S is a factorial domain, $\{X_{\alpha}\}$ be a nonempty set of indeterminates, and $D[\{X_{\alpha}\}]$ be the polynomial ring over D. We show that S is a splitting (resp., almost splitting, t-splitting) set in D if and only if every nonzero prime t-ideal of D disjoint from S is principal (resp., contains a primary element, is t-invertible). We use this result to show that $D \setminus \{0\}$ is a splitting (resp., almost splitting, t-splitting) set in $D[\{X_{\alpha}\}]$ if and only if D is a GCD-domain (resp., UMT-domain with $Cl(D[\{X_{\alpha}\}])$ torsion, UMT-domain).

1. Introduction

Let D be an integral domain with quotient field K, and let $\mathbf{F}(D)$ be the set of nonzero fractional ideals of D. For each $I \in \mathbf{F}(D)$, let $I^{-1} = \{x \in K \mid xI \subseteq D\}, I_v = (I^{-1})^{-1}$ and $I_t = \bigcup \{I_v \mid J \in \mathbf{F}(D), J \subseteq I\}$, and J is finitely generated}. An ideal $I \in \mathbf{F}(D)$ is called a *t*-ideal if $I_t = I$, and a *t*-ideal is a maximal *t*-ideal if it is maximal among proper integral *t*-ideals. It is well known that each nonzero principal

Received October 10, 2013. Revised November 28, 2013. Accepted December 3, 2013.

²⁰¹⁰ Mathematics Subject Classification: 13A15 13G05.

Key words and phrases: *t*-splitting set, (almost) splitting set, UMT-domain, AGCD-domain, GCD-domain.

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2010-0007069).

[©] The Kangwon-Kyungki Mathematical Society, 2013.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

ideal is a *t*-ideal; each proper integral *t*-ideal is contained in a maximal *t*-ideal; a prime ideal minimal over a *t*-ideal is a *t*-ideal; and each maximal *t*-ideal is a prime ideal. We say that an $I \in \mathbf{F}(D)$ is *t*-invertible if $(II^{-1})_t = D$; equivalently, if $II^{-1} \not\subseteq P$ for every maximal *t*-ideal *P* of *D*. Let T(D) be the group of *t*-invertible fractional *t*-ideals of *D* under the *t*-multiplication $A * B = (AB)_t$, and let Prin(D) be its subgroup of principal fractional ideals. The (t-)class group of *D* is an abelian group Cl(D) = T(D)/Prin(D). The readers can refer to [12] for any undefined notation or terminology.

Let S be a saturated multiplicative subset of an integral domain D. As in [3], we say that S is a t-splitting set if for each $0 \neq d \in D$, we have $dD = (AB)_t$ for some integral ideals A, B of D, where $A_t \cap sD = sA_t$ for all $s \in S$ and $B_t \cap S \neq \emptyset$. We say that S is an almost splitting set of D if for each $0 \neq d \in D$, there is an integer $n = n(d) \ge 1$ such that $d^n = sa$ for some $s \in S$ and $a \in N(S)$, where $N(S) = \{0 \neq x \in D | (x, s')_t = D$ for all $s' \in S\}$. A splitting set is an almost splitting set in which n =n(d) = 1 for every $0 \neq d \in D$. Let \overline{S} be the saturation of a multiplicative set S of D. Note that a splitting set is saturated, while both t-splitting sets and almost splitting sets need not be saturated. Also, note that S is t-splitting (resp., almost splitting) if and only if \overline{S} is; so we always assume that S is saturated. It is known that an almost splitting set is t-splitting [7, Proposition 2.3]; hence

splitting set \Rightarrow almost splitting \Rightarrow t-splitting set.

Moreover, if Cl(D) is torsion, then a *t*-splitting set is almost splitting [7, Corollary 2.4] and if Cl(D) = 0, then splitting set \Leftrightarrow almost splitting \Leftrightarrow *t*-splitting set.

Let X be an indeterminate over D and D[X] be the polynomial ring over D. An upper to zero in D[X] is a nonzero prime ideal Q of D[X]with $Q \cap D = (0)$, and D is called a UMT-domain if each upper to zero in D[X] is a maximal t-ideal of D[X]. We say that D is a Prüfer v-multiplication domain (PvMD) if each nonzero finitely generated ideal of D is t-invertible. As in [15], we say that D is an almost GCDdomain (AGCD-domain) if for each $0 \neq a, b \in D$, there is an integer $n = n(a, b) \geq 1$ such that $a^n D \cap b^n D$ is principal. Clearly, GCD-domains are AGCD-domains. It is known that AGCD-domains are UMT-domains with torsion class group [5, Lemma 3.1]; D is a PvMD if and only if D is an integrally closed UMT-domain [13, Proposition 3.2]; and D is a

t-splitting sets

GCD-domain if and only if D is a PvMD and Cl(D) = 0 [6, Corollary 1.5].

In [9, Theorem 2.8], the authors proved that if D_S is a principal ideal domain (PID), then S is a t-splitting set of D if and only if every nonzero prime ideal of D disjoint from S is t-invertible. They used this result to show that $D \setminus \{0\}$ is a t-splitting set of D[X] if and only if D is a UMT-domain [9, Corollary 2.9]. Also, in [8, Theorem 2], the author showed that if D_S is a PID, then S is an almost splitting set of D if and only if every nonzero prime ideal of D disjoint from S contains a primary element. (A nonzero element $a \in D$ is said to be *primary* if aD is a primary ideal.) The purpose of this paper is to show that the results of [9, Theorem 2.8] and [8, Theorem 2] are also true when D_S is a factorial domain (note that a PID is a factorial domain). Precisely, we show that if D_S is a factorial domain, then S is a splitting (resp., almost splitting, t-splitting) set in D if and only if every nonzero prime t-ideal of D disjoint from S is principal (resp., contains a primary element, is *t*-invertible). Let $\{X_{\alpha}\}$ be a nonempty set of indeterminates over D, and note that $D[\{X_{\alpha}\}]_{D\setminus\{0\}}$ is a factorial domain. Hence, we then use the results we obtained in this paper to show that $D \setminus \{0\}$ is a splitting (resp., almost splitting, t-splitting) set in $D[{X_{\alpha}}]$ if and only if D is a GCD-domain (resp., UMT-domain and $Cl(D[\{X_{\alpha}\}])$ is torsion, UMTdomain).

2. Main Results

Let D be an integral domain, $D^* = D \setminus \{0\}, \{X_\alpha\}$ be a nonempty set of indeterminates over D, and $D[\{X_\alpha\}]$ be the polynomial ring over D.

We begin this section with nice characterizations of splitting sets, almost splitting sets, and *t*-splitting sets which appear in [2, Theorem 2.2], [4, Proposition 2.7], and [3, Corollary 2.3], respectively.

LEMMA 1. Let S be a saturated multiplicative subset of D.

- 1. S is a splitting (resp., t-splitting) set of D if and only if $dD_S \cap D$ is principal (resp., t-invertible) for every $0 \neq d \in D$.
- 2. S is an almost splitting set of D if and only if for every $0 \neq d \in D$, there is a positive integer n = n(d) such that $d^n D_S \cap D$ is principal.

Note that if D_S is a PID, then every nonzero prime ideal P of D disjoint from S has height-one, and thus P is a t-ideal. Hence, our first

result is a generalization of [9, Theorem 2.8] that if D_S is a PID, then S is a *t*-splitting set in D if and only if every nonzero prime ideal of D disjoint from S is *t*-invertible. The proof is similar to those of [9, Theorem 2.8] and [8, Theorem 2].

THEOREM 2. Let D be an integral domain and S be a saturated multiplicative subset of D such that D_S is a factorial domain. Then Sis a t-splitting set in D if and only if every prime t-ideal of D disjoint from S is t-invertible.

Proof. (\Rightarrow) Assume that S is a t-splitting set of D, and let P be a prime t-ideal of D with $P \cap S = \emptyset$. Then $(PD_S)_t = PD_S$ [3, Theorem 4.9], and hence $PD_S = pD_S$ for some $p \in P$ since D_S is a factorial domain. Thus, by Lemma 1, $P = PD_S \cap D = pD_S \cap D$ is t-invertible.

(\Leftarrow) Let $0 \neq d \in D$. Then $dD_S = p_1^{e_1} \cdots p_k^{e_k} D_S$ for some $p_i \in D$ and positive integers e_i such that every p_i is a prime element in D_S and $p_i D_S \neq p_j D_S$ if $i \neq j$. Let P_i be the prime ideal of D such that $P_i D_S = p_i D_S$. Clearly, P_i is minimal over dD, and hence P_i is a *t*-ideal. Moreover, $P_i \cap S = \emptyset$; so P_i is *t*-invertible by assumption (and hence a maximal *t*-ideal [13, Proposition 1.3]). Note that $(P_i^{e_i})_t$ is P_i -primary [1, Lemma 1] because P_i is a maximal *t*-ideal. Also, $(P_i^{e_i})_t D_S = p_i^{e_i} D_S$, and thus $P_i^{e_i} D_S \cap D = (P_i^{e_i})_t$ and $(P_i^{e_i})_t$ is *t*-invertible. Hence

$$dD_{S} \cap D = p_{1}^{e_{1}} \cdots p_{k}^{e_{k}} D_{S} \cap D$$

$$= (p_{1}^{e_{1}} D_{S} \cap \cdots \cap p_{k}^{e_{k}} D_{S}) \cap D$$

$$= (P_{1}^{e_{1}} D_{S} \cap \cdots \cap P_{k}^{e_{k}} D_{S}) \cap D$$

$$= (P_{1}^{e_{1}} D_{S} \cap D) \cap \cdots \cap (P_{k}^{e_{k}} D_{S} \cap D)$$

$$= (P_{1}^{e_{1}})_{t} \cap \cdots \cap (P_{k}^{e_{k}})_{t}$$

$$= ((P_{1}^{e_{1}})_{t} \cdots (P_{k}^{e_{k}})_{t})_{t}.$$

Thus, S is a *t*-splitting set by Lemma 1.

The next result is a generalization of [9, Corollary 2.9] that D^* is a *t*-splitting set in D[X], where X is an indeterminate over D, if and only if D is a UMT-domain.

COROLLARY 3. D^* is a t-splitting set in $D[\{X_{\alpha}\}]$ if and only if D is a UMT-domain.

Proof. (\Rightarrow) Let $X \in \{X_{\alpha}\}$, and let P be a nonzero prime ideal of D[X] with $P \cap D = (0)$. Then P is a prime t-ideal of D[X], and hence

458

t-splitting sets

Q := P[Y], where $Y = \{X_{\alpha}\} \setminus \{X\}$, is a prime *t*-ideal of $D[\{X_{\alpha}\}]$ [11, Lemma 2.1(1)] such that $Q \cap D^* = \emptyset$. Hence, Q is *t*-invertible by Theorem 2 because $D[\{X_{\alpha}\}]_{D^*}$ is a factorial domain. Note that $D[\{X_{\alpha}\}] =$ $(QQ^{-1})_t = ((P[Y])(P[Y])^{-1})_t = ((P[Y])(P^{-1}[Y])_t = ((PP^{-1})[Y])_t =$ $(PP^{-1})_t[Y]$ [11, Lemma 2.1(1)]. Hence, P is *t*-invertible, and thus P is a maximal *t*-ideal of D[X].

 (\Leftarrow) Let Q be a prime t-ideal of $D[\{X_{\alpha}\}]$ such that $Q \cap D^* = \emptyset$. Since $Q \neq (0)$, there are $X_1, \ldots, X_n \in \{X_{\alpha}\}$ such that $Q \cap D[X_1, \ldots, X_{n-1}] = (0)$, but $Q \cap D[X_1, \ldots, X_n] \neq (0)$. Let $R = D[X_1, \ldots, X_{n-1}]$ and $P = Q \cap R[X_n]$. Then R is a UMT-domain [11, Theorem 2.4] and P is an upper to zero in $R[X_n]$. Hence, P is a t-invertible prime t-ideal. Let $Z = \{X_{\alpha}\} \setminus \{X_1, \ldots, X_n\}$, and note that $P[Z] \subseteq Q$ and P[Z] is a t-invertible prime t-ideal of $D[\{X_{\alpha}\}]$ (see the proof of (\Rightarrow) above). Hence, P[Z] is a maximal t-ideal of $D[\{X_{\alpha}\}]$, and thus Q = P[Z] and Q is t-invertible. Thus, by Theorem 2, D^* is a t-splitting set. \Box

We next give an almost splitting set analog of Theorem 2. Even though the proof is a word for word translation of the proof of [8, Theorem 2], we give it for the completeness of this paper.

THEOREM 4. Let D be an integral domain and S be a saturated multiplicative subset of D such that D_S is a factorial domain. Then Sis an almost splitting set in D if and only if every prime t-ideal of Ddisjoint from S contains a primary element.

Proof. (⇒) Assume that S is an almost splitting set of D, and let P be a prime t-ideal of D disjoint from S. Then $PD_S = pD_S$ for some $p \in P$ (see the proof of Theorem 2), and since S is almost splitting, by Lemma 1, there is a positive integer n such that $P \supseteq p^n D_S \cap D = qD$ for some $q \in D$. Clearly, q is a primary element. Thus, P contains a primary element q.

 (\Leftarrow) Let $0 \neq d \in D$. Then $dD_S = p_1^{e_1} \cdots p_k^{e_k} D_S$, where every e_i is a positive integer and the p_i 's are non-associate prime elements in D_S (see the proof of Theorem 2). Let P_i be the prime ideal of D such that $P_iD_S = p_iD_S$. Then P_i is a prime t-ideal of D and $P_i \cap S = \emptyset$; so P_i contains a primary element q_i . Clearly, $q_iD_S = p_i^{n_i}D_S$ for some positive integer n_i . Let $n = n_1 \cdots n_k$ and $m_i = \frac{n}{n_i}e_i$. Then $p_i^{n_e_i}D_S = q_i^{m_i}D_S$, and

hence

$$d^{n}D_{S} \cap D = ((p_{1}^{ne_{1}})D_{S} \cap \dots \cap (p_{k}^{ne_{k}})D_{S}) \cap D$$

= $((q_{1}^{m_{1}}D_{S}) \cap \dots \cap (q_{k}^{m_{k}}D_{S})) \cap D$
= $(q_{1}^{m_{1}}D_{S} \cap D) \cap \dots \cap (q_{k}^{m_{k}}D_{S} \cap D)$
= $(q_{1}^{m_{1}})D \cap \dots \cap (q_{k}^{m_{k}})D$
= $(q_{1}^{m_{1}} \dots q_{k}^{m_{k}})D,$

where the fourth and last equalities follow from the fact that each $q_i^{m_i}$ is a primary element with $\sqrt{q_i^{m_i}D} \neq \sqrt{q_j^{m_j}D}$ for $i \neq j$. Therefore, S is an almost splitting set by Lemma 1.

Let $N(D^*) = \{f \in D[\{X_\alpha\}] \mid (f, d)_v = D[\{X_\alpha\}] \text{ for all } d \in D^*\}$. It is clear that $(f, d)_v = D[\{X_\alpha\}]$ for all $d \in D^*$ if and only if $c(f)_v = D$, where c(f) is the ideal of D generated by the coefficients of f. Hence, $Cl(D[\{X_\alpha\}]_{N(D^*)}) = 0$ [14, Theorem 2.14]. The next result is a generalization of [5, Theorem 2.4].

COROLLARY 5. D^* is an almost splitting set in $D[\{X_{\alpha}\}]$ if and only if D is a UMT-domain and $Cl(D[\{X_{\alpha}\}])$ is torsion.

Proof. (\Rightarrow) If D^* is an almost splitting set in $D[\{X_{\alpha}\}]$, then $Cl(D[\{X_{\alpha}\}]_{D^*}) = Cl((D[\{X_{\alpha}\}])_{N(D^*)}) = 0$. Thus, $Cl(D[\{X_{\alpha}\}])$ is torsion [7, Theorem 2.10(2)]. Also, since almost splitting sets are *t*-splitting sets, D is a UMT-domain by Corollary 3.

(\Leftarrow) Assume that D is a UMT-domain and $Cl(D[\{X_{\alpha}\}])$ is torsion. Then D^* is a *t*-splitting set by Corollary 3, and since $Cl(D[\{X_{\alpha}\}])$ is torsion, D^* is an almost splitting set. \Box

COROLLARY 6. If D is integrally closed, then D^* is an almost splitting (resp., a t-splitting) set in $D[\{X_{\alpha}\}]$ if and only if D is an AGCD-domain (resp., a PvMD).

Proof. Note that $Cl(D[\{X_{\alpha}\}]) = Cl(D)$ [10, Corollary 2.13]; an integrally closed UMT-domain is a PvMD; and an integrally closed AGCD-domain is a PvMD with torsion class group. Hence, the result follows directly from Corollaries 3 and 5.

THEOREM 7. Let D be an integral domain and S be a saturated multiplicative subset of D such that D_S is a factorial domain. Then S is a splitting set in D if and only if every prime t-ideal of D disjoint from S is principal.

t-splitting sets

Proof. (\Rightarrow) Let *P* be a prime *t*-ideal of *D* with $P \cap S = \emptyset$. Then $PD_S = pD_S$ for some prime element *p* of D_S (see the proof of Theorem 2), and thus $PD_S \cap D = pD_S \cap D$ is principal by Lemma 1.

 (\Leftarrow) An argument similar to the proof (\Leftarrow) of Theorem 4 shows that $dD_S \cap D$ is principal for every $0 \neq d \in D$. Thus, by Lemma 1, S is a splitting set.

Let X be an indeterminate over D. In [9, p. 77] (cf. [2, Example 4.7]), it was noted that D^* is a splitting set in D[X] if and only if D is a GCD-domain.

COROLLARY 8. D^* is a splitting set in $D[\{X_{\alpha}\}]$ if and only if D is a GCD-domain.

Proof. If D^* is a splitting set in $D[\{X_{\alpha}\}]$, then $Cl(D) = Cl(D[\{X_{\alpha}\}]) = 0$ [2, Corollary 3.8] because $Cl(D[\{X_{\alpha}\}]_{D^*}) = Cl((D[\{X_{\alpha}\}])_{N(D^*)}) = 0$. Hence, D is integrally closed [10, Corollary 2.13] and D is a UMT-domain by Corollary 3. Thus, D is a GCD domain because D is an integrally closed UMT-domain with Cl(D) = 0. Conversely, assume that D is a GCD-domain. Then D^* is a t-splitting set in $D[\{X_{\alpha}\}]$ by Corollary 3 and $Cl(D[\{X_{\alpha}\}]) = Cl(D) = 0$. Thus, D^* is a splitting set.

Let S be a saturated multiplicative subset of an integral domain D such that D_S is a factorial domain. The proofs of Theorems 2, 4, and 7 show that S is splitting (resp., almost splitting, t-splitting) if and only if for every nonzero prime element p of D_S , the ideal $pD_S \cap D$ is principal (resp., contains a primary element, t-invertible).

Acknowledgement. The author would like to thank the referees for their several helpful comments and suggestions.

References

- D.D. Anderson, D.F. Anderson, and M. Zafrullah, Atomic domains in which almost all atoms are prime, Comm. Algebra 20 (1992), 1447–1462.
- [2] D.D. Anderson, D.F. Anderson, and M. Zafrullah, Splitting the t-class group, J. Pure Appl. Algebra 74 (1991), 17–37.
- [3] D.D. Anderson, D.F. Anderson, and M. Zafrullah, *The ring* $D + XD_S[X]$ and *t-splitting sets*, Commutative Algebra Arab. J. Sci. Eng. Sect. C Theme Issues **26** (1) (2001), 3–16.
- [4] D.D. Anderson, T. Dumitrescu, and M. Zafrullah, Almost splitting sets and AGCD domains, Comm. Algebra 32 (2004), 147–158.

- [5] D.F. Anderson and G.W. Chang, Almost splitting sets in integral domains, II, J. Pure Appl. Algebra 208 (2007), 351–359.
- [6] A. Bouvier and M. Zafrullah, On some class groups of an integral domain, Bull. Soc. Math. Gréce (N.S.) 29 (1988), 45–59.
- [7] G.W. Chang, Almost splitting sets in integral domains, J. Pure Appl. Algebra 197 (2005), 279–292.
- [8] G.W. Chang, Almost splitting sets S of an integral domain D such that D_S is a PID, Korean J. Math. **19** (2011), 163–169.
- [9] G.W. Chang, T. Dumitrescu, and M. Zafrullah, t-splitting sets in integral domains, J. Pure Appl. Algebra 187 (2004), 71–86.
- [10] S. El Baghdadi, L. Izelgue, and S. Kabbaj, On the class group of a graded domain, J. Pure Appl. Algebra 171 (2002), 171–184.
- [11] M. Fontana, S. Gabelli, and E. Houston, UMT-domains and domains with Prüfer integral closure, Comm. Algebra 26 (1998), 1017–1039.
- [12] R. Gilmer, *Multiplicative Ideal Theory*, Dekker, New York, 1972.
- [13] E. Houston and M. Zafrullah, On t-invertibility, II, Comm. Algebra 17 (1989), 1955–1969.
- [14] B.G. Kang, Prüfer v-multiplication domains and the ring $R[X]_{N_v}$, J. Algebra **123** (1989), 151–170.
- [15] M. Zafrullah, A general theory of almost factoriality, Manuscripta Math. 51 (1985), 29–62.

Department of Mathematics Incheon National University Incheon 406-772, Korea *E-mail*: whan@incheon.ac.kr