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ON COEFFICIENTS OF NILPOTENT POLYNOMIALS
IN SKEW POLYNOMIAL RINGS

SANG Bok NAM, SUNG JU Ryu*, AND SANG JO YUN

ABSTRACT. We observe the basic structure of the products of co-
efficients of nilpotent (left) polynomials in skew polynomial rings.
This study consists of a process to extend a well-known result for
semi-Armendariz rings. We introduce the concept of a-skew n-semi-
Armendariz ring, where « is a ring endomorphism. We prove that
a ring R is a-rigid if and only if the n by n upper triangular matrix
ring over R is a-skew n-semi-Armendariz. This result are applicable
to several known results.

1. Introduction

Throughout this paper all rings are associative with identity unless
otherwise stated. A ring is called reduced if it has no nonzero nilpotent
elements. Let a be an endomorphism of a ring R. A skew polynomial
ring with an indeterminate x over R, written by R[x;«], means the
polynomial ring R[z] with a new multiplication zr = a(r)z for r € R.
In this situation each element of R[z;«] is called (left) polynomial.

An endomorphism « is called rigid by Krempa [10] when aa(a) = 0
implies a = 0 for a € R. It is trivial that rigid endomorphisms are
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injective. Hong et al. [6] called a ring a-rigid if it has a rigid endomor-
phism « of R and they showed that a-rigid rings are reduced and « is a
monomorphism.

For a reduced ring R Armendariz [3, Lemma 1] proved that a;b; = 0
for all 7,7 whenever f(x)g(z) = 0 where f(z) = Y " a;x’, g(z) =
> i gbja? arein Rlz] ... (*). Rege et al. [13] called a ring (not necessarily
reduced) Armendariz if it satisfies (*). Reduced rings are Armendariz
by [3, Lemma 1]. The structure of Armendariz rings was observed by
many authors containing Anderson et al. [1], Hirano [4], Huh et al. [7],
Kim et al. [9], Lee et al. [12], Rege et al. [13], etc. Due to Hong et al. [5],
a ring R is called a skew Armendariz ring with an endomorphism o (or
simply an a-skew Armendariz ring) provided that for p = > 1" ja;x’, ¢ =
> i—obj? € Rlw;al, pg = 0 implies a;a’(b;) = 0 for all 4, j. Every a-
rigid ring is a-skew Armendariz by [5, Corollary 4]. Jeon et al. [8] called
a ring n-semi-Armendariz provided that if f(x) = ag+a1x+-- -+ apz™
in R[z] satisfies f(z)" = 0 then a; a4, - --a;, = 0 for any choice of a;;’s
in {ag, -+ ,a,} where 7 = 1,...,n (of course n > 2). A ring is called
semi-Armendariz if it is n-semi-Armendariz for all n > 2. Armendariz
rings are semi-Armendariz by [2, Proposition 1], but the converse need
not hold since the 2 by 2 upper triangular matrix ring over a reduced
ring is semi-Armendariz by [8, Theorem 1.2].

In the following we extend the concept of semi-Armendariz rings to
skew polynomial rings. One can see details related to semi-Armendariz
rings in [8]. In this note we will call a ring R a-skew n-semi-Armendariz
provided that f(z) = ap+az+---+a,2™ in R[x; o satisfies f(x)* =0
then

ai, o' (aiy) - o TTT (a,) = 0

for any choice of a;;’s in {ag, - ,a,} where j = 1,...,n (of course
n > 2). A ring is called a-skew semi-Armendariz if it is a-skew n-semi-
Armendariz for all n > 2. Every a-skew Armendariz ring is a-skew
semi-Armendariz by Lemma 2(4) to follow, but the converse need not
hold by the following example.

Let R be a ring and n be a positive integer. Let Mat,(R) denote the
n by n matrix ring over R and I,, be the identity of Mat,(R). We use
Un(R) (resp. L,(R)) to denote the n by n upper (resp. lower) triangular
matrix ring over R. E;; denotes the n by n matrix with (7, j)-entry 1
and zero elsewhere. Let a be an endomorphism of a ring R. We define
an endomorphism & of any subring in Mat,,(R) by (a;;) — (a(a;;)).
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EXAMPLE 1. Let Q(¢) be the quotient field with an indeterminate

2
t over Q and put R = Q(t). Define @ : R — R by £ g(t) — ;E;))

then R is a-rigid and a is a monomorphism of R with a(l) = 1.
Us(R) is a@-skew semi-Armendariz by Theorem 4 to follow. For p =

10 11 0 0 0 1 ]
(0 o)*(o o)l"’q:(o —1)*(0 —1)"36(]2[5’3’&]’We

have pg = 0 but (é é)d((g 0 )) # 0. Thus Uy(R) is not

—1
a-skew Armendariz.

2. Lemmas

Due to Lambek [11], a ring R is called symmetric if rst = 0 implies
rts = 0 for all r,s,t € R. Lambek proved that a ring R is symmet-
ric if and only if riry- -7, = 0 implies 751)7y(2) - Ton) = 0 for any
permutation ¢ of the set {1,2,...,n}, where n > 1 and r; € R for
all ¢ (see [11, Proposition 1]). This result was independently shown by
Anderson and Camillo in [2, Theorem 1.3]. We use this fact without
mentioning.

LEMMA 2. (1) Let R be a reduced ring, n be any positive integer and
ri € R fori=1,...,n. Then riry---r, = 0 implies r51)Rro@o)R- -
Rromy = 0 for any permutation o of the set {1,2,...,n

(2) Let R be an a-rigid ring and a; € R fori =1,...,m. Ifay---a,, =
0 then o™ (ay)---a"(am,) = 0 for any positive integers n;’s.

(3) A ring R is a-rigid if and only if a*'(ay) - - - a¥(a,,) = 0 (for some
positive integers k;’s) implies ay - - - a,, = 0 and R is reduced and « is a
monomorphism, where a; € R for all i.

(4) A ring R is a-skew Armendariz if and only if fy - -- f, = 0 implies
ai,a'(as,) - - ot Di(q, ) = 0, where fi,..., f, € R[z;0] and
a;;x% Is any term of f; with a;; € R.

Proof. (1) It is easily checked that reduced rings are symmetric. Thus
we obtain the result.

(2) From [6, Lemma 4( )], it is true.

(3) By (2), a®(a1) - a*n(an) = 0 implies a(ar)--- o™ (am)
aM(ay - am) = 0 where M = max{ky,...,ky,}. Thus a;---a, =
since « is a monomorphism.

=
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For the converse, let ra(r) = 0 for r € R. Then a(r)a?(r) = 0 and
hence r? = 0, since « is a monomorphism. Since R is reduced, r = 0.

(4) It suffices to show the necessity. We first compute the case
of n = 3. Let R be an a-skew Armendariz ring and suppose that
fifefs =0 for fi, fo, f3 € R[z;a]. We also use « for the endomorphism
of Rlz;a] defined by Y a;a" — Y afa;)z’. Then 0 = a1, (fafs) =
(3" ay,0b(ag,)x®)a’i(f3) and so ai,ali(as, )it (ag,) = 0, where f, =
>, ag,x% and f3 = >, as, .

Therefore we can inductively obtain a;,ai(ay,) - - - @i+ +0n=1);
(an;) = 0 for n > 4, where f; = ij aijkf fork=1,...,n.

The following is obtained naturally by definition.

LEMMA 3. (1) The class of a-skew (n-semi-)Armendariz rings is closed
under subrings.

(2) Any direct product of a-skew n-semi-Armendariz rings is a-skew
n-semi-Armendariz.

(3) Any direct sum of a-skew n-semi-Armendariz rings is a-skew n-
semi-Armendariz.

3. Main Theorem

For a ring R and a positive integer n define
N.(R) ={A € U,(R) | each diagonal entry of A is zero }.

THEOREM 4. Let R be a ring, o be a monomorphism of R with
a(l) =1, and n be a positive integer. Then the following conditions are
equivalent:

(1) R is a-rigid;

(2) Un(R) is a-skew n-semi-Armendariz for h =1,2,--- ,n+ 1;
(3) Un(R) is a-skew n-semi-Armendariz;
(4) Ly(R) is a-skew n-semi-Armendariz for h = 1,2,--- ,n+1;
(5) L,(R) is a-skew n-semi-Armendariz.

Proof. We extend the proof of [8, Theorem 1.2] to this situation.
(1)=(2): Suppose that R is a-rigid. Then R is reduced. It suffices
to prove that U,i1(R) is a-skew n-semi-Armendariz by Lemma 3(1).
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Let f(z) = Ag+ A1z + -+ + Apz™ € Uppi(R)[z;a] with f(z)" = 0
(n >2). Write

A; = (a(i)yy) for i =0,1,...,m with a(7),, = 0 for u > v.

We will use the a-rigidness and reducedness of R without referring. From
f(x)™ =0, we have the system of equations

Z A 0% (Agy) - azist *(As,) =0for k=0,1,...,mn.

s1+s2+-+spn=k

From Aj = 0, we have a(0);; = -+ = a(0)pmt1)m+1y = 0. From
Apa@™(Ay) - --a™ U™ (A,,) = 0, we have a(m);a™(a(m)y) - - - am=m
(a(m)y;) = 0 for ¢ = 1,...,n + 1; hence we get a(m) = 0 by Lemma

2(3), entailing that a(m); = 0. Thus Ay, A, € Npy1(R).
Consider the coefficient of f(z)" of degree n. In the equality

Z A81O_581 <A52) T O_‘Z?:_ll St(Asn) = 07

Ss1+-+sn=n

any term (except Aya(A;)---a" Y (A;)) contains @*(Ay) (for some s)
as a factor, and so it is contained in N,1(R) from Ay € N,11(R).
Consequently A;a(A;)---a™ Y (A4;) € N,y1(R), and so we get A; €
N,+1(R) by the same computation as A,,.

Next we proceed by induction on ¢ = 0,1,...,m — 1. Consider the
coefficient of f(z)"™ of degree ni. In the equality

Y Auat(Ay)---aRE (A, =0,
S1++Sn=ni

any term (except A;a(A;)---a" Y (A;)) contains a*(A;) (for some s)
with j < 7 as a factor, and so it is contained in N, ;(R) by induction
hypothesis. Consequently A;a(A;)---a™ Y(4;) € N,,1(R) and then
A; € N,i1(R) by the same computation as A,,. Whence we have

a(i)ll = a(i)22 == a(i)(nJrl)(nJrl) =0
for i =0,1,...,m and it follows that
A (Ay,) - aZi= o (A,) = (a(s1) 120 (als2)2s)
n—1
e aZt:l St (CL(Sn)n(n—l—l)))El(n—‘rl)
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for any choice of s;’s. But this equality is equivalent to the system of
equations

(*) > als)e (a(sz)as) - o= (a(sy ) ngme)) = 0
s1+82+-+sn=k
for k =0,1,...,mn. For the case of k£ = 1, if we multiply the equation
> als)e’ (a(s2)as) - 0= (a(sy)ngnery) = 0
s1+s2+-+sn=1

on the I‘lght side by CL(0>12 ce a(0>(i_1)ia<0)(i+1)(i+2) tee (I(O)n(n_H), then
from a(0)12 -+ a(0)p(m41) = 0 and Lemma 2(1) we obtain

(@(0)12 -+~ a(0)-nyia(l)ia+1ya(a(0) +1)6t2)) - - a(a(0)nmr1)))
(a(0)12 -+ a(0)(-1)ia(0) i41)(i+2) - - - A(0)n(ns1)) =0

fori = 1,...,n since every other term contains a(0);¢41) fori = 1,2,...,n
as factors. It then follows that

(@(0)12 - -~ a(0)—1yia(1)igi1y(a(0) 11y ir2)) - - - (a(0)n(niry))* = 0
by Lemma 2(1, 2), and so
a(0)12 - - a(0)i—1)ia(1)i+1y(a(0) i+1)i+2)) - - - (a(0)nm+1)) = 0.
We proceed by induction on £ = 0,1,...,mn — 1. Let v be maximal

in the set {s; | s1 +s2+---+ s, = k} where k € {1,...,mn — 1}.
Consider a term

a(s1)120™ (a(s2)2s) - - - A== *(a(Sn)n(ns1))

with s; = v and s; + s5 +--- + s, = k. Note that not all s;’s are equal
by the choice of v. Multiplying 231+32+---+sn=k a(s1)10® (a(s2)a3) - - -

aXio st (a(Sn)n(nt+1y) = 0 on the right side by
alsih -+ 0= (a(sim) i) 0™ (alsin)nien)
0 a5 ngoy).
we have
(a(s1)120% (a(s2)25) - -+ @0 (a5 )agnsn))
(a(s1)iz - - = (a(8,-1) 5-1):)

i n—1
OéZtil St (a(5i+1)(i+1)(i+2)) .. OZZt:l St (a(sn)n(nJrl))) =0
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by induction hypothesis and Lemma 2(1, 2) since every other term (after
multiplying) contains

ahl (a(t1)12)7 R th (a(tn)n(n—i—l))
(for some h;’s), with t; +--- + ¢, < k — 1, as factors. Thus we have

(a(s1)120° (a(52)23) - - 201 * (a8 )(nin)))> = 0

by Lemma 2(1, 2), entailing a(s1)120°* (a(s2)a3) - - - aXisy *(a(sn)nmni1)) =
0. Next take such v in the remaining terms and apply the same compu-
tation method.

Proceeding in this manner we finally get to a(uj)ina® (a(ug)ag) - - -
Xty “(a(tn)nns1y) = 0 for any choice of u;’s such that uy +uy+---+
u, = k and not all u;’s are equal. In this situation, if k is divisible
by n then we finally have a(%)ma%(a(%)gg) ot (a(£)ngne1)) = 0.
Thus all terms in (%) are zero, and consequently a(s;)120° (a(s2)23) - -
aXi=t *(a(sp)nm+1)) = 0 for any k € {1,2,...,mn — 1} and any choice
of s;’s with s1 + s+ -+ + 5, = k.

Now recalling that a(s;)120° (a(s2)a3) - - - aXi=1 % (a(sn)n(nt1)) = 0 is
equivalent to

A, @ (Ay,) - aXis (A, ) =0,
we obtain A a® (Ag,) - axi=t t(As,) =0forany k € {0,1,2,...,mn}
and any choice of s;’s with s;+- - -+s,, = k. Therefore U, ,1(R) is a-skew
n-semi-Armendariz.

(3)=(1): Assume on the contrary that there is 0 # a € R with
aa(a) = 0. Let A = (a;;) € Np(R) with a;441) = 1 for all i and
elsewhere zero, and B = (b;;) € U,(R) with b5y = a,b,, = —a and
elsewhere zero. Then we have the following computation:

(f) ABa(A) = Ba(A")B = Ba(B) =0, A" *B = (—a)E,, Ba(A¥)

= GEl(kH)
for k =1,...,n—1 and all h. Consider f(z) = A+ Bz € U,(R)[x;a].
Then since Ba(A"™!) = aFE), we have

f@)" = (A" 'B+ Ba(A" "))z = ((—a)Ey, + aE,)r =0

by (1) but A" !B, Ba(A™!) are both nonzero. Thus U,(R) is not a-
skew n-semi-Armendariz, a contradiction.

(2)=-(3) is obtained from Lemma 2(2) and the proofs of (1)=(4),
(4)=-(5), and (5)=-(1) are similar to the case of U, (R). O
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