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ON COEFFICIENTS OF NILPOTENT POLYNOMIALS

IN SKEW POLYNOMIAL RINGS

Sang Bok Nam, Sung Ju Ryu∗, and Sang Jo Yun

Abstract. We observe the basic structure of the products of co-
efficients of nilpotent (left) polynomials in skew polynomial rings.
This study consists of a process to extend a well-known result for
semi-Armendariz rings. We introduce the concept of α-skew n-semi-
Armendariz ring, where α is a ring endomorphism. We prove that
a ring R is α-rigid if and only if the n by n upper triangular matrix
ring over R is ᾱ-skew n-semi-Armendariz. This result are applicable
to several known results.

1. Introduction

Throughout this paper all rings are associative with identity unless
otherwise stated. A ring is called reduced if it has no nonzero nilpotent
elements. Let α be an endomorphism of a ring R. A skew polynomial
ring with an indeterminate x over R, written by R[x;α], means the
polynomial ring R[x] with a new multiplication xr = α(r)x for r ∈ R.
In this situation each element of R[x;α] is called (left) polynomial.

An endomorphism α is called rigid by Krempa [10] when aα(a) = 0
implies a = 0 for a ∈ R. It is trivial that rigid endomorphisms are
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injective. Hong et al. [6] called a ring α-rigid if it has a rigid endomor-
phism α of R and they showed that α-rigid rings are reduced and α is a
monomorphism.

For a reduced ring R Armendariz [3, Lemma 1] proved that aibj = 0
for all i, j whenever f(x)g(x) = 0 where f(x) =

∑m
i=0 aix

i, g(x) =∑n
j=0 bjx

j are in R[x] . . . (*). Rege et al. [13] called a ring (not necessarily

reduced) Armendariz if it satisfies (*). Reduced rings are Armendariz
by [3, Lemma 1]. The structure of Armendariz rings was observed by
many authors containing Anderson et al. [1], Hirano [4], Huh et al. [7],
Kim et al. [9], Lee et al. [12], Rege et al. [13], etc. Due to Hong et al. [5],
a ring R is called a skew Armendariz ring with an endomorphism α (or
simply an α-skew Armendariz ring) provided that for p =

∑m
i=0 aix

i, q =∑n
j=0 bjx

j ∈ R[x;α], pq = 0 implies aiα
i(bj) = 0 for all i, j. Every α-

rigid ring is α-skew Armendariz by [5, Corollary 4]. Jeon et al. [8] called
a ring n-semi-Armendariz provided that if f(x) = a0 +a1x+ · · ·+amx

m

in R[x] satisfies f(x)n = 0 then ai1ai2 · · · ain = 0 for any choice of aij ’s
in {a0, · · · , am} where j = 1, . . . , n (of course n ≥ 2). A ring is called
semi-Armendariz if it is n-semi-Armendariz for all n ≥ 2. Armendariz
rings are semi-Armendariz by [2, Proposition 1], but the converse need
not hold since the 2 by 2 upper triangular matrix ring over a reduced
ring is semi-Armendariz by [8, Theorem 1.2].

In the following we extend the concept of semi-Armendariz rings to
skew polynomial rings. One can see details related to semi-Armendariz
rings in [8]. In this note we will call a ring R α-skew n-semi-Armendariz
provided that f(x) = a0 +a1x+ · · ·+amx

m in R[x;α] satisfies f(x)n = 0
then

ai1α
i1(ai2) · · ·αi1+···+in−1(ain) = 0

for any choice of aij ’s in {a0, · · · , am} where j = 1, . . . , n (of course
n ≥ 2). A ring is called α-skew semi-Armendariz if it is α-skew n-semi-
Armendariz for all n ≥ 2. Every α-skew Armendariz ring is α-skew
semi-Armendariz by Lemma 2(4) to follow, but the converse need not
hold by the following example.

Let R be a ring and n be a positive integer. Let Matn(R) denote the
n by n matrix ring over R and In be the identity of Matn(R). We use
Un(R) (resp. Ln(R)) to denote the n by n upper (resp. lower) triangular
matrix ring over R. Eij denotes the n by n matrix with (i, j)-entry 1
and zero elsewhere. Let α be an endomorphism of a ring R. We define
an endomorphism ᾱ of any subring in Matn(R) by (aij) 7→ (α(aij)).



On coefficients of nilpotent polynomials in skew polynomial rings 423

Example 1. Let Q(t) be the quotient field with an indeterminate

t over Q and put R = Q(t). Define α : R → R by f(t)
g(t)
7→ f(t2)

g(t2)

then R is α-rigid and α is a monomorphism of R with α(1) = 1.
U2(R) is α-skew semi-Armendariz by Theorem 4 to follow. For p =(

1 0
0 0

)
+

(
1 1
0 0

)
x, q =

(
0 0
0 −1

)
+

(
0 1
0 −1

)
x ∈ U2[x; ᾱ], we

have pq = 0 but

(
1 1
0 0

)
ᾱ

((
0 0
0 −1

))
6= 0. Thus U2(R) is not

ᾱ-skew Armendariz.

2. Lemmas

Due to Lambek [11], a ring R is called symmetric if rst = 0 implies
rts = 0 for all r, s, t ∈ R. Lambek proved that a ring R is symmet-
ric if and only if r1r2 · · · rn = 0 implies rσ(1)rσ(2) · · · rσ(n) = 0 for any
permutation σ of the set {1, 2, . . . , n}, where n ≥ 1 and ri ∈ R for
all i (see [11, Proposition 1]). This result was independently shown by
Anderson and Camillo in [2, Theorem I.3]. We use this fact without
mentioning.

Lemma 2. (1) Let R be a reduced ring, n be any positive integer and
ri ∈ R for i = 1, . . . , n. Then r1r2 · · · rn = 0 implies rσ(1)Rrσ(2)R · · ·
Rrσ(n) = 0 for any permutation σ of the set {1, 2, . . . , n}.

(2) Let R be an α-rigid ring and ai ∈ R for i = 1, . . . ,m. If a1 · · · am =
0 then αn1(a1) · · ·αnm(am) = 0 for any positive integers ni’s.

(3) A ring R is α-rigid if and only if αk1(a1) · · ·αkm(am) = 0 (for some
positive integers ki’s) implies a1 · · · am = 0 and R is reduced and α is a
monomorphism, where ai ∈ R for all i.

(4) A ring R is α-skew Armendariz if and only if f1 · · · fn = 0 implies
a1jα

1j(a2j) · · ·α1j+2j+···+(n−1)j(anj
) = 0, where f1, . . . , fn ∈ R[x;α] and

aijx
ij is any term of fi with aij ∈ R.

Proof. (1) It is easily checked that reduced rings are symmetric. Thus
we obtain the result.

(2) From [6, Lemma 4(i)], it is true.
(3) By (2), αk1(a1) · · ·αkm(am) = 0 implies αM(a1) · · ·αM(am) =

αM(a1 · · · am) = 0 where M = max{k1, . . . , km}. Thus a1 · · · am = 0,
since α is a monomorphism.
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For the converse, let rα(r) = 0 for r ∈ R. Then α(r)α2(r) = 0 and
hence r2 = 0, since α is a monomorphism. Since R is reduced, r = 0.

(4) It suffices to show the necessity. We first compute the case
of n = 3. Let R be an α-skew Armendariz ring and suppose that
f1f2f3 = 0 for f1, f2, f3 ∈ R[x;α]. We also use α for the endomorphism
of R[x;α] defined by

∑
aix

i 7→
∑
α(ai)x

i. Then 0 = a1jα
1j(f2f3) =

(
∑
a1jα

1j(a2j)x
2j)α1j(f3) and so a1jα

1j(a2j)α
1j+2j(a3j) = 0, where f2 =∑

2j
a2jx

2j and f3 =
∑

3j
a3jx

3j .

Therefore we can inductively obtain a1jα
1j(a2j) · · ·α1j+2j+···+(n−1)j

(anj
) = 0 for n ≥ 4, where fk =

∑
kj
akjx

kj for k = 1, . . . , n.

The following is obtained naturally by definition.

Lemma 3. (1) The class of α-skew (n-semi-)Armendariz rings is closed
under subrings.

(2) Any direct product of α-skew n-semi-Armendariz rings is α-skew
n-semi-Armendariz.

(3) Any direct sum of α-skew n-semi-Armendariz rings is α-skew n-
semi-Armendariz.

3. Main Theorem

For a ring R and a positive integer n define

Nn(R) = {A ∈ Un(R) | each diagonal entry of A is zero }.

Theorem 4. Let R be a ring, α be a monomorphism of R with
α(1) = 1, and n be a positive integer. Then the following conditions are
equivalent:

(1) R is α-rigid;
(2) Uh(R) is ᾱ-skew n-semi-Armendariz for h = 1, 2, · · · , n+ 1;
(3) Un(R) is ᾱ-skew n-semi-Armendariz;
(4) Lh(R) is ᾱ-skew n-semi-Armendariz for h = 1, 2, · · · , n+ 1;
(5) Ln(R) is ᾱ-skew n-semi-Armendariz.

Proof. We extend the proof of [8, Theorem 1.2] to this situation.
(1)⇒(2): Suppose that R is α-rigid. Then R is reduced. It suffices
to prove that Un+1(R) is ᾱ-skew n-semi-Armendariz by Lemma 3(1).
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Let f(x) = A0 + A1x + · · · + Amx
m ∈ Un+1(R)[x; ᾱ] with f(x)n = 0

(n ≥ 2). Write

Ai = (a(i)uv) for i = 0, 1, . . . ,m with a(i)uv = 0 for u > v.

We will use the α-rigidness and reducedness of R without referring. From
f(x)n = 0, we have the system of equations∑

s1+s2+···+sn=k

As1ᾱ
s1(As2) · · · ᾱ

∑n−1
t=1 st(Asn) = 0 for k = 0, 1, . . . ,mn.

From An0 = 0, we have a(0)11 = · · · = a(0)(n+1)(n+1) = 0. From

Amᾱ
m(Am) · · · ᾱ(n−1)m(Am) = 0, we have a(m)iiα

m(a(m)ii) · · ·α(n−1)m

(a(m)ii) = 0 for i = 1, . . . , n + 1; hence we get a(m)nii = 0 by Lemma
2(3), entailing that a(m)ii = 0. Thus A0, Am ∈ Nn+1(R).

Consider the coefficient of f(x)n of degree n. In the equality∑
s1+···+sn=n

As1ᾱ
s1(As2) · · · ᾱ

∑n−1
t=1 st(Asn) = 0,

any term (except A1ᾱ(A1) · · · ᾱ(n−1)(A1)) contains ᾱs(A0) (for some s)
as a factor, and so it is contained in Nn+1(R) from A0 ∈ Nn+1(R).
Consequently A1ᾱ(A1) · · · ᾱ(n−1)(A1) ∈ Nn+1(R), and so we get A1 ∈
Nn+1(R) by the same computation as Am.

Next we proceed by induction on i = 0, 1, . . . ,m − 1. Consider the
coefficient of f(x)n of degree ni. In the equality∑

s1+···+sn=ni

As1ᾱ
s1(As2) · · · ᾱ

∑n−1
t=1 st(Asn) = 0,

any term (except Aiᾱ(Ai) · · · ᾱ(n−1)(Ai)) contains ᾱs(Aj) (for some s)
with j < i as a factor, and so it is contained in Nn+1(R) by induction
hypothesis. Consequently Aiᾱ(Ai) · · · ᾱ(n−1)(Ai) ∈ Nn+1(R) and then
Ai ∈ Nn+1(R) by the same computation as Am. Whence we have

a(i)11 = a(i)22 = · · · = a(i)(n+1)(n+1) = 0

for i = 0, 1, . . . ,m and it follows that

As1ᾱ
s1(As2) · · · ᾱ

∑n−1
t=1 st(Asn) = (a(s1)12α

s1(a(s2)23)

· · ·α
∑n−1

t=1 st(a(sn)n(n+1)))E1(n+1)
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for any choice of si’s. But this equality is equivalent to the system of
equations

(∗)
∑

s1+s2+···+sn=k

a(s1)12α
s1(a(s2)23) · · ·α

∑n−1
t=1 st(a(sn)n(n+1)) = 0

for k = 0, 1, . . . ,mn. For the case of k = 1, if we multiply the equation∑
s1+s2+···+sn=1

a(s1)12α
s1(a(s2)23) · · ·α

∑n−1
t=1 st(a(sn)n(n+1)) = 0

on the right side by a(0)12 · · · a(0)(i−1)ia(0)(i+1)(i+2) · · · a(0)n(n+1), then
from a(0)12 · · · a(0)n(n+1) = 0 and Lemma 2(1) we obtain

(a(0)12 · · · a(0)(i−1)ia(1)i(i+1)α(a(0)(i+1)(i+2)) · · ·α(a(0)n(n+1)))

(a(0)12 · · · a(0)(i−1)ia(0)(i+1)(i+2) · · · a(0)n(n+1)) = 0

for i = 1, . . . , n since every other term contains a(0)i(i+1) for i = 1, 2, . . . , n
as factors. It then follows that

(a(0)12 · · · a(0)(i−1)ia(1)i(i+1)α(a(0)(i+1)(i+2)) · · ·α(a(0)n(n+1)))
2 = 0

by Lemma 2(1, 2), and so

a(0)12 · · · a(0)(i−1)ia(1)i(i+1)α(a(0)(i+1)(i+2)) · · ·α(a(0)n(n+1)) = 0.

We proceed by induction on k = 0, 1, . . . ,mn− 1. Let v be maximal
in the set {si | s1 + s2 + · · · + sn = k} where k ∈ {1, . . . ,mn − 1}.
Consider a term

a(s1)12α
s1(a(s2)23) · · ·α

∑n−1
t=1 st(a(sn)n(n+1))

with si = v and s1 + s2 + · · · + sn = k. Note that not all sj’s are equal
by the choice of v. Multiplying

∑
s1+s2+···+sn=k a(s1)12α

s1(a(s2)23) · · ·
α
∑n−1

t=1 st(a(sn)n(n+1)) = 0 on the right side by

a(s1)12 · · ·α
∑i−2

t=1 st(a(si−1)(i−1)i)α
∑i

t=1 st(a(si+1)(i+1)(i+2))

· · ·α
∑n−1

t=1 st(a(sn)n(n+1)),

we have

(a(s1)12α
s1(a(s2)23) · · ·α

∑n−1
t=1 st(a(sn)n(n+1)))

(a(s1)12 · · ·α
∑i−2

t=1 st(a(si−1)(i−1)i)

α
∑i

t=1 st(a(si+1)(i+1)(i+2)) · · ·α
∑n−1

t=1 st(a(sn)n(n+1))) = 0
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by induction hypothesis and Lemma 2(1, 2) since every other term (after
multiplying) contains

αh1(a(t1)12), · · · , αhn(a(tn)n(n+1))

(for some hi’s), with t1 + · · ·+ tn ≤ k − 1, as factors. Thus we have

(a(s1)12α
s1(a(s2)23) · · ·α

∑n−1
t=1 st(a(sn)n(n+1)))

2 = 0

by Lemma 2(1, 2), entailing a(s1)12α
s1(a(s2)23) · · ·α

∑n−1
t=1 st(a(sn)n(n+1)) =

0. Next take such v in the remaining terms and apply the same compu-
tation method.

Proceeding in this manner we finally get to a(u1)12α
u1(a(u2)23) · · ·

α
∑n−1

t=1 ut(a(un)n(n+1)) = 0 for any choice of ui’s such that u1 + u2 + · · ·+
un = k and not all ui’s are equal. In this situation, if k is divisible

by n then we finally have a( k
n
)12α

k
n (a( k

n
)23) · · ·α

k(n−1)
n (a( k

n
)n(n+1)) = 0.

Thus all terms in (∗) are zero, and consequently a(s1)12α
s1(a(s2)23) · · ·

α
∑n−1

t=1 st(a(sn)n(n+1)) = 0 for any k ∈ {1, 2, . . . ,mn − 1} and any choice
of si’s with s1 + s2 + · · ·+ sn = k.

Now recalling that a(s1)12α
s1(a(s2)23) · · ·α

∑n−1
t=1 st(a(sn)n(n+1)) = 0 is

equivalent to

As1ᾱ
s1(As2) · · · ᾱ

∑n−1
t=1 st(Asn) = 0,

we obtain As1ᾱ
s1(As2) · · · ᾱ

∑n−1
t=1 st(Asn) = 0 for any k ∈ {0, 1, 2, . . . ,mn}

and any choice of si’s with s1+· · ·+sn = k. Therefore Un+1(R) is ᾱ-skew
n-semi-Armendariz.

(3)⇒(1): Assume on the contrary that there is 0 6= a ∈ R with
aα(a) = 0. Let A = (aij) ∈ Nn(R) with ai(i+1) = 1 for all i and
elsewhere zero, and B = (bij) ∈ Un(R) with b11 = a, bnn = −a and
elsewhere zero. Then we have the following computation:

(†) ABᾱ(A) = Bᾱ(Ah)B = Bᾱ(B) = 0, An−kB = (−a)Ekn, Bᾱ(Ak)

= aE1(k+1)

for k = 1, . . . , n − 1 and all h. Consider f(x) = A + Bx ∈ Un(R)[x; ᾱ].
Then since Bᾱ(An−1) = aE1n we have

f(x)n = (An−1B +Bᾱ(An−1))x = ((−a)E1n + aE1n)x = 0

by (†) but An−1B,Bᾱ(An−1) are both nonzero. Thus Un(R) is not ᾱ-
skew n-semi-Armendariz, a contradiction.

(2)⇒(3) is obtained from Lemma 2(2) and the proofs of (1)⇒(4),
(4)⇒(5), and (5)⇒(1) are similar to the case of Un(R).
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