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REMARK ON AVERAGE OF CLASS NUMBERS OF
FUNCTION FIELDS

Hwanvyup JUNG

ABSTRACT. Let k =TF,(T) be a rational function field over the finite
field F,, where ¢ is a power of an odd prime number, and A = F,[T].
Let v be a generator of Fy. Let H,, be the subset of A consisting of
monic square-free polynomials of degree n. In this paper we obtain
an asymptotic formula for the mean value of L(1, x,p) and calculate
the average value of the ideal class number h,p when the average is
taken over D € Hogio.

1. Introduction and statement of result

Let kK = F,(T') be a rational function field over the finite field F,,
where ¢ is a power of an odd prime number, and A = F,[T]. Let A" be
the set of monic polynomials in A and H be the subset of AT consisting
of monic square-free polynomials. Write AT = {N € A" : deg N = n}
and H,, = H N A} For any nonconstant square free D € A™, let Op
be the integral closure of A in k(v/D) and hp be the ideal class number
of Op. Hoffstein and Rosen [3] calculated the average value of the ideal
class number hp when the average is taken over all monic polynomials
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D of a fixed odd degree. Andrade [1] obtained an asymptotic formula for
the mean value of L(1, xp) and calculated the average value of the ideal
class number hp when the average is taken over D € Hy,q 1. We remark
that Andrade assumed that ¢ = 1 mod 4 for simplicity, but his results
hold true for any odd ¢ > 3. In a recent paper, the author [4] obtained
an asymptotic formula for the mean value of L(1, yp) and calculated the
average value of the ideal class number hp when the average is taken over
D € Hyyio. Note that if D € Hyyyq, the infinite place oo, = (1/T) of
k ramifies in k(v/D), i.e., k(v/D)/k is a (ramified) imaginary quadratic
extension, and if D € Hyyyo, ooy splits in k(v/D), ie., k(v'D)/k is a
real quadratic extension. Let v be a fixed generator of F;. Any inert
imaginary quadratic extension K of k (i.e., oo is inert in K) can be
written uniquely in the form K = k(y/yD) for some D € Hayio. The
aim of this paper is to study the asymptotic formula for the mean value
of L(1,xyp) and calculate the average value of the ideal class number
hyp when the average is taken over D € Hgzo. We state our main
results.

THEOREM 1.1. We have
S L(1xyp) = [DIP(2) + O (2¢7)

DeHagi2

where |D| = ¢*"2 and

P = TT ('~ ey

PeAT
irreducible

Since §Hagi2 = (¢ — 1)¢*™ (see (2.1)), as a corollary of the Theorem
1.1, we have the following.

COROLLARY 1.2. We have

1
> L(1,xyp) ~ [DIP(2)
ﬂ%29+2 DeHagt2

as g — 00.

For any D € Hygy2, we have the following class number formula
(see [3, Theorem 0.6]):

(1.1) L1 xo0) = g+l q¢a(2)

211" 231D
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By Corollary 1.2 and the class number formula (1.1), we have the fol-
lowing asymptotic formula for the average of the class number A, p.

THEOREM 1.3. We have

P
R L

DeHagyo2

ﬁHQngQ

as g — 00.

2. Preliminaries

2.1. Quadratic Dirichlet L-function. Let AT be the set of all monic
polynomials in A and Al = {N € A" : deg N = n} (n > 0). The zeta
function (s (s) of A is defined by the infinite series

Cals) = > INI™™.

NeA+

It is straightforward to see that (y(s) = 1_(}%. For any square-free
D € A, the quadratic character xp is defined by the Jacobi symbol
Xp(N) = (£) and the quadratic Dirichlet L-function L(s, xp) associated
to xp is
L(s,xp) = > xp(N)|N| ™.

NeA+
We can write L(s, Xp) = Y, 0n(D)q™" with 0,,(D) = > yepr XD(N).
Since 0,(D) = 0 for n > deg D, L(s, xp) is a polynomial in ¢—* of degree
< deg D — 1. Putting u = ¢~*, write

deg D—1
L(u,xp) = Z on(D)u" = L(s, xp).
n=0

The cardinality of H,, is #H, = g and #H,, = (1 — ¢ )¢ (n > 2). In
particular, we have

2g+2

— _ g9 — q
(21) #H29+2 - (q 1)(]2 = CA(Q)

Fix a generator y of F;. Write D =D for any D € Hyyyo. Since (3) =
(—1)%eN we have (£) = (=1)%e"(£). Hence, 0,(D) = (—1)"0,(D).
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For D € Hagro, L(u, xp) has a trivial zero at uw = —1. The complete
L-function L(u, xp) is defined by

L(u,xp) = (1+u)"L(u, xp)-

It is a polynomial of even degree 2¢g and satisfies the functional equation

(2.2) L(u,xp) = (qu*)?L((qu)™", xp)-

LEMMA 2.1. Let xp be a quadratic character, where D € Hagyo.
Then

Y

Lg " xp) =Y _(=1)"¢" D xn(N)+ (=1)% @Y "3 xp(N)

n=0 NeAj n=0 Neat
g1 n +1
iy - (=)™ + (=1)*
+(1+q )qu< 5 S o).
n=0 NeAf

(2.3) Gn(D) = Z(—m*iai([)) (0 <n < 2g).

By substituting £(u, Xp) = S Gn(D)u™ into (2.2) and equating co-
efficients, we have 6,,(D) = G9y-n(D)q 9™ or Gy_n(D) = G,(D)g?".

Hence,

g g—1
L(u,xp) = Y Fu(D)u" +¢u™ Y 54(D)g "u™"
n=0 n=0
In particular, we have
~ g ~ g—1 ~
(2.4) L™ xp) =D 5u(D)g " +47 Y 5u(D)
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By substituting (2.3) into (2.4) and using ¢,,(D) = (—1)"0,,(D), we have

g _ g
i —1)9g~(9+1)
g™ x0) = g S0 D)+ S )
n= + q n=0
g—1 1
- (=" + (=1)"
g D).
+a nz; (5 7.(D)
So we get the result since £(¢™", xp) = (1 + ¢ HL(G™", xp)- O

2.2. Contribution of square parts. The square part contributions

in the summation of L(1, xp) over D € Hy,yo are given as follow.
PROPOSITION 2.2. We have

4]

(2.5) ¢’ Y Y. 1=|DIP@2)—q BHIIDP(1)+0(¢),

[MS]

m=0 LeAs, DEH2g+42
(L,D)=1
(2.6)
(3]
(1) > 1= (1P HDIP(L) + O (9¢°)
m=0 pepf De€Hagi2
(L,D)=1
and

gty 2
(2.7) (1+q‘1)q‘g(#>z S

m=0 reat DEHagt2
(L,D)=1

~ g+ g (LU ipa) + 0 o).

Proof. The proofs are mild modifications of those of Proposition 3.7
n [4]. We only give the proof of (2.7). By using the fact that (see [2,
Proposition 5.2]))

_ Il — B(1)
> =gl o (Vg

DeHagio P|L
(D,L)=1
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we have

m=0 repf, D€Hzg 2
(L,D)=1

(23]

=(1+q‘1)q‘9(1+(2 )gH) 2l Z > T[a+1P

m=0 L6A+ P|L

(23]

ADIDY |L| ,

m=0 recat

where ®(L) is the Euler totient function. Using the fact that ), ,+ ®(L)
= (1 —q1)¢*™ (see [5, Proposition 2.7]), we have

[453]
_"Z > ]L] qz DI
m=0 et LeA,
[457]
=(q—1) Z

By using the fact that ( [2, Lemma 5.7])

2 P =am 3, u 1_[1+1|P|’

LeA}, P|L McA+t PIM
deg M<m
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we have
(2.8)
[451]

(14 ¢ g <1+(;1)g+1) |D| Z Z H (1 +|PIY

m=0 LeAf, PIL

(23]

_(1+q—1)q—g(1+(2 V“) |D| mzo o

Z M H 1 +1|P|

MeAt P|M
deg M<m
] 1+ (~1)7+! (M) 1
- Dgots-1 (22727 ) p
(¢+1)g 5 Dl Y g H1+|P|
MeA™ P|M
deg M<[451]
_ 14 (—1)9t! 1
— Dg~t2) (X =7 VD M ]
(¢+1)g 5 2/ | )H1+\P\
MeA* P|M
deg M<[25]

Finally, by using ( [4, Lemma 3.3, Lemma 3.5])

(M) 1 a1
> e =r+o ()

MeAt
deg M<[27]
and
1 g+1
M <
2. )HH—]P]— 2
MeA™ P|M
deg M<[45= 1]

we have

[45]

(1+q—1)q—g (1+(2 )g—l—l) |D| Z H 1—|—‘P‘ 1

m=0 pcat P|L

gl 1g+1
= (g + 1)g o= ]1( ) )IDIP )+ 0 (9¢) .
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2.3. Contribution of non square parts. The non square part con-
tributions in the summation of L(1,xp) over D € Ha,io are given as
follow.

ProprosITION 2.3. We have

(2.9) YD DT Y xn(N) =0(2%°),

DeHag 2 n=0 NeAt
N#£O

(210)  (=1)7g ) 3T Z Y xp(N) =0(2%*)

DeHtagra n=0 NecAT
N#0

and

(2.11)

L+qg? > Z( g+1)ZXD 0 (2%¢°).

DeHagy2 n=0 NeAt
N#D

Proof. As in [2, Lemma 6.4], for any non-square N € A* we have

(2.12) > Xp(N) < gt 20eEN

DeHagt2

Using (2.12), we have

Z Z(_l)ann Z Xp(N) < Zq*” Z qg+12n—1

DeHagt2 n=0 NeAS Nead

NAO

g
<@y <2,
n=0
g
S TRl VI 9D YRVEIRYRED o) SPAEE
DeHagt2 n=0 Ncaf n=0 NeaS
NAO

g
<Y <2y
n=0
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and

-1

(14+q¢Yg™? ((_1)n ”‘2(_1)9“ Z xp(N)

DeHagi2 NeAf

Q

3

N;AEI
JETRTD W
n= ON€A+
g—1
<(g+1)) 2" < 2%¢°
n=0
O
3. Proof of Theorem 1.1
By Lemma 2.1, we have
(3.1)
g
Y Lxp) = Y, D= D xpN) + (=1)%q
Detagt2 DeHagt2 n=0 NeAt

SO S e

DeHagi2 n=0 yep}t

+(1+q¢ghe Z Z((_l)n +2(_1>g+1) Z xp(N

DeHagy2 n=0 NeAtb

By (2.5) and (2.9), we have

(3.2) S>>0 Y xo(N

DeHagy2 n=0 NeA}

= [DIP(2) — ¢ EFVIDIP(1) + O (27¢*+)
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and, by (2.6) and (2.10), we have

(33)  (=1)%g ) »- ZZXD

DeHagt2 n=0 Neat
= (—1)9q” @WITEDIP(1) + O (29T1¢7 ).
Similarly, by (2.7) and (2.11), we have

(34)  (I4+q¢Hg? > i((_l)n QH) > xo(N

DeHagta n=0 NeAf

1+ (—1)9+t
~ (g7 (G ) ipipa) + 0 (.
It is easy to see that

+1
(—1)9g-HDHE | (g 4 1)q-o R (%) e g
Hence, by inserting (3.2), (3.3) and (3.4) into (3.1), we get
> L(1,xp) = IDIP(2) + O (2%).

DeHagt2
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