A REFINED ENUMERATION OF p-ARY LABELED TREES

Seunghyun Seo† and Heesung Shin‡

Abstract. Let $T_p^{(n)}$ be the set of p-ary labeled trees on \{1, 2, \ldots, n\}. A maximal decreasing subtree of a p-ary labeled tree is defined by the maximal p-ary subtree from the root with all edges being decreasing. In this paper, we study a new refinement $T_{n,k}^{(p)}$ of $T_n^{(p)}$, which is the set of p-ary labeled trees whose maximal decreasing subtree has k vertices.

1. Introduction

Let p be a fixed integer greater than 1. A p-ary tree T is a tree such that

(i) either T is empty or has a distinguished vertex r which is called the root of T, and

(ii) $T-r$ consists of a weak ordered partition (T_1, \ldots, T_p) of p-ary trees.
A 2-ary (resp. 3-ary) tree is called binary (resp. ternary) tree. Figure 1 exhibits all the ternary tree with 3 vertices. A full p-ary tree is a p-ary tree, where each vertex has either 0 or p children. It is well known (see [6, 6.2.2 Proposition]) that the number of full p-ary trees with n internal vertices is given by the nth order-p Fuss-Catalan number \[C_n^{(p)} = \frac{1}{pn+1} \binom{pn+1}{n}. \] Clearly a full p-ary tree T with m internal vertices corresponds to a p-ary tree with m vertices by deleting all the leaves in T, so the number of p-ary trees with n vertices is also $C_n^{(p)}$.

Figure 1. All 12 ternary trees with 3 vertices

A p-ary labeled tree is a p-ary tree whose vertices are labeled by distinct positive integers. In most cases, a p-ary labeled tree with n vertices is identified with a p-ary tree on the vertex set \([n] := \{1, 2, \ldots, n\}\). Let $T_n^{(p)}$ be the set of p-ary labeled trees on \([n]\). Clearly the cardinality of $T_n^{(p)}$ is given by

\[|T_n^{(p)}| = n! C_n^{(p)} = (pn)_{n-1}, \]

where $m_{(k)} := m(m - 1) \cdots (m - k + 1)$ is a falling factorial.

For a given p-ary labeled tree T, a maximal decreasing subtree of T is defined as the maximal p-ary subtree from the root with all edges being decreasing, denoted by MD(T). Figure 2 illustrates the maximal decreasing subtree of a given ternary tree T. Let $T_{n,k}^{(p)}$ be the set of p-ary labeled trees on \([n]\) with its maximal decreasing subtree having k vertices.

In this paper we present a formula for $|T_{n,k}^{(p)}|$, which makes a refined enumeration of $T_n^{(p)}$, or a generalization of equation (1). Note that similar refinements for rooted labeled trees and ordered labeled trees were done before (see [4,5]), but the p-ary case is much more complicated and has quite different features.
A refined enumeration of p-ary labeled trees

8
7
11
3
5
9
1
2
3
4
6
9
1
2
3
4

Figure 2. The maximal decreasing subtree of T

2. Main results

From now on we will consider labeled trees only. So we will omit the word “labeled”. Recall that $T_{n,k}^{(p)}$ is the set of p-ary trees on $[n]$, whose maximal decreasing subtree has k vertices. Let $Y_{n,k}^{(p)}$ be the set of p-ary trees T on $[n]$, where T is given by attaching additional $(n - k)$ increasing leaves to a decreasing tree with k vertices. Let $F_{n,k}^{(p)}$ be the set of (non-ordered) forests on $[n]$ consisting of k p-ary trees, where the k roots are not ordered. In Figure 3, the first two forests are the same, but the third one is a different forest in $F_{4,2}^{(2)}$.

Figure 3. Forests in $F_{4,2}^{(3)}$

Define the numbers

\[t(n, k) = \left| T_{n,k}^{(p)} \right|, \]
\[y(n, k) = \left| Y_{n,k}^{(p)} \right|, \]
\[f(n, k) = \left| F_{n,k}^{(p)} \right|. \]

We will show that a p-ary tree can be “decomposed” into a p-ary tree in $\bigcup_{n,k} Y_{n,k}^{(p)}$ and a forest in $\bigcup_{n,k} F_{n,k}^{(p)}$. Thus it is important to count the numbers $y(n, k)$ and $f(n, k)$.
Lemma 2.1. For $0 \leq k < n$, the number $y(n, k)$ satisfies the recursion:

$$y(n+1, k+1) = \sum_{m=0}^{p} \binom{n}{m} p(m) \left(kp - n + m + 1 \right) \cdot y(n-m, k)$$

with the following boundary conditions:

$$y(n, n) = \prod_{j=0}^{n-1} (1 + (p-1)j) \quad \text{for } n \geq 1$$

$$y(n, k) = 0 \quad \text{for } k < \max \left(\frac{n-1}{p}, 1 \right)$$

Proof. Consider a tree Y in $\mathcal{Y}^{(p)}_{n+1, k+1}$. The tree Y with $(n+1)$ vertices consists of its maximal decreasing tree with $(k+1)$ vertices and $(n-k)$ increasing leaves. Note that the vertex 1 is always contained in $\text{MD}(Y)$.

If the vertex 1 is a leaf of Y, consider the tree Y' obtained by deleting the leaf 1 from Y. The number of vertices in Y' and $\text{MD}(Y')$ are n and k, respectively. So the number of possible trees Y' is $y(n, k)$. Since we cannot attach the vertex 1 to $(n-k)$ increasing leaves of Y', there are $kp - (n-1)$ ways of recovering Y. Thus the number of Y with the leaf 1 is

$$kp - (n-1+1) \cdot y(n, k).$$

If the vertex 1 is not a leaf of Y, then the vertex 1 has increasing leaves ℓ_1, \ldots, ℓ_m, where $1 \leq m \leq p$. Consider the tree Y'' obtained by deleting ℓ_1, \ldots, ℓ_m from Y. Clearly 1 is a leaf of Y'' and the number of vertices in Y'' and $\text{MD}(Y'')$ are $n-m+1$ and $k+1$, respectively. Thus by (5), the number of possible trees Y'' is $(kp - (n-m) + 1) \cdot y(n-m, k)$. To recover Y is to relabel all the vertices except 1 of Y'' with the label set $\{2, 3, \ldots, n+1\} \setminus \{\ell_1, \ldots, \ell_m\}$ and to attach the leaves ℓ_1, \ldots, ℓ_m to the vertex 1 of Y''. Clearly ℓ_1, \ldots, ℓ_m is a subset of $\{2, 3, \ldots, n+1\}$. It is obvious that a way of attaching ℓ_1, \ldots, ℓ_m to vertex 1 can be regarded as an injection from ℓ_1, \ldots, ℓ_m to $[p]$. Thus the number of Y without the leaf 1 is

$$\binom{n}{m} \binom{p}{m} m! (kp - (n-m) + 1) \cdot y(n-m, k).$$

Since m may be the number from 1 to p and substituting $m = 0$ in (6) yields (5), we have the recursion (2).
A refined enumeration of p-ary labeled trees

<table>
<thead>
<tr>
<th>$n \backslash k$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2</td>
<td>10</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>56</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>256</td>
<td>360</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>640</td>
<td>2672</td>
<td>2640</td>
<td>720</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>720</td>
<td>11824</td>
<td>28896</td>
<td>21840</td>
<td>5040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30464</td>
<td>196352</td>
<td>330624</td>
<td>201600</td>
<td>40320</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>35840</td>
<td>857728</td>
<td>3177600</td>
<td>4032000</td>
<td>2056320</td>
<td>362880</td>
</tr>
</tbody>
</table>

Table 1. $y(n, k)$ with $p = 2$

Since $\mathcal{Y}^{(p)}_{n, k}$ is the set of decreasing p-ary trees on $[n]$, the equation (3) holds (see [1]). For an arbitrary tree $Y \in \mathcal{Y}^{(p)}_{n, k}$, MD($Y$) consists of k vertices. So MD(Y) has $pk - (k - 1)$ locations to attach $n - k$ increasing leaves. Thus, if the inequality $pk - (k - 1) < n - k$ holds, then $\mathcal{Y}^{(p)}_{n, k}$ should be empty. For $n \geq 1$ and $k = 0$, it is obvious that $\mathcal{Y}^{(p)}_{n, k}$ is also empty. These give the equation (4).

The sequence $y(n, k)$ with $p = 2$ is shown in Table 1.

Now we calculate $f(n, k)$ which is the number of forests on $[n]$ consisting of k p-ary trees, where the k components are not ordered. Here we use the convention that the empty product is 1.

Lemma 2.2. For $0 \leq k \leq n$, we have

\[
 f(n, k) = \binom{n}{k} pk \prod_{i=1}^{n-k-1} (pn - i) \quad \text{if } n > k, \]

else $f(n, n) = 1$.

Proof. Consider a forest F in $\mathcal{F}^{(p)}_{n,k}$. The forest F consists of (non-ordered) p-ary trees T_1, \ldots, T_k with roots r_1, r_2, \ldots, r_k, where $r_1 < r_2 < \cdots < r_k$. The number of ways for choosing roots r_1, r_2, \cdots, r_k from $[n]$ is equal to $\binom{n}{k}$. From the reverse Prüfer algorithm (RP Algorithm) in [3], the number of ways for adding $n - k$ vertices successively to k roots r_1, r_2, \cdots, r_k is equal to

\[
 pk(pn - 1)(pn - 2) \cdots (pn - n + k + 1) \]
for $0 < k < n$, thus the equation (7) holds. For $0 = k < n$, $\mathcal{F}_{n,0}^{(p)}$ is empty, so $f(n,0) = 0$ included in (7). For $0 \leq k = n$, $\mathcal{F}_{n,n}^{(p)}$ is the set of forests with no edges, so $f(n,n) = 1$.

Since the number $y(n,k)$ is determined by the recurrence relation (2) in Lemma 2.1, we can count the number $t(n,k)$ with the following theorem.

Theorem 2.3. For $n \geq 1$, we have

$$(8) \quad t(n,k) = \sum_{m=k}^{n} \binom{n}{m} \frac{m-k}{n-k} (pn-pk)_{(n-m)} \cdot y(m,k) \quad \text{if} \quad 1 \leq k < n,$$

else $t(n,n) = \prod_{j=0}^{n-1} (pj - j + 1)$, where $a(\ell):=a(a-1)\cdots(a-\ell+1)$ is a falling factorial.

Proof. Given a p-ary tree T in $\mathcal{T}_{n,k}^{(p)}$, let Y be the subtree of T consisting of $\text{MD}(T)$ and its increasing children. If Y has m vertices, then Y is a subtree of T with $(m-k)$ increasing leaves. Also, the induced subgraph Z of T generated by the $(n-k)$ vertices not belonging to $\text{MD}(T)$ is a (non-ordered) forest consisting of $(m-k)$ p-ary trees whose roots are increasing leaves of Y. Figure 4 illustrates the subgraphs Y and Z of a given ternary tree T.

Now let us count the number of p-ary trees $T \in \mathcal{T}_{n,k}^{(p)}$ with $|V(Y)| = m$ where $V(Y)$ is the set of vertices in Y. First of all, the number of ways for selecting a set $V(Y) \subset [n]$ is equal to $\binom{n}{m}$. By attaching $(m-k)$
increasing leaves to a decreasing p-ary tree with k vertices, we can make a p-ary tree on $V(Y)$. So there are exactly $y(m, k)$ ways for making such a p-ary subtree on $V(Y)$. Since all the roots of Z are determined by Y, by the definition of $\mathcal{F}_{n,k}^{(p)}$ and Lemma 2.2, the number of ways for constructing the other parts on $V(T) \setminus V(\text{MD}(T))$ is equal to
\[
f(n-k, m-k) \bigg/ \binom{n-k}{m-k} = \frac{m-k}{n-k} (pn - pk)_{(n-m)}.
\]
Since the range of m is $k \leq m \leq n$, the equation (8) holds.

Finally, $\mathcal{T}^{(p)}(n, n)$ is the set of decreasing p-ary trees on $[n]$, so
\[
t(n, n) = y(n, n) = \prod_{j=0}^{n-1} (pj - j + 1)
\]
holds for $n \geq 1$.

The sequence $t(n, k)$ with $p = 2$ is listed in Table 2. Note that each row sum is equal to $n!C_n^{(p)}$ with $p = 2$.

Remark. Due to Lemma 2.1 and Theorem 2.3, we can calculate $t(n, k)$ for all n, k. In particular we express $t(n, k)$ as a linear combination of $y(k, k), y(k+1, k), \ldots, y(n, k)$. However a closed form, a recurrence relation, or a (double) generating function of $t(n, k)$ have not been found yet.

References

Department of Mathematics Education
Kangwon National University
Chuncheon 200-701, Korea
E-mail: shyunseo@kangwon.ac.kr

Department of Mathematics
Inha University
Incheon 402-751, Korea
E-mail: shin@inha.ac.kr