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GENERALIZED (θ, φ)-DERIVATIONS ON BANACH

ALGEBRAS

Choonkil Park† and Dong Yun Shin‡

Abstract. We introduce the concept of generalized (θ, φ)-derivations
on Banach algebras, and prove the Cauchy-Rassias stability of gen-
eralized (θ, φ)-derivations on Banach algebras.

1. Introduction

Let X and Y be Banach spaces with norms || · || and ‖·‖, respectively.
Consider f : X → Y to be a mapping such that f(tx) is continuous in
t ∈ R for each fixed x ∈ X. Rassias [12] introduced the following
inequality, that we call Cauchy-Rassias inequality : Assume that there
exist constants ε ≥ 0 and p ∈ [0, 1) such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(||x||p + ||y||p)
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for all x, y ∈ X. Rassias [12] showed that there exists a unique R-linear
mapping T : X → Y such that

‖f(x)− T (x)‖ ≤ 2ε

2− 2p
||x||p

for all x ∈ X. Beginning around the year 1980 the topic of approximate
homomorphisms, or the stability of the equation of homomorphism, was
studied by a number of mathematicians. Găvruta [5] generalized the
Rassias’ result in the following form: Let G be an abelian group and X
a Banach space. Denote by ϕ : G×G→ [0,∞) a function such that

ϕ̃(x, y) =
∞∑
k=0

2−kϕ(2kx, 2ky) <∞

for all x, y ∈ G. Suppose that f : G→ X is a mapping satisfying

‖f(x+ y)− f(x)− f(y)‖ ≤ ϕ(x, y)

for all x, y ∈ G. Then there exists a unique additive mapping T : G→ X
such that

‖f(x)− T (x)‖ ≤ 1

2
ϕ̃(x, x)

for all x ∈ G.
Jun and Lee [7] proved the following: Denote by ϕ : X \ {0} × X \

{0} → [0,∞) a function such that

ϕ̃(x, y) =
∞∑
j=0

1

3j
ϕ(3jx, 3jy) <∞

for all x, y ∈ X \ {0}. Suppose that f : X → Y is a mapping satisfying

‖2f(
x+ y

2
)− f(x)− f(y)‖ ≤ ϕ(x, y)

for all x, y ∈ X \ {0}. Then there exists a unique additive mapping
T : X → Y such that

‖f(x)− f(0)− T (x)‖ ≤ 1

3

(
ϕ̃(x,−x) + ϕ̃(−x, 3x)

)
for all x ∈ X \ {0}. The stability problem of functional equations has
been investigated in several papers (see [4,13,14] and references therein).

Recently, the stability of derivations on other topological structures
has been recently studied by a number of mathematicians; see [3,10,11].
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In this paper, we introduce the concept of generalized (θ, φ)-derivations
on Banach algebras, and prove the Cauchy-Rassias stability of general-
ized (θ, φ)-derivations on Banach algebras.

Throughout this paper, we denote by R the set of real numbers or
complex numbers. Let θ, φ be endomorphisms of an algebra B over
R. An additive mapping D : B → B is called a (θ, φ)-derivation on
B if D(xy) = D(x)θ(y) + φ(x)D(y) holds for all x, y ∈ B. An additive
mapping U : B → B is called a generalized (θ, φ)-derivation on B if there
exists a (θ, φ)-derivation D : B → B such that U(xy) = U(x)θ(y) +
φ(x)D(y) holds for all x, y ∈ B (see [1, 2, 6]).

2. Generalized (θ, φ)-derivations on Banach algebras

Throughout this section, let B be a Banach algebra over R with norm
‖ · ‖.

Definition 2.1. Let θ, φ : B → B be additive mappings. An additive
mapping D : B → B is called a (θ, φ)-derivation on B if D(xy) =
D(x)θ(y) + φ(x)D(y) holds for all x, y ∈ B.

An additive mapping U : B → B is called a generalized (θ, φ)-
derivation on B if there exists a (θ, φ)-derivation D : B → B such
that U(xy) = U(x)θ(y) + φ(x)D(y) holds for all x, y ∈ B.

Theorem 2.2. Let f, g, h, u : B → B be mappings with f(0) =
g(0) = h(0) = u(0) = 0 for which there exists a function ϕ : B × B →
[0,∞) such that

ϕ̃(x, y) : =
∞∑
j=0

1

2j
ϕ(2jx, 2jy) <∞,(1)

‖f(x+ y)− f(x)− f(y)‖ ≤ ϕ(x, y),(2)

‖g(x+ y)− g(x)− g(y)‖ ≤ ϕ(x, y),(3)

‖h(x+ y)− h(x)− h(y)‖ ≤ ϕ(x, y),(4)

‖u(x+ y)− u(x)− u(y)‖ ≤ ϕ(x, y),(5)

‖f(xy)− f(x)g(y)− h(x)f(y)‖ ≤ ϕ(x, y),(6)

‖u(xy)− u(x)g(y)− h(x)f(y)‖ ≤ ϕ(x, y)(7)
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for all x, y ∈ B. Then there exist unique additive mappings D, θ, φ, U :
B → B such that

‖f(x)−D(x)‖ ≤ 1

2
ϕ̃(x, x),(8)

‖g(x)− θ(x)‖ ≤ 1

2
ϕ̃(x, x),(9)

‖h(x)− φ(x)‖ ≤ 1

2
ϕ̃(x, x),(10)

‖u(x)− U(x)‖ ≤ 1

2
ϕ̃(x, x)(11)

for all x ∈ B. Moreover, D : B → B is a (θ, φ)-derivation on B, and
U : B → B is a generalized (θ, φ)-derivation on B.

Proof. By the Găvruta’s theorem [5], it follows from (1)–(5) that there
exist unique additive mappings D, θ, φ, U : B → B satisfying (8)–(11).
The additive mappings D, θ, φ, U : B → B are given by

D(x) = lim
l→∞

1

2l
f(2lx),(12)

θ(x) = lim
l→∞

1

2l
g(2lx),(13)

φ(x) = lim
l→∞

1

2l
h(2lx),(14)

U(x) = lim
l→∞

1

2l
u(2lx)(15)

for all x ∈ B.
It follows from (6) that

1

22l
‖f(22lxy)−f(2lx)g(2ly)−h(2lx)f(2ly)‖ ≤ 1

22l
ϕ(2lx, 2ly) ≤ 1

2l
ϕ(2lx, 2ly),

which tends to zero as l→∞ for all x, y ∈ B by (1). By (12)–(14),

D(xy) = D(x)θ(y) + φ(x)D(y)

for all x, y ∈ B. So the additive mapping D : B → B is a (θ, φ)-
derivation on B.

It follows from (7) that

1

22l
‖u(22lxy)−u(2lx)g(2ly)−h(2lx)f(2ly)‖ ≤ 1

22l
ϕ(2lx, 2ly) ≤ 1

2l
ϕ(2lx, 2ly),



Generalized (θ, φ)-derivations on Banach algebras 143

which tends to zero as l→∞ for all x, y ∈ B by (1). Thus

U(xy) = U(x)θ(y) + φ(x)D(y)

for all x, y ∈ B. So the additive mapping U : B → B is a generalized
(θ, φ)-derivation on B.

Corollary 2.3. Let f, g, h, u : B → B be mappings with f(0) =
g(0) = h(0) = u(0) = 0 for which there exist constants ε ≥ 0 and
p ∈ [0, 1) such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p),
‖g(x+ y)− g(x)− g(y)‖ ≤ ε(‖x‖p + ‖y‖p),
‖h(x+ y)− h(x)− h(y)‖ ≤ ε(‖x‖p + ‖y‖p),
‖u(x+ y)− u(x)− u(y)‖ ≤ ε(‖x‖p + ‖y‖p),

‖f(xy)− f(x)g(y)− h(x)f(y)‖ ≤ ε(‖x‖p + ‖y‖p),
‖u(xy)− u(x)g(y)− h(x)f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ B. Then there exist unique additive mappings D, θ, φ, U :
B → B such that

‖f(x)−D(x)‖ ≤ 2ε

2− 2p
‖x‖p,

‖g(x)− θ(x)‖ ≤ 2ε

2− 2p
‖x‖p,

‖h(x)− φ(x)‖ ≤ 2ε

2− 2p
‖x‖p,

‖u(x)− U(x)‖ ≤ 2ε

2− 2p
‖x‖p

for all x ∈ B. Moreover, D : B → B is a (θ, φ)-derivation on B, and
U : B → B is a generalized (θ, φ)-derivation on B.

Proof. Defining ϕ(x, y) = ε(‖x‖p + ‖y‖p) to be Th.M. Rassias upper
bound in the Cauchy-Rassias inequality, and applying Theorem 2.2, we
get the desired result.

Corollary 2.4. Let θ, φ : B → B be additive mappings. Let f, u :
B → B be mappings with f(0) = u(0) = 0 for which there exists a
function ϕ : B ×B → [0,∞) satisfying (1), (2), and (5) such that

‖f(xy)− f(x)θ(y)− φ(x)f(y)‖ ≤ ϕ(x, y),(16)

‖u(xy)− u(x)θ(y)− φ(x)f(y)‖ ≤ ϕ(x, y)(17)
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for all x, y ∈ B. Then there exists a unique (θ, φ)-derivation D : B → B
satisfying (8), and there exists a unique generalized (θ, φ)-derivation
U : B → B satisfying (11).

Proof. Letting θ = g and φ = h in the statement of Theorem 2.2, we
get the result.

Theorem 2.5. Let f, g, h, u : B → B be mappings with f(0) =
g(0) = h(0) = u(0) = 0 for which there exists a function ϕ : B × B →
[0,∞) satisfying (6) and (7) such that

ϕ̃(x, y) : =
∞∑
j=0

1

3j
ϕ(3jx, 3jy) <∞,(18)

‖2f(
x+ y

2
)− f(x)− f(y)‖ ≤ ϕ(x, y),(19)

‖2g(
x+ y

2
)− g(x)− g(y)‖ ≤ ϕ(x, y),(20)

‖2h(
x+ y

2
)− h(x)− h(y)‖ ≤ ϕ(x, y),(21)

‖2u(
x+ y

2
)− u(x)− u(y)‖ ≤ ϕ(x, y)(22)

for all x, y ∈ B. Then there exist unique additive mappings D, θ, φ, U :
B → B such that

‖f(x)−D(x)‖ ≤ 1

3

(
ϕ̃(x,−x) + ϕ̃(−x, 3x)

)
,(23)

‖g(x)− θ(x)‖ ≤ 1

3

(
ϕ̃(x,−x) + ϕ̃(−x, 3x)

)
,(24)

‖h(x)− φ(x)‖ ≤ 1

3

(
ϕ̃(x,−x) + ϕ̃(−x, 3x)

)
,(25)

‖u(x)− U(x)‖ ≤ 1

3

(
ϕ̃(x,−x) + ϕ̃(−x, 3x)

)
(26)

for all x ∈ B. Moreover, D : B → B is a (θ, φ)-derivation on B, and
U : B → B is a generalized (θ, φ)-derivation on B.

Proof. By the Jun and Lee’s theorem [7, Theorem 1], it follows from
(18)–(22) that there exist unique additive mappings D, θ, φ, U : B → B
satisfying (23)–(26). The additive mappings D, θ, φ, U : B → B are
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given by

D(x) = lim
l→∞

1

3l
f(3lx),(27)

θ(x) = lim
l→∞

1

3l
g(3lx),(28)

φ(x) = lim
l→∞

1

3l
h(3lx),(29)

U(x) = lim
l→∞

1

3l
u(3lx),(30)

for all x ∈ B.

It follows from (6) that

1

32l
‖f(32lxy)−f(3lx)g(3ly)−h(3lx)f(3ly)‖ ≤ 1

32l
ϕ(3lx, 3ly) ≤ 1

3l
ϕ(3lx, 3ly),

which tends to zero as l→∞ for all x, y ∈ B by (18). By (27)–(30),

D(xy) = D(x)θ(y) + φ(x)D(y)

for all x, y ∈ B. So the additive mapping D : B → B is a (θ, φ)-
derivation on B.

It follows from (7) that

1

32l
‖u(32lxy)−u(3lx)g(3ly)−h(3lx)f(3ly)‖ ≤ 1

32l
ϕ(3lx, 3ly) ≤ 1

3l
ϕ(3lx, 3ly),

which tends to zero as l→∞ for all x, y ∈ B by (18). Thus

U(xy) = U(x)θ(y) + φ(x)D(y)

for all x, y ∈ B. So the additive mapping U : B → B is a generalized
(θ, φ)-derivation on B.

Corollary 2.6. Let f, g, h, u : B → B be mappings with f(0) =
g(0) = h(0) = u(0) = 0 for which there exist constants ε ≥ 0 and
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p ∈ [0, 1) such that

‖2f(
x+ y

2
)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p),

‖2g(
x+ y

2
)− g(x)− g(y)‖ ≤ ε(‖x‖p + ‖y‖p),

‖2h(
x+ y

2
)− h(x)− h(y)‖ ≤ ε(‖x‖p + ‖y‖p),

‖2u(
x+ y

2
)− u(x)− u(y)‖ ≤ ε(‖x‖p + ‖y‖p),

‖f(xy)− f(x)g(y)− h(x)f(y)‖ ≤ ε(‖x‖p + ‖y‖p),
‖u(xy)− u(x)g(y)− h(x)f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ B. Then there exist unique additive mappings D, θ, φ, U :
B → B such that

‖f(x)−D(x)‖ ≤ 3 + 3p

3− 3p
ε‖x‖p,

‖g(x)− θ(x)‖ ≤ 3 + 3p

3− 3p
ε‖x‖p,

‖h(x)− φ(x)‖ ≤ 3 + 3p

3− 3p
ε‖x‖p,

‖u(x)− U(x)‖ ≤ 3 + 3p

3− 3p
ε‖x‖p

for all x ∈ B. Moreover, D : B → B is a (θ, φ)-derivation on B, and
U : B → B is a generalized (θ, φ)-derivation on B.

Proof. Defining ϕ(x, y) = ε(‖x‖p + ‖y‖p), and applying Theorem 2.5,
we get the desired result.

Corollary 2.7. Let θ, φ : B → B be additive mappings. Let f, u :
B → B be mappings with f(0) = u(0) = 0 for which there exists
a function ϕ : B × B → [0,∞) satisfying (18), (19), (22), (16) and
(17). Then there exists a unique (θ, φ)-derivation D : B → B satisfying
(23), and there exists a unique generalized (θ, φ)-derivation U : B → B
satisfying (26).

Proof. Letting θ = g and φ = h in the statement of Theorem 2.5, we
get the result.

Theorem 2.8. Let f, g, h, u : B → B be mappings with f(0) =
g(0) = h(0) = u(0) = 0 for which there exists a function ϕ : B × B →
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[0,∞) satisfying (19)–(22), (6) and (7) such that
∞∑
j=0

32jϕ(
x

3j
,
y

3j
) <∞(31)

for all x, y ∈ B. Then there exist unique additive mappings D, θ, φ, U :
B → B such that

‖f(x)−D(x)‖ ≤ ϕ̃(
x

3
,−x

3
) + ϕ̃(−x

3
, x),(32)

‖g(x)− θ(x)‖ ≤ ϕ̃(
x

3
,−x

3
) + ϕ̃(−x

3
, x),(33)

‖h(x)− φ(x)‖ ≤ ϕ̃(
x

3
,−x

3
) + ϕ̃(−x

3
, x),(34)

‖u(x)− U(x)‖ ≤ ϕ̃(
x

3
,−x

3
) + ϕ̃(−x

3
, x)(35)

for all x ∈ B, where

ϕ̃(x, y) :=
∞∑
j=0

3jϕ(
x

3j
,
y

3j
)

for all x, y ∈ B. Moreover, D : B → B is a (θ, φ)-derivation on B, and
U : B → B is a generalized (θ, φ)-derivation on B.

Proof. By the Jun and Lee’s theorem [7, Theorem 7], it follows from
(31) and (19)–(22) that there exist unique additive mappings D, θ, φ, U :
B → B satisfying (32)–(35). The additive mappings D, θ, φ, U : B → B
are given by

D(x) = lim
l→∞

3lf(
x

3l
),(36)

θ(x) = lim
l→∞

3lg(
x

3l
),(37)

φ(x) = lim
l→∞

3lh(
x

3l
),(38)

U(x) = lim
l→∞

3lu(
x

3l
),(39)

for all x ∈ B.
It follows from (6) that

32l‖f(
xy

32l
)− f(

x

3l
)g(

y

3l
)− h(

x

3l
)f(

y

3l
)‖ ≤ 32lϕ(

x

3l
,
y

3l
),

which tends to zero as l→∞ for all x, y ∈ B by (31). By (36)–(39),

D(xy) = D(x)θ(y) + φ(x)D(y)
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for all x, y ∈ B. So the additive mapping D : B → B is a (θ, φ)-
derivation on B.

It follows from (7) that

32l‖u(
xy

32l
)− u(

x

3l
)g(

y

3l
)− h(

x

3l
)f(

y

3l
)‖ ≤ 32lϕ(

x

3l
,
y

3l
),

which tends to zero as l→∞ for all x, y ∈ B by (31). Thus

U(xy) = U(x)θ(y) + φ(x)D(y)

for all x, y ∈ B. So the additive mapping U : B → B is a generalized
(θ, φ)-derivation on B.

Corollary 2.9. Let f, g, h, u : B → B be mappings with f(0) =
g(0) = h(0) = u(0) = 0 for which there exist constants ε ≥ 0 and
p ∈ (2,∞) such that

‖2f(
x+ y

2
)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p),

‖2g(
x+ y

2
)− g(x)− g(y)‖ ≤ ε(‖x‖p + ‖y‖p),

‖2h(
x+ y

2
)− h(x)− h(y)‖ ≤ ε(‖x‖p + ‖y‖p),

‖2u(
x+ y

2
)− u(x)− u(y)‖ ≤ ε(‖x‖p + ‖y‖p),

‖f(xy)− f(x)g(y)− h(x)f(y)‖ ≤ ε(‖x‖p + ‖y‖p),
‖u(xy)− u(x)g(y)− h(x)f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ B. Then there exist unique additive mappings D, θ, φ, U :
B → B such that

‖f(x)−D(x)‖ ≤ 3p + 3

3p − 3
ε‖x‖p,

‖g(x)− θ(x)‖ ≤ 3p + 3

3p − 3
ε‖x‖p,

‖h(x)− φ(x)‖ ≤ 3p + 3

3p − 3
ε‖x‖p,

‖u(x)− U(x)‖ ≤ 3p + 3

3p − 3
ε‖x‖p

for all x ∈ B. Moreover, D : B → B is a (θ, φ)-derivation on B, and
U : B → B is a generalized (θ, φ)-derivation on B.
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Proof. Defining ϕ(x, y) = ε(‖x‖p + ‖y‖p), and applying Theorem 2.8,
we get the desired result.

Corollary 2.10. Let θ, φ : B → B be additive mappings. Let
f, u : B → B be mappings with f(0) = u(0) = 0 for which there exists
a function ϕ : B × B → [0,∞) satisfying (31), (19), (22), (16) and
(17). Then there exists a unique (θ, φ)-derivation D : B → B satisfying
(32), and there exists a unique generalized (θ, φ)-derivation U : B → B
satisfying (35).

Proof. Letting θ = g and φ = h in the statement of Theorem 2.8, we
get the result.
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