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ON THE CARDINALITY OF SEMISTAR OPERATIONS

OF FINITE CHARACTER ON INTEGRAL DOMAINS

Gyu Whan Chang

Abstract. Let D be an integral domain with Spec(D) finite, K
the quotient field of D, [D,K] the set of rings between D and K,
and SFc(D) the set of semistar operations of finite character on D.
It is well known that |Spec(D)| ≤ |SFc(D)|. In this paper, we prove
that |Spec(D)| = |SFc(D)| if and only if D is a valuation domain,
if and only if |Spec(D)| = |[D,K]|. We also study integral domains
D such that |Spec(D)|+ 1 = |SFc(D)|.

1. Introduction

Let D be an integral domain, K the quotient field of D, D̄ the integral
closure of D, [D,K] the set of rings between D and K, and Spec(D) the
set of prime ideals of D. Let F̄ (D) be the set of nonzero D-submodules
of K, F (D) the subset of F̄ (D) consisting of all nonzero fractional ideals
of D, and f(D) the set of nonzero finitely generated fractional ideals of
D; so f(D) ⊆ F (D) ⊆ F̄ (D). A mapping ∗ : F̄ (D) → F̄ (D), A 7→ A∗,
is called a semistar operation on D if the following three conditions are
satisfied for all 0 6= a ∈ K and E,F ∈ F̄ (D):

1. (aE)∗ = aE∗,
2. E ⊆ E∗,
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3. E ⊆ F implies E∗ ⊆ F ∗, and (E∗)∗ = E∗.

Let ∗ be a semistar operation on D. If D∗ = D, then the map ∗|F (D) :

F (D) → F (D), given by E∗|F (D) = E∗, is a star operation on D. Con-
versely, if ∗1 is a star operation on D, then the map ∗l1 : F̄ (D)→ F̄ (D),

defined by E∗
l
1 = E∗1 for E ∈ F (D) and E∗

l
1 = K for E ∈ F̄ (D)\F (D),

is a semistar operation on D. For each E ∈ F̄ (D), let E∗f =
⋃
{F ∗|F ⊆

E and F ∈ f(D)}. Then ∗f is also a semistar operation on D. It is clear
that (∗f )f = ∗f and F ∗ = F ∗f for F ∈ f(D). If ∗ = ∗f , then ∗ is called
a semistar operation of finite character. So ∗f is of finite character. The
v-, t-, and d-operations are the most well-known examples of semistar
operations. The v-operation is defined by Ev = (D : (D : E)) and the
t-operation is defined by t = vf . The d-operation is just the identity
function on F̄ (D), that is, Ed = E for all E ∈ F̄ (D). The notion of
semistar operations was introdced by Okabe and Matsuda [10] and have
been studied by many researchers (cf. [1, 2, 6, 7, 8, 9, 11]).

Let S(D) be the set of semistar operations on D and SFc(D) the set
of semistar operations of finite character on D; so SFc(D) ⊆ S(D). Let
dim(D) be the (Krull) dimension of D and let |A| denote the cardinality
of a set A. Assume that |SFc(D)| <∞. In [9, Theorem 7], the authors
proved that dim(D) + 1 = |SFc(D)| if and only if D is a valuation
domain; hence D is not a valuation domain if and only if dim(D) + 2 ≤
|SFc(D)|. In [8, Theorem 4.3], Mimouni showed that if D is not quasi-
local, then dim(D) + 3 ≤ |SFc(D)| and the equality holds if and only if
D is a Prüfer domain with exactly two maximal ideals M and N such
that every prime ideal of D is contained in M ∩N . He also proved that
|SFc(D)| = 2+ dim(D) if and only if D̄ is a valuation domain, D ( D̄,
there is no proper overring between D and D̄, each overring of D is
comparable to D̄, and each nonzero finitely generated ideal I of D is
divisorial, i,e., Iv = I [8, Theorem 4.4].

This paper is motivated by Mimoumi’s results [8, Theorems 4.3 and
4.4] and the following observation: For each T ∈ [D,K], the map ∗T :
F̄ (D) → F̄ (D) defined by E 7→ E∗T := ET is a semistar operation of
finite character on D [10]. In particular, if P is a prime ideal of D, then
∗P := ∗DP

∈ SFc(D).

Note that dim(D) + 1 ≤ |Spec(D)| and {DP | P ∈ Spec(D)} ⊆
[D,K]; so we have dim(D) + 1 ≤ |Spec(D)| ≤ |[D,K]| ≤ |SFc(D)| (see
Lemma 1(1)). In this paper, we prove that |Spec(D)| = |SFc(D)| if and
only if |Spec(D)| = |[D,K]|, if and only if D is a valuation domain and
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that if Spec(D) is linearly ordered, then |Spec(D)|+1 = |SFc(D)| if and
only if |[D,K]| = |Spec(D)| + 1 and t = d on D, if and only if D ( D̄,
[D,K] = {DP | P ∈ Spec(D)} ∪ {D̄}, and t = d on D. We also prove
that if Spec(D) is not linearly ordered, then |Spec(D)| + 1 = |SFc(D)|
if and only if D is a Prüfer domain with two maximal ideals P1 and P2

such that each non-maximal prime ideal of D is contained in P1 ∩ P2,
if and only if [D,K] = {DP | P ∈ Spec(D)} ∪ {D}, if and only if
|[D,K]| = |Spec(D)|+ 1.

2. Main Results

Throughout this paper, D is an integral domain with |Spec(D)| <∞,
K is the quotient field of D, D̄ is the integral closure of D, and [D,K] is
the set of rings between D and K. Let ∗ be a semistar operation on D,
and let R be an overring of D, i.e., R ∈ [D,K]. Then R∗R∗ ⊆ (R∗R∗)∗ =
(RR)∗ = R∗, and thus R∗ is an overring of D [10, Proposition 5]. In
particular, D∗ is an overring of D. Also, it is easy to see that the map
∗T : F̄ (D)→ F̄ (D) defined by E 7→ E∗T := ET is a semistar operation
of finite character on D.

Lemma 1. 1. dim(D) + 1 ≤ |Spec(D)| ≤ |[D,K]| ≤ |SFc(D)| ≤
|S(D)|.

2. dim(D) + 1 = |Spec(D)| if and only if Spec(D) is linearly ordered.

Proof. (1) Let P be a prime ideal of D, and let E∗P = EDP for all
E ∈ F̄ (D). Then ∗P is a semistar operation of finite character on D
(in particular, if P = (0), then E∗P = K for all E ∈ F̄ (D)). It is clear
that if P and Q are prime ideals of D, then P = Q ⇔ DP = DQ ⇔
∗P = ∗Q. Thus the second and third inequalities hold. The first and
fourth inequalities are clear.

(2) This follows directly from the definition of the (Krull) dimension.

Proposition 2. The following statements are equivalent.

1. dim(D) + 1 = |SFc(D)|.
2. |Spec(D)| = |SFc(D)|; so SFc(D) = {∗P | P ∈ Spec(D)}.
3. D is a valuation domain.
4. |Spec(D)| = |[D,K]|; so [D,K] = {DP | P ∈ Spec(D)}.
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Proof. (1) ⇔ (3) [9, Theorem 7].
(1) ⇒ (2) ⇒ (4) This follows directly from Lemma 1(1) and the fact

that for P,Q ∈ Spec(D), DP = DQ ⇔ P = Q ⇔ ∗P = ∗Q.
(4) ⇒ (3) First, note that D is a Prüfer domain [3, page 334] since

each overring of D is a quotient ring of D. Also, since D ∈ [D,K], we
have D = DP for some P ∈ Spec(D), and hence D is quasi-local. Thus,
D is a valuation domain.

Corollary 3. |Spec(D)| = |S(D)| if and only if D is a strongly
discrete valuation domain.

Proof. Note that |Spec(D)| = |S(D)| implies |Spec(D)| = |SFc(D)| =
|S(D)|. Hence D is a valuation domain by Proposition 2, and hence D
is strongly discrete [9, Theorem 10]. Conversely, assume that D is a
strongly discrete valuation domain. Then |SFc(D)| = |S(D)| [9, Theo-
rem 10] and |Spec(D)| = |SFc(D)| by Proposition 2. Thus |Spec(D)| =
|S(D)|.

By Proposition 2, if D is an integral domain that is not a valuation
domain, then |Spec(D)|+1 ≤ |SFc(D)|. We next study integral domains
D with |Spec(D)| + 1 = |SFc(D)| when Spec(D) is linearly ordered
(Theorem 4) and Spec(D) is not linearly ordered (Theorem 6). .

Theorem 4. If Spec(D) is linearly ordered, then the following are
equivalent.

1. |Spec(D)|+ 1 = |SFc(D)|.
2. D ( D̄ and SFc(D) = {∗P | P ∈ Spec(D)} ∪ {∗D̄}.
3. D ( D̄, [D,K] = {DP | P ∈ Spec(D)} ∪ {D̄} and t = d on D.
4. |[D,K]| = |Spec(D)|+ 1 and t = d on D.

In this case, D̄ and DP are valuation domains such that D̄ ( DP for all
non-maximal prime ideals P of D.

Proof. (1) ⇒ (2) By [8, Theorem 4.4] and Lemma 1(2), D ( D̄, and
hence ∗D̄ 6= ∗P for all P ∈ Spec(D). Hence |{∗P | P ∈ Spec(D)} ∪
{∗D̄}| = |Spec(D)| + 1 = |SFc(D)|. Thus SFc(D) = {∗P | P ∈
Spec(D)} ∪ {∗D̄}.

(2) ⇒ (1) Clear.
(2) ⇒ (3) Let T be an overring of D. Then ∗T ∈ SFc(D), and hence

either ∗T = ∗D̄ or ∗T = ∗P for some P ∈ Spec(D). If ∗T = ∗P , then
T = T ∗T = T ∗P = TDP ⊇ DP = (DP )∗P = (DP )∗T = (DP )T ⊇ T , and
thus T = DP . Similarly, if ∗T = ∗D̄, then T = D̄. Thus [D,K] = {DP |
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P ∈ Spec(D)} ∪ {D̄}. Also, since t ∈ SFc(D) and Dt = D, we have
t = d on D.

(3)⇒ (2) Let V ∈ [D,K] be a valuation domain such that Spec(D) =
{Q ∩D | Q ∈ Spec(V )} (cf. [3, Corollary 19.7]). Then V 6= DP for all
P ∈ Spec(D), and thus V = D̄ by (3). Similarly, we have that DP is a
valuation domain and D̄ ( DP for each non-maximal prime ideal P of D.
Let ∗ be a semistar operation of finite character on D. If D∗ = D, then
∗|F (D) is a star operation of finite character, and hence t = ∗|F (D) = d as
star operations. Note that ∗, t and d are of finite character; so ∗ = d as
semistar operations. Next, assume that D∗ 6= D. Then D∗ is a proper
overring of D, and thus D∗ = DP for some non-maximal P ∈ Spec(D)
or D∗ = D̄ by (3). For any A ∈ f(D), since DP is a valuation domain,
there exists an a ∈ A such that ADP = aDP . Thus A∗ = (AD)∗ =
(AD∗)∗ = (ADP )∗ = (aDP )∗ = a(DP )∗ = aDP = ADP = A∗P . Also,
since ∗ is of finite character, we have ∗ = ∗P . Similarly, if D∗ = D̄, then
∗ = ∗D̄. Thus the proof is completed.

(3) ⇒ (4) Clear.

(4) ⇒ (3) Note that D̄ 6= DP for all non-maximal ideals P of D; so
it suffices to show that D ( D̄ by (4).

Assume that D = D̄. Then D is not a valuation domain by (4) and
Proposition 2, and hence there is a valuation domain V such that D ⊆ V
and Spec(D) = {Q ∩ D | Q ∈ Spec(D)} [3, Corollary 19.7]. Clearly,
V 6= DP for all P ∈ Spec(D), and so [D,K] = {DP | P ∈ SpecD}∪{V }.
Since D is not a valuation domain, there are a, b ∈ D such that (a, b)D is
not invertible and b

a
∈ V \D. Let f = aX−b ∈ D[X], where D[X] is the

polynomial ring over D, and let ϕ : D[X]→ D[ b
a
], defined by ϕ(g(X)) =

g( b
a
), be the canonical ring homomorphism. Then ϕ is onto and the

kernel of ϕ is Qf := fK[X]∩D[X]. Hence D[X]/Qf = D[ b
a
]. Note that

if Qf * P [X] for all P ∈ Spec(D), then there is a polynomial g ∈ K[X]
such that D = (Afg)v = (AfAg)v, where Ah is the fractional ideal of D
generated by the coefficients of a polynomial h, ([4, Theorem 1.4] and
[3, Corollary 34.8]) because D = D̄. Also, since each prime ideal P of D
is a t-ideal, i.e., P t = P [5, Theorem 3.19], AfAg = D, and hence Af =
(a, b)D is invertible, a contradiction. Thus if P is the maximal ideal of
D, then Qf ⊆ P [X], and so (D/P )[X] = (D[X]/Qf )/(P [X]/Qf ). Thus
D[ b

a
] = D[X]/Qf is not quasi-local since (D/P )[X] has infinitely many

maximal ideals. Thus D ( D[ b
a
] ( V , whence |[D,K]| ≥ |Spec(D)|+ 2,

a contradiction. Therefore, D ( D̄.
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We need a lemma for the proof of Theorem 6.

Lemma 5. Let P1, P2 be incomparable prime ideals of D, and let
∗ be the semistar operation on D defined by E∗ = EDP1 ∩ EDP2 for
all E ∈ F̄ (D). Then ∗ 6= ∗P for all P ∈ Spec(D). In particular,
|Spec(D)|+ 1 ≤ |SFc(D)|.

Proof. Let P be a prime ideal of D.
Case 1. P ( P1. Then P ∗1 = P1DP1 ∩ P1DP2 = P1DP1 ∩DP2 6= DP =

P1DP = P ∗P1 . So ∗ 6= ∗P .
Case 2. P = P1. Then P ∗2 = P2DP1 ∩ P2DP2 = DP1 ∩ P2DP2 6= DP =

P2DP = P ∗P2 . So ∗ 6= ∗P .
Case 3. P1 ( P . Then P * P2, and hence P ∗P = PDP 6= DP1∩DP2 =

PDP1 ∩ PDP2 = P ∗. So ∗ 6= ∗P .
Case 4. P is not comparable to P1. If P is comparable to P2, then

∗ 6= ∗P by Cases 1,2, and 3. If P is not comparable to P2, then P ∗P =
PDP 6= DP1 ∩DP2 = PDP1 ∩ PDP2 = P ∗, and thus ∗ 6= ∗P .

For the “in particular” part, note that ∗ is of finite character [8,
Theorem 2.4], and hence {∗P | P ∈ Spec(D)} ∪ {∗} ⊆ SFc(D) and
|{∗P | P ∈ Spec(D)} ∪ {∗}| = |Spec(D)| + 1. Thus |Spec(D)| + 1 ≤
|SFc(D)|.

In [8, Theorem 4.3], Mimoumi proved the equivalence of (2) and (3)
of Theorem 6 under the assumption that D is not quasi-local.

Theorem 6. If Spec(D) is not linearly ordered, then the following
are equivalent.

1. |Spec(D)|+ 1 = |SFc(D)|.
2. |SFc(D)| = 3 + dim(D).
3. D is a Prüfer domain with two maximal ideals P1 and P2 such that

each non-maximal prime ideal of D is contained in P1 ∩ P2.
4. SFc(D) = {∗D} ∪ {∗P | P ∈ Spec(D)}.
5. [D,K] = {DP | P ∈ Spec(D)} ∪ {D}.
6. |[D,K]| = |Spec(D)|+ 1.

Proof. (1)⇒ (2) and (3) Let P1, P2 be incomparable prime ideals of D,
and let ∗ be the semistar operation on D defined by E∗ = EDP1 ∩EDP2

for all E ∈ F̄ (D). Then ∗ is a semistar operation of finite character
[8, Theorem 2.4] and ∗ 6= ∗P for all P ∈ Spec(D) by Lemma 5. Hence
SFc(D) = {∗P | P ∈ Spec(D)} ∪ {∗} by (1). Note that if there is a
prime ideal P of D such that P is not comparable to P1 or P2, then
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the semistar operation defined by E∗i = EDP ∩ EDPi
is different form

∗ and ∗P ; so |Spec(D)| + 2 ≤ |SFc(D)|, a contradiction. Thus P1, P2

are comparable to each prime ideal in Spec(D) \ {P1, P2}. The same
argument also shows that Spec(D) \ {P1, P2} is linearly ordered.

Next, assume that D is quasi-local with maximal ideal M . Then
M 6= Pi for i = 1, 2. Note that ∗D̄ ∈ SFc(D) and D∗D̄ = D̄; so if
P is a non-maximal prime ideal of D, then ∗D̄ 6= ∗P . Also, note that
M∗ = DP1∩DP2 6= MD̄ = M∗D̄ ; so ∗D̄ 6= ∗. Hence ∗D̄ = ∗M and D = D̄.
Consider the chain of prime ideals of D containing P1, and let V be a
valuation overring of D such that Spec(V ) is contracted to the chain, i.e.,
{Q∩D | Q ∈ Spec(V )} = Spec(D) \ {P2} [3, Corollary 19.7]. Note that
∗V = ∗ or ∗V = ∗P for some P ∈ Spec(D); so by the proof of “(3)⇒ (2)”
of Theorem 5, either V = DP1 ∩DP2 or V = DP , a contradiction. Hence
D is not quasi-local, and thus P1 and P2 are maximal ideals of D and
dim(D) + 2 = |Spec(D)|; so |SFc(D)| = dim(D) + 3. Moreover, by
Lemma 1(1), [D : K] = {DP | P ∈ Spec(D)} ∪ {D}; so each overring of
D is a quotient ring of D. Thus, D is a Prüfer domain [3, page 334].

(2) ⇒ (1) Note that dim(D) + 2 ≤ |Spec(D)| by Lemma 1(2); so
|SFc(D)| = dim(D)+3 ≤ |Spec(D)|+1 ≤ |SFc(D)| by (2) and Lemma
5. Thus |Spec(D)|+ 1 = |SFc(D)|.

(3) ⇒ (5) Note that each finitely generated ideal of D is principal [3,
Proposition 7.4]; hence each overring of D is a quotient ring of D [3,
Theorem 27.5]. Thus [D,K] = {DP | P ∈ Spec(D)} ∪ {D}.

(5)⇒ (4) Note that each overring of D is a quotient ring of D by (5),
and thus D is a Prüfer domain [3, page 334]. Also, D has at most two
maximal ideals because DM1∩DM2 6= DP for any maximal ideals Mi and
non-maximal prime ideal P . Next, let ∗1 be a semistar operation of finite
character on D, and let T = D∗1 . Then T is an overring of D, and hence
either T = D or T = DP for some prime ideal P of D. If T = D, then for
any A ∈ f(D), A∗1 = (AD)∗1 = (aD)∗1 = aD∗1 = aD = A = A∗D (note
that D is a Bzeout domain, and hence AD = aD for some a ∈ A). Thus
∗1 = ∗D. Similarly, we have ∗1 = ∗P if T = DP for some P ∈ Spec(D).
This completes the proof.

(4) ⇒ (1) Clear.

(5) ⇒ (6) Clear.

(6) ⇒ (5) Let P1 and P2 be incomparable prime ideals of D, and let
R = DP1 ∩ DP2 . Then R 6= DP for all P ∈ Spec(D), and so [D,K] =
{DP | P ∈ Spec(D)} ∪ {R} by (6). As in the proof of (1) ⇒ (2) and
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(3), we can show that D is not quasi-local with maximal ideals P1 and
P2. Hence R = D, and thus [D,K] = {DP | P ∈ Spec(D)} ∪ {D}
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