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COMBINATORIAL INTERPRETATIONS OF THE

ORTHOGONALITY RELATIONS FOR SPIN

CHARACTERS OF S̃n

Jaejin Lee

Abstract. In 1911 Schur[6] derived degree and character formulas
for projective representations of the symmetric groups remarkably
similar to the corresponding formulas for ordinary representations.
Morris[3] derived a recurrence for evaluation of spin characters and
Stembridge[8] gave a combinatorial reformulation for Morris’ recur-
rence. In this paper we give combinatorial interpretations for the or-
thogonality relations of spin characters based on Stembridge’s com-
binatorial reformulation for Morris’ rule.

1. Introduction

The projective representations of the symmetric groups were orig-
inally studied by Schur. In his fundamental paper[6], Schur derived
degree and character formulas for projective representations of the sym-
metric groups remarkably similar in style to the corresponding formu-
las for ordinary representations due to Frobenius. Morris[3] derived a
recurrence for evaluation of spin characters, which is an analogue of
the well-known Murnaghan-Nakayama formula for ordinary characters
of the symmetric group Sn. Stembridge[8] then gave a combinatorial
reformulation for Morris’ recurrence using shifted rim hook tableaux,
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rather than the machinery of Hall-Littlewood functions used by Mor-
ris. Stembridge[7] found a Frobenius-type characteristic map and an
analogue of the Littlewood–Richardson rule. Sagan[4] and Worley[11]
has developed independently a combinatorial theory of shifted tableaux
parallel to the theory of ordinary tableaux. This theory includes shifted
versions of the Robinson-Schensted-Knuth correspondence, Green’s in-
variants, Knuth relation, and Schützenberger’s jeu de taquin. In [9] and
[10] White gave combinatorial proofs of the orthogonality relations for
the ordinary characters of Sn. His proof is based on the Murnaghan-
Nakayama formula for ordinary characters of Sn.

In this paper we give combinatorial interpretations for the orthogonal-
ity relations of spin characters of S̃n based on Stembridge’s combinatorial
reformulation for Morris’ rule.

In section 2, we outline the definitions and notation used in this paper.
Section 3 reviews the basic properties of a group S̃n and draw some
relations between the irreducible spin characters of S̃n and symmetric
functions. In section 4, we give combinatorial interpretations for the
orthogonality relations of spin characters of S̃n.

2. Definitions

We use standard notation P,Z,Q,C for the set of all positive integers,
the ring of integers, the field of rational numbers and the field of complex
numbers, respectively.

Let λ = (λ1, λ2, . . . , λ`) be a partition of the nonnegative integer n,
denoted λ ` n or |λ| = n, so λ is a weakly decreasing sequence of positive
integers summing to n. We say each term λi is a part of λ and n is the
weight of λ. The number of nonzero parts is called the length of λ and
is written ` = `(λ). Let Pn be the set of all partitions of n and P be the
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set of all partitions. We also denote

OP = {µ ∈ P | every part of µ is odd},
OPn = {µ ∈ Pn | every part of µ is odd},
DP = {µ ∈ P | µ has all distinct parts},
DPn = {µ ∈ Pn | µ has all distinct parts},
DP+

n = {µ ∈ DPn | n− `(µ) is even},
DP−n = {µ ∈ DPn | n− `(µ) is odd}.

We sometimes abbreviate the partition λ with the notation 1j12j2 . . . ,
where ji is the number of parts of size i. Sizes which do not appear
are omitted and if ji = 1, then it is not written. Thus, a partition
(5, 3, 2, 2, 2, 1) ` 15 can be written 12335.

For each λ ∈ DP , a shifted diagram D′λ of shape λ is defined by

D′λ = {(i, j) ∈ Z2 | i ≤ j ≤ λj + i− 1, 1 ≤ i ≤ `(λ)}.
And for λ, µ ∈ DP with D′µ ⊆ D′λ, a shifted skew diagram D′λ/µ is defined

as the set-theoretic difference D′λ \D′µ. Figure 2.1 and Figure 2.2 show
D′λ and D′λ/µ respectively when λ = (9, 7, 4, 2) and µ = (5, 3).

Figure 2.1 Figure 2.2 Figure 2.3

A shifted skew diagram θ is called a single rim hook if θ is connected
and contains no 2 × 2 block of cells. If θ is a single rim hook, then its
head is the upper rightmost cell in θ and its tail is the lower leftmost cell
in θ. See Figure 2.3.

A double rim hook is a shifted skew diagram θ formed by the union
of two single rim hooks both of whose tails are on the main diagonal.
If θ is a double rim hook, we denote by A[θ] (resp., α1[θ]) the set of
diagonals of length two (resp., one). Also let β1[θ] (resp., γ1[θ]) be a
single rim hook in θ which starts on the upper (resp., lower ) of the two
main diagonal cells and ends at the head of α1[θ]. The tail of β1[θ] (resp.,
γ1[θ]) is called the first tail (resp., second tail) of θ and the head of β1[θ]
or γ1[θ] (resp., γ2[θ], β2[θ], where β2[θ] = θ \β1[θ] and γ2[θ] = θ \ γ1[θ]) is
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called the first head (resp., second head, third head) of θ. Hence we have
the following descriptions for a double rim hook θ:

θ = A[θ] ∪ α1[θ]

= β1[θ] ∪ β2[θ]
= γ1[θ] ∪ γ2[θ].

A double rim hook is illustrated in Figure 2.4. We write A, α1, etc.
for A[θ], α1[θ], etc. when there is no confusion.

θ A
@
@α1 β2

@
@β1 γ1

��γ2

Figure 2.4

We will use the term rim hook to mean a single rim hook or a double
rim hook.

A shifted rim hook tableau of shape λ ∈ DP and content ρ = (ρ1, . . . , ρm)
is defined recursively. If m = 1, a rim hook with all 1’s and shape
λ is a shifted rim hook tableau. Suppose P of shape λ has content
ρ = (ρ1, ρ2, . . . , ρm) and the cells containing the m’s form a rim hook
inside λ. If the removal of the m’s leaves a shifted rim hook tableau,
then P is a shifted rim hook tableau. We define a shifted skew rim hook
tableau in a similar way. If P is a shifted rim hook tableau, we write
κP 〈r〉 (or just κ〈r〉) for a rim hook of P containing r.

If θ is a single rim hook then the rank r(θ) is one less than the number
of rows it occupies and the weight w(θ) = (−1)r(θ); if θ is a double rim
hook then the rank r(θ) is |A[θ]|/2 + r(α1[θ]) and the weight w(θ) is
2(−1)r(θ).

The weight of a shifted rim hook tableau P , w(P ), is the product of
the weights of its rim hooks. The weight of a shifted skew rim hook
tableau is defined in a similar way.
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P 1
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Figure 2.5 Figure 2.6 Figure 2.7
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Figure 2.5 shows an example of a shifted rim hook tableau P of
shape (5, 4, 1) and content (5, 1, 4). Here r(κ〈1〉) = 1, r(κ〈2〉) = 0
and r(κ〈3〉) = 1. Also w(κ〈1〉) = −2, w(κ〈2〉) = 1 and w(κ〈3〉) = −1.
Hence w(P ) = (−2) · (1) · (−1) = 2.

Let P be a shifted rim hook tableau. We denote by P 1(resp., P2)
one of the tableaux obtained from P by circling or not circling the first
tail(resp., second tail) of each double rim hook in P . The P 1(resp., P2)
is called a first (resp., second) tail circled rim hook tableau. Similarly P 1

2

is obtained from P by circling or not circling the first tail and second
tail of each double rim hook in P and is called a tail circled rim hook
tableau. We use the notation | · | to refer to the uncircled version; e.g.,
|P 1| = |P2| = |P 1

2 | = P . See Figure 2.6 and Figure 2.7 for examples of
first and second tail circled rim hook tableaux, respectively. Figure 2.8
shows tail circled rim hook tableaux P 1

2 when a shifted rim hook tableau
P is given.
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Figure 2.8

We now define a new weight function w′ for first or second tail circled
rim hook tableaux. If τ is a rim hook of P 1 or P2, we define w′(τ) =
(−1)r(τ). The weights w′(P 1) and w′(P2) are the product of the weights
of rim hooks in P 1 and P2, respectively. For a tail circled rim hook
tableau P 1

2 , we define w′′(P 1
2 ) = 1.

For each double rim hook τ of a rim hook tableau P , there are two
first circled rim hooks τ1, τ2 such that w(τ) = w′(τ1) + w′(τ2). This fact
implies the following:

Proposition 2.1. Let γ ∈ OP . Then we have∑
P

w(P ) =
∑
P 1

w′(P 1),

where the left-hand sum is over all shifted rim hook tableaux P of shape
λ/µ and content γ, while the right-hand sum is over all shifted first tail
circled rim hook tableaux P 1 of shape λ/µ and content γ.
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We can get the similar identiy using shifted second tail circled rim
hook tableaux

3. Symmetric functions and irreducible spin characters of S̃n

We consider the ring Z[x1, x2, . . . ] of formal power series with integer
coefficients in the infinite variables x1, x2, · · · . Note that the symmetric
functions form a subring of Z[x1, x2, . . . ]. Let Λ(x), or simply Λ, be
the ring of symmetric functions of x1, x2, · · · . Define Z-modules Λk by
Λk(x) = Λk = {f ∈ Λ | f is homogeneous of degree k}. Then we have
Λ =

∏
k≥0 Λk.

Let r be a positive integer. The rth power sum pr is defined by

pr =
∑
i≥1

xri .

By convention, we set p0 = 1 and pr = 0 for r < 0. Extend the
definition of this symmetric function to all partitions by pλ = pλ1pλ2 · · · .

We now define a group S̃n and draw some connections between the
irreducible spin characters of S̃n and symmetric functions.

For n > 1 let S̃n be the group generated by t1, t2, . . . , tn−1,−1 subject
to relations

t2i = −1 for i = 1, 2, . . . , n− 1,

titi+1ti = ti+1titi+1 for i = 1, 2, . . . , n− 2,

titj = −tjti for |i− j| > 1 (i, j = 1, 2, . . . , n− 1).

Note that |S̃n| = 2n!. Since −1 is a central involution, Schur’s lemma
implies that an irreducible representation of S̃n must represent −1 by
either the scalar 1 or −1. The representation of the former type is an
ordinary representation of Sn, while one of the latter type will correspond
to a projective representation of Sn, as we will see later. A representation
T of S̃n is called a spin representation of S̃n if the group element −1 is
represented by scalar −1, i.e., if T (−1) = −1.

To describe the characters of spin representations of S̃n we consider
the structure of the conjugacy classes of S̃n. Let θn : S̃n → Sn be an
epimorphism defined by ti 7→ si, where si is an adjacent transposition
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(i i + 1) in Sn. For each partition µ = (µ1, . . . , µ`) of n, we choose a
specific element σµ such that θn(σµ) is of cycle-type µ as follows: Define

σµ = π1π2 . . . π`,

where πj = ta+1ta+2 . . . ta+µj−1 (a =
∑j−1

i=1 µi) for 1 ≤ j ≤ ` = `(µ). For

example, if µ = (3, 3, 2) ` 8, then σµ = t1t2t4t5t7 ∈ S̃8 and θ8(σµ) =
(123)(456)(78) ∈ S8.

Since ker(θn) = {±1}, every σ ∈ S̃n is conjugate to σµ or −σµ for
some partition µ of n.

Theorem 3.1. (Schur) Let µ be a partition of n. Then the elements
σµ and −σµ are not conjugate in S̃n iff either µ ∈ OPn or µ ∈ DP−n .

Proof. See [1] or [7].

Let ΩQ =
∏

n≥0 Ωn
Q denote the graded subring of ΛQ = Λ ⊗Z Q gen-

erated by 1, p1, p3, . . . and let Ω = Λ ∩ ΩQ denote the Z-coefficient
graded subring of ΩQ. Clearly {pλ | λ ∈ OPn} forms a basis of Ωn

Q
and dimQΩn

Q = |OPn|.

Define an inner product [ , ] on Ωn
C by setting

[pλ, pµ] = zλ2
−`(λ)δλµ for λ, µ ∈ OPn,

where

δλµ =

{
1 if λ = µ

0 otherwise.

Lemma 3.2. (Mac)

1. {Qλ | λ ∈ DPn} is a basis of Ωn
Q.

2. [Pλ, Qµ] = δλµ,

where Pλ (resp., Qλ) is the Hall-Littlewood symmetric P -function (resp.,
Q-function) corresponding to a partition λ ∈ DP .

Proof. See [2].

We now describe the irreducible spin characters of S̃n using the Hall-
Littlewood symmetric functions Pλ and Qλ
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Theorem 3.3. (Schur) Define a class function ϕλ for each λ ∈ DP+
n

by

ϕλ(σµ) =

{
[2−`(λ)/2Qλ, 2

`(µ)/2pµ] if µ ∈ OPn,
0 otherwise

and define a pair of class functions ϕλ± for each λ ∈ DP−n via

ϕλ±(σµ) =


1√
2
[2−`(λ)/2Qλ, 2

`(µ)/2pµ] if µ ∈ OPn,

±i(n−`(λ)+1)/2
√

1
2
zλ if µ = λ,

0 otherwise,

where zλ =
∏

i≥1 i
mimi! if λ = 1m12m2 · · · .

Then the class functions ϕλ(λ ∈ DP+
n ) and ϕλ±(λ ∈ DP−n ) are the

irreducible spin characters of S̃n.

Proof. See [1] or [7].

Although Theorem 3.3 determines the irreducible spin characters ϕλ,
it is difficult to use Theorem 3.3 to evaluate ϕλ(σµ) explicitly for µ ∈ OP .
But Morris has derived a recurrence for the evaluation of these characters
which is similar to the well-known Murnaghan-Nakayama formula for
ordinary characters of Sn.

In 1990 Stembridge[8] gave a combinatorial reformulation for Morris’
recurrence using shifted tableaux, rather than the machinery of Hall-
Littlewood functions used by Morris. We now describe Stembridge’s
interpretation for Morris’ rule.

Lemma 3.4. (Stembridge) Let k be an odd number and |λ/µ| = k.
Then

1. [Qλ/µ, pk] = 0 unless λ/µ is a rim hook.
2. [Qλ/µ, pk] = (−1)r if λ/µ is a single rim hook of rank r.
3. [Qλ/µ, pk] = 2(−1)r if λ/µ is a double rim hook of rank r.

Proof. See [8].

Theorem 3.5. (Stembridge) For any γ ∈ OP , we have

[Qλ/µ, pγ] =
∑
S

w(S),

where the sum is over all shifted rim hook tableaux S of shape λ/µ and
content γ.
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Proof. Since the Pλ’s and Qλ’s are dual bases, we have

prPµ =
∑
λ∈DP

[prPµ, Qλ]Pλ for any odd integer r.

By iterating this expansion successively for r = γ1, . . . , γ`, we find

[pγPµ, Qλ] =
∑
{λj}

[pγ1Pλ0 , Qλ1 ] · · · [pγ`Pλ`−1 , Qλ` ],

where µ = λ0, λ = λ`. Since [Qλ/µ, Pν ] = [Qλ, PµPν ] and the Pν ’s span
ΩQ, [Qλ/µ, f ] = [Qλ, fPµ] for any f ∈ ΩQ, and therefore

[Qλ/µ, pγ] =
∑
{λj}

[Qλ1/λ0 , pγ1 ] · · · [Qλ`/λ`−1 , pγ` ].

Note that Qλ/µ = 0 unless µ ⊆ λ. Thus the only nonzero contributions
to [Qλ/µ, pγ] in this expansion occur when λ0 ⊆ λ1 ⊆ · · · ⊆ λ` and
|λi| − |λi−1| = γi (1 ≤ i ≤ `). Hence it suffices to evaluate [Qλ/µ, pk] for
all skew shapes λ/µ of weight k (k odd), and the description of [Qλ/µ, pk]
in Lemma 3.4 gives a complete proof of Theorem 3.5.

Example 3.6. Consider λ = (6, 3, 2, 1), γ = (5, 3, 3, 1). There are
four shifted rim hook tableaux of shape λ and content γ. See Figure
3.1. Since w(T1) = w(T2) = w(T3) = −2 and w(T4) = 4, [Qλ, pγ] = −2.
Therefore Theorem 3.5 implies that

ϕλ(σγ) = [Qλ, pγ] = −2.
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2
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1
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1
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1
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3
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2 2 4

Figure 3.1

4. Combinatorial interpretations of the orthogonality rela-
tions for spin characters of S̃n

Recall that there are two kinds of orthogonality relations for char-
acters of a group G. See [5] for detail. First we give combinatorial
interpretation for the orthogonality relation of the first kind for spin
characters of S̃n.
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Theorem 4.1. (Orthogonality relation of the first kind) Let G be a
group of order g. If χ and ψ are irreducible characters of a group G.
Then

1

g

∑
x∈G

χ(x)ψ(x−1) = δχψ.

Using Stembridge’s combinatorial interpretation for Morris’ rule given
in Theorem 3.5, orthogonality relation of the first kind for S̃n in Theorem
4.1 can be reformulated as follows;

Corollary 4.2. (Orthogonality relation of the first kind for S̃n) Let
λ, µ ∈ DPn. Then∑

2`(type(σ))w(P )w(Q) = δλµ2`(λ)n!,

where the sum is over triples (P,Q, σ), with P a shifted rim hook tableau
of shape λ, Q a shifted rim hook tableau of shape µ and σ ∈ Sn, which
satisfy type(σ) ∈ OPn, content(P )=content(Q)=content(σ).

Given λ ∈ DPn, a permutation tableau of shape λ is a filling of the
shifted diagram D′λ with positive integers 1, 2, . . . , n and a circled permu-
tation tableau is a permutation tableau with main diagonal entry either
circled or uncircled. For example,

T =
©6 7 1 3

5 8 4
©7

is a circled permutation tableau of shape (4, 3, 1).
Let σ ∈ Sn and write σ in cycle form, σ = σ1σ2 . . . σm, where the cycles

σi are written in increasing order of the largest in the cycle. Recall that
content (σ) is the sequence ρ = (ρ1, ρ2, . . . , ρm), where ρi = |σi| =length
of the cycle σi. If σ ∈ Sn, then let σ be a permutation obtained from σ in
which each cycle of σ is either barred or unbarred. If σ = (42)(8371), σ

is one of (42)(8371), (42)(8371), (42)(8371) and (42)(8371).

Now let λ, µ ∈ DPn and let

πλ = the set of all circled permutation tableaux of shape λ,

Γλ = { (P 1
2 , σ) },

Ψ+
λµ = { (P 1, Q2 , σ) |w′(P 1)w′(Q2) = 1 },

Ψ−λµ = { (P 1, Q2 , σ) |w′(P 1)w′(Q2) = −1 },
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where P is a shifted rim hook tableau of shape λ , Q is a shifted rim
hook tableau of shape µ , σ ∈ Sn with type(σ) ∈ OPn and content(P ) =
content(Q) = content(σ).

Note that

|πλ| = 2`(λ)n!,

|Γλ| =
∑

2`(type(σ))|P 1
2 | =

∑
2`(type(σ))w′′(P 1

2 ),

where P is a shifted rim hook tableau of shape λ. Since the map given
by P 1

2 → (P 1, P2) is clearly a bijection, we get the following theorem
from Corollary 4.2.

Theorem 4.3. Let λ, µ ∈ DPn.
(a) If λ 6= µ, then there is a bijection between Ψ+

λµ and Ψ−λµ.
(b) If λ = µ, then there is a bijection between Γλ and πλ.

Let’s now give combinatorial interpretation for the orthogonality re-
lation of the second kind for spin characters of S̃n.

Theorem 4.4. (Orthogonality relation of the second kind) Let G be
a group of order g. Let χ(1), χ(2), . . . , χ(k) be all irreducible characters of
G. Then

k∑
i=1

χ(i)
α χ

(i)
β =

g

hα
δαβ,

where hα is the number of elements in the conjugacy class Cα of α.

Using Schur’s spin character formulas described in Theorem 3.3 and
Stembridge’s combinatorial interpretation for spin characters of S̃n re-
spectively, orthogonality relation of the second kind for S̃n can be de-
scribed in the following ways.

Corollary 4.5. (Orthogonality relation of the second kind for S̃n)
Let µ, ν ∈ Pn. Then∑

λ∈DP+
n

ϕλ(σµ)ϕλ(σ−1ν ) +
∑

λ∈DP−
n

ϕλ±(σµ)ϕλ±(σ−1ν ) = δµν1
j1j1!2

j2j2! · · · ,

where µ = 1j12j2 · · · .

Corollary 4.6. Let µ = 1j12j2 · · · ∈ OPn and ν ∈ OPn. Then∑
(λ,P,Q)

2n−`(λ)w(P )w(Q) = δµν2
n−`(µ)1j1j1!2

j2j2! · · · ,
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where λ ∈ DPn, P is a shifted rim hook tableau of shape λ and content
µ and Q is a shifted rim hook tableau of the same shape λ and content
ν.

We will describe combinatorial objects whose weights represent the
both sides of the identity given in Corollary 4.6.

H = (H1, H2, . . . , Hm) is said to be a circled hook permutation of
content ρ = km, and shape (τ (1), τ (2), . . . , τ (m)) if the following conditions
hold:

(1) each Hi is a hook tableau of shape τ (i),
(2) |τ (i)| = k and
(3) for each i, all cells of Hi except its tail can be circled or uncircled.

Figure 4.1 gives a circled hook permutation of content 55.

2

©2
©2
2 ©2

3

©3 ©3 3 3

1

1

©1
©1
©1

5

5

5

©5 ©5 4 ©4 4 ©4 4

Figure 4.1

Using shifted first tail circled rim hook tableaux and circled hook
permutations defined in the above, Corollary 4.6 implies the following
theorem.

Theorem 4.7. There is a bijection between positive pairs (P,Q),
where P is a shifted (first tail circled) rim hook tableau of shape λ and
content µ and Q is a circled shifted rim hook tableau of the same shape
λ and content ν, and,

(a) if µ 6= ν, negative pairs of (P̂ , Q̂), where P̂ is a shifted (first tail

circled) rim hook tableau of shape λ̂ and content µ and Q̂ is a circled

shifted rim hook tableau of the same shape λ̂ and content ν, or,
(b) if µ = ν, the union of the set of negative pairs of (P̂ , Q̂), where P̂

is a shifted (first tail circled) rim hook tableau of shape λ̂ and content

µ and Q̂ is a circled shifted rim hook tableau of the same shape λ̂ and
content ν, with the set of circled hook permutations of content µ.

It will be very interesting to construct bijections directly described in
Theorem 4.3 and Theorem 4.7.
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