JOIN-MEET APPROXIMATION OPERATORS INDUCED BY ALEXANDROV FUZZY TOPOLOGIES

YONG CHAN KIM

ABSTRACT. In this paper, we investigate the properties of Alexandrov fuzzy topologies and join-meet approximation operators. We study fuzzy preorder, Alexandrov topologies join-meet approximation operators induced by Alexandrov fuzzy topologies. We give their examples.

1. Introduction

Pawlak [8,9] introduced rough set theory as a formal tool to deal with imprecision and uncertainty in data analysis. Hájek [2] introduced a complete residuated lattice which is an algebraic structure for many valued logic. Radzikowska [10] developed fuzzy rough sets in complete residuated lattice. Bělohlávek [1] investigated information systems and decision rules in complete residuated lattices. Zhang [6,7] introduced Alexandrov L-topologies induced by fuzzy rough sets. Kim [5] investigated the properties of Alexandrov topologies in complete residuated lattices. Höhle [3] introduced L-fuzzy topologies and L-fuzzy interior approximation operators on complete residuated lattices.

In this paper, we investigate the properties of Alexandrov fuzzy topologies and join-meet approximation operators in a sense as Höhle [3]. We study fuzzy preorder, Alexandrov topologies join-meet approximation

Received March 23, 2014. Revised September 22, 2014. Accepted September 22, 2014.

²⁰¹⁰ Mathematics Subject Classification: 03E72, 03G10, 06A15, 54F05.

Key words and phrases: Complete residuated lattices, fuzzy preorder, join-meet approximation operators, Alexandrov (fuzzy) topologies.

[©] The Kangwon-Kyungki Mathematical Society, 2014.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

operators induced by Alexandrov fuzzy topologies. We give their examples.

2. Preliminaries

DEFINITION 2.1. [1-3] A structure $(L, \vee, \wedge, \odot, \rightarrow, \bot, \top)$ is called a complete residuated lattice iff it satisfies the following properties:

- (L1) $(L, \vee, \wedge, \perp, \top)$ is a complete lattice where \perp is the bottom element and \top is the top element;
 - (L2) (L, \odot, \top) is a monoid;
 - (L3) It has an adjointness, i.e.

$$x \le y \to z \text{ iff } x \odot y \le z.$$

An operator $^*:L\to L$ defined by $a^*=a\to \bot$ is called *strong negations* if $a^{**}=a$.

$$\top_x(y) = \left\{ \begin{array}{ll} \top, & \text{if } y = x, \\ \bot, & \text{otherwise.} \end{array} \right. \\ \top_x^*(y) = \left\{ \begin{array}{ll} \bot, & \text{if } y = x, \\ \top, & \text{otherwise.} \end{array} \right.$$

In this paper, we assume that $(L, \vee, \wedge, \odot, \rightarrow, *, \bot, \top)$ be a complete residuated lattice with a strong negation *.

DEFINITION 2.2. [6,7] Let X be a set. A function $e_X : X \times X \to L$ is called a fuzzy preorder if it satisfies the following conditions

- (E1) reflexive if $e_X(x,x)=1$ for all $x\in X$,
- (E2) transitive if $e_X(x,y) \odot e_X(y,z) \le e_X(x,z)$, for all $x,y,z \in X'$

EXAMPLE 2.3. (1) We define a function $e_L: L \times L \to L$ as $e_L(x, y) = x \to y$. Then e_L is a fuzzy preorder on L.

(2) We define a function $e_{L^X}: L^X \times L^X \to L$ as $e_{L^X}(A, B) = \bigwedge_{x \in X} (A(x) \to B(x))$. Then e_{L^X} is a fuzzy preorder from Lemma 2.4 (9).

LEMMA 2.4. [1,2] Let $(L, \vee, \wedge, \odot, \rightarrow, ^*, \perp, \top)$ be a complete residuated lattice with a strong negation * . For each $x, y, z, x_i, y_i \in L$, the following properties hold.

- (1) If $y \leq z$, then $x \odot y \leq x \odot z$.
- (2) If $y \le z$, then $x \to y \le x \to z$ and $z \to x \le y \to x$.
- (3) $x \to y = \top$ iff $x \le y$.
- (4) $x \to \top = \top$ and $\top \to x = x$.
- (5) $x \odot y \le x \wedge y$.

- (6) $x \odot (\bigvee_{i \in \Gamma} y_i) = \bigvee_{i \in \Gamma} (x \odot y_i)$ and $(\bigvee_{i \in \Gamma} x_i) \odot y = \bigvee_{i \in \Gamma} (x_i \odot y)$. (7) $x \to (\bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} (x \to y_i)$ and $(\bigvee_{i \in \Gamma} x_i) \to y = \bigwedge_{i \in \Gamma} (x_i \to y_i)$
- (8) $\bigvee_{i \in \Gamma} x_i \to \bigvee_{i \in \Gamma} y_i \geq \bigwedge_{i \in \Gamma} (x_i \to y_i)$ and $\bigwedge_{i \in \Gamma} x_i \to \bigwedge_{i \in \Gamma} y_i \geq 1$ $\bigwedge_{i\in\Gamma}(x_i\to y_i).$
 - (9) $(x \to y) \odot x \le y$ and $(y \to z) \odot (x \to y) \le (x \to z)$.
 - (10) $x \to y \le (y \to z) \to (x \to z)$ and $x \to y \le (z \to x) \to (z \to y)$.
- (11) $\bigwedge_{i \in \Gamma} x_i^* = (\bigvee_{i \in \Gamma} x_i)^*$ and $\bigvee_{i \in \Gamma} x_i^* = (\bigwedge_{i \in \Gamma} x_i)^*$. (12) $(x \odot y) \to z = x \to (y \to z) = y \to (x \to z)$ and $(x \odot y)^* = x \to y$ y^* .
 - (13) $x^* \to y^* = y \to x \text{ and } (x \to y)^* = x \odot y^*.$
 - (14) $y \to z \le x \odot y \to x \odot z$.

DEFINITION 2.5. [5] A map $\mathcal{K}: L^X \to L^Y$ is called a join-meet operator if it satisfies the following conditions, for all $A, A_i \in L^X$, and

- (K1) $\mathcal{K}(\alpha \odot A) = \alpha \to \mathcal{K}(A)$ where $(\alpha \odot A)(x) = \alpha \odot A(x)$ for each $x \in X$,
 - (K2) $\mathcal{K}(\bigvee_{i \in I} A_i) = \bigwedge_{i \in I} \mathcal{K}(A_i),$
 - (K3) $\mathcal{K}(A) \leq A^*$,
 - $(K4) \mathcal{K}(\mathcal{K}^*(A)) > \mathcal{K}(A).$

DEFINITION 2.6. [4] An operator $T: L^X \to L$ is called an Alexandrov fuzzy topology on X iff it satisfies the following conditions, for all $A, A_i \in$ L^X , and $\alpha \in L$,

- (T1) $\mathbf{T}(\alpha_X) = \top$ where $\alpha_X(x) = \alpha$,
- (T2) $\mathbf{T}(\bigwedge_{i\in\Gamma} A_i) \ge \bigwedge_{i\in\Gamma} \mathbf{T}(A_i)$ and $\mathbf{T}(\bigvee_{i\in\Gamma} A_i) \ge \bigwedge_{i\in\Gamma} \mathbf{T}(A_i)$,
- (T3) $\mathbf{T}(\alpha \odot A) \geq \mathbf{T}(A)$, where $(\alpha \odot A)(x) = \alpha \odot A(x)$ for each $x \in X$,
- (T4) $\mathbf{T}(\alpha \to A) > \mathbf{T}(A)$.

DEFINITION 2.7. [5] A subset $\tau \subset L^X$ is called an Alexandrov topology if it satisfies satisfies the following conditions.

- (O1) $\alpha_X \in \tau$.
- (O2) If $A_i \in \tau$ for $i \in \Gamma$, $\bigvee_{i \in \Gamma} A_i$, $\bigwedge_{i \in \Gamma} A_i \in \tau$.
- (O3) $\alpha \odot A \in \tau$ for all $\alpha \in L$ and $A \in \tau$.
- (O4) $\alpha \to A \in \tau$ for all $\alpha \in L$ and $A \in \tau$.

REMARK 2.8. (1) If $T: L^X \to L$ is an Alexandrov fuzzy topology. Define $\mathbf{T}^*(A) = \mathbf{T}(A^*)$. Then \mathbf{T}^* is an Alexandrov fuzzy topology.

(2) If **T** is an Alexandrov fuzzy topology on X, $\tau_T^r = \{A \in L^X \mid$ $\mathbf{T}(A) \geq r$ is an Alexandrov topology on X and $\tau_T^r \subset \tau_T^s$ for $s \leq r \in L$.

- (3) If \mathbf{T}^* is an Alexandrov fuzzy topology on X, $(\tau_T^r)^* = \{A \in L^X \mid \mathbf{T}^*(A) \geq r\}$ is an Alexandrov topology on X and $(\tau_T^r)^* = \tau_{T^*}^r$.
 - 3. Join-meet approximation operators induced by Alexandrov fuzzy topologies

THEOREM 3.1. If K is a join-meet approximation operator, then $\tau_K = \{A \in L^X \mid K(A) = A^*\}$ is an Alexandrov topology on X.

Proof. (O1) Since $\mathcal{K}(\top_X) = \bot_X$ and $\mathcal{K}(\alpha \odot \top_X) = \alpha \to \mathcal{K}(\top_X) = \alpha_X^*$, then $\alpha_X^* = \mathcal{K}(\alpha_X)$. Thus $\alpha_X \in \tau_{\mathcal{K}}$.

(O2) For $A_i \in \tau_{\mathcal{K}}$ for each $i \in \Gamma$, by (K2), $\mathcal{K}(\bigvee_{i \in \Gamma} A_i) = \bigwedge_{i \in \Gamma} \mathcal{K}(A_i) = \bigwedge_{i \in \Gamma} A_i^*$. Then $\bigvee_{i \in \Gamma} A_i \in \tau_{\mathcal{K}}$. Since \mathcal{K} is decreasing function, $\bigvee_{i \in \Gamma} A_i^* = \bigvee_{i \in \Gamma} \mathcal{K}(A_i) = \mathcal{K}(\bigwedge_{i \in \Gamma} A_i) \leq (\bigwedge_{i \in \Gamma} A_i)^*$, Thus, $\bigvee_{i \in \Gamma} A_i \in \tau_{\mathcal{K}}$.

(O3) For $A \in \tau_{\mathcal{K}}$, $\mathcal{K}(\alpha \odot A) = \alpha \to \mathcal{K}(A) = (\alpha \odot A)^*$. Then $\alpha \odot A \in \tau_{\mathcal{K}}$.

(O4) For
$$A \in \tau_{\mathcal{K}}$$
, since $\alpha \odot (\alpha \to A) \leq A$, then $\alpha \to \mathcal{K}(\alpha \to A) = \mathcal{K}(\alpha \odot (\alpha \to A)) \geq \mathcal{K}(A)$. So, $\alpha \odot \mathcal{K}(A) \leq \mathcal{K}(\alpha \to A) \leq (\alpha \to A)^* = \alpha \odot A^*$. Thus $(\alpha \to A) \in \tau_{\mathcal{K}}$.

THEOREM 3.2. Let T be an Alexandrov fuzzy topology on X. Define

$$R_T^r(x,y) = \bigwedge \{A(x) \to A(y) \mid \mathbf{T}(A) \ge r\}.$$

Then the following properties hold.

- (1) R_T^r is a fuzzy preorder with $R_T^r \leq R_T^s$ for each $r \leq s$.
- (2) Define $\mathcal{K}_{R_T^{r*}}: L^X \to L^X$ as follows

$$\mathcal{K}_{R_T^{r*}}(A)(y) = \bigwedge_{x \in X} (A(x) \to R_T^{r*}(x, y)).$$

Then $\mathcal{K}_{R_T^{r*}}$ is a join-meet operator on X with $\mathcal{K}_{R_T^{s*}} \leq \mathcal{K}_{R_T^{r*}}$ for each $r \leq s$.

$$(3) \tau_T^r = \tau_{\mathcal{K}_{R_T^{r*}}}.$$

Proof. (1) Since $\mathbf{T}(B) \geq r$ iff $B \in \tau_T^r$, then $R_T^r(x,y) = \bigwedge_{B \in \tau_T^r} (B(x) \to B(y))$. Since $R_T^r(x,x) = \bigwedge_{B \in \tau_T^r} (B(x) \to B(x)) = \top$ and

$$\begin{split} &R^r_T(x,y)\odot R^r_T(y,z) = \bigwedge_{B\in\tau^r_T}(B(x)\to B(y))\odot \bigwedge_{B\in\tau^r_T}(B(y)\to B(z))\\ &\leq \bigwedge_{B\in\tau^r_T}(B(x)\to B(y))\odot (B(y)\to B(z))\\ &\leq \bigwedge_{B\in\tau^r_T}(B(x)\to B(z)) = R^r_T(x,y). \end{split}$$

Hence R_T^r is a fuzzy preorder. For $r \leq s$, since $\mathbf{T}(B) \geq s \geq r$, we have $R_T^r \leq R_T^s$.

$$\mathcal{K}_{R_T^{r*}}(\alpha \odot A)(y) = \bigwedge_{x \in X} ((\alpha \odot A)(x) \to R_T^{r*}(x,y))
= \alpha \to \bigwedge_{x \in X} (A(x) \to R_T^{r*}(x,y)) = \alpha \to \mathcal{K}_{R_T^{r*}}(A)(y).$$

(K2)

$$\begin{array}{l} \mathcal{K}_{R_T^{r*}}(\bigvee_{i\in\Gamma}A_i)(y) = \bigwedge_{x\in X}(\bigvee_{i\in\Gamma}A_i(x)\to R_T^{r*}(x,y)) \\ = \bigwedge_{i\in\Gamma}\bigwedge_{x\in X}(A_i(x)\to R_T^{r*}(x,y)) = \bigwedge_{i\in\Gamma}\mathcal{K}_{R_T^{r*}}(A_i)(y). \end{array}$$

(K3) $\mathcal{K}_{R_T^{r*}}(A)(y) = \bigwedge_{x \in X} (A(x) \to R_T^{r*}(x,y)) \le A(x) \to R_T^{r*}(x,x) = A(x) \to \bot = A^*(x).$ (K4)

$$\begin{split} \mathcal{K}_{R_{T}^{r*}}(\mathcal{K}_{R_{T}^{r*}}^{*}(A))(z) &= \bigwedge_{y \in X}(\mathcal{K}_{R_{T}^{r*}}^{*}(A)(y) \to R_{T}^{r*}(y,z)) \\ &= \bigwedge_{y \in X}(\bigwedge_{x \in X}(A(x) \to R_{T}^{r*}(x,y))^{*} \to R_{T}^{r*}(y,z)) \\ &= \bigwedge_{y \in X}(\bigvee_{x \in X}(A(x) \odot R_{T}^{r}(x,y)) \to R_{T}^{r*}(y,z)) \\ &= \bigwedge_{x,y \in X}(A(x) \to (R_{T}^{r}(x,y)) \to R_{T}^{r*}(y,z))) \\ &= \bigwedge_{x \in X}(A(x) \to \bigwedge_{y \in X}(R_{T}^{r}(x,y)) \to R_{T}^{r*}(y,z))) \\ &= \bigwedge_{x \in X}(A(x) \to (\bigvee_{y \in X}(R_{T}^{r}(x,y)) \odot R_{T}^{r}(y,z))^{*}) \\ &\geq \bigwedge_{x \in X}(A(x) \to R_{T}^{r*}(x,z)) \\ &= \mathcal{K}_{R_{T}^{*}}(A)(z). \end{split}$$

Hence $\mathcal{K}_{R_T^{r*}}$ is a join-meet operator on X. For $r \leq s$, since $R_T^r \leq R_T^s$, then $\mathcal{K}_{R_T^{s*}} \leq \mathcal{K}_{R_T^{t*}}$.

(3) Let
$$A \in \tau_T^r$$
. Since $R_T^r(x,y) = \bigwedge_{B \in \tau_T^r} (B(x) \to B(y))$,

$$\begin{array}{ll} A^*(y) \odot R^r_T(x,y) &= A^*(y) \odot \bigwedge_{B \in \tau^r_T} (B(x) \to B(y)) \\ &\leq A^*(y) \odot (A^*(y) \to A^*(x)) \leq A^*(x). \end{array}$$

Thus $A^*(y) \leq R^r_T(x,y) \to A^*(x) = A(x) \to R^{r*}_T(x,y)$. Then $A^* \leq \mathcal{K}_{R^{r*}_T}(A)$. By (K3), $\mathcal{K}_{R^{r*}_T}(A) = A^*$; i.e. $A \in \tau_{\mathcal{K}_{R^{r*}_T}}$. So, $\tau^r_T \subset \tau_{\mathcal{K}_{R^{r*}_T}}$.

Let
$$A \in \tau_{\mathcal{K}_{R_T^{r*}}}$$
 ;i.e. $\mathcal{K}_{R_T^{r*}}(A) = A^*$. Then

$$\begin{array}{ll} A^* &= \bigwedge_{x \in X} (A(x) \to R^{r*}_T(x,-)) \\ &= \bigwedge_{x \in X} (A(x) \to (\bigwedge_{B \in \tau^r_T} (B(x) \to B))^*) \\ &= \bigwedge_{x \in X} (A(x) \to \bigvee_{B \in \tau^r_T} (B(x) \odot B^*)) \end{array}$$

Since $\bigvee_{B \in \tau_T^r} (B(x) \odot B^*) \in (\tau_T^r)^*$ and $A(x) \to \bigvee_{B \in \tau_T^r} (B(x) \odot B^*) \in (\tau_T^r)^*$, we have $A^* \in (\tau_T^r)^*$; i.e $A \in \tau_T^r$. So, $\tau_{\mathcal{K}_{R_T^{r*}}} \subset \tau_T^r$.

Theorem 3.3. Let T be an Alexandrov fuzzy topology on X. Define

$$R_T^{-r}(x,y) = \bigwedge \{B(y) \to B(x) \mid \mathbf{T}(B) \ge r\}.$$

Then the following properties hold.

(1) R_T^{-r} is a fuzzy preorder with $R_T^{-r} \leq R_T^{-s}$ for each $r \leq s$ and

$$R_T^{-r}(x,y) = R_{T^*}^r(x,y).$$

(2) $\mathcal{K}_{R_T^{-r*}}$ is a join-meet operator on X such that

$$\mathcal{K}_{R_{T}^{-r*}}(A)(y) = \bigwedge_{x \in X} (A(x) \to R_{T}^{-r*}(x,y)) = \bigwedge_{x \in X} (A(x) \to R_{T^*}^{r*}(x,y)).$$

- (3) $(\tau_T^r)^* = \tau_{\mathcal{K}_{R_{\sigma}^{-r*}}} = \tau_{\mathcal{K}_{R_{\tau^*}}}$.
- (4) If $\mathcal{K}_{R_T^{r_i*}}(A) = B$ for all $i \in \Gamma \neq \emptyset$, then $\mathcal{K}_{R_T^{s*}}(A) = B$ with $s = \bigvee_{i \in \Gamma} r_i$.
- (5) If $\mathcal{K}_{R_T^{-r_i}}(A) = B$ for all $i \in \Gamma \neq \emptyset$, then $\mathcal{K}_{R_T^{-s}}(A) = B$ with $s = \bigvee_{i \in \Gamma} r_i$.
- (6) $\mathcal{K}_{R_{T^*}^{r*}}(A) = \bigvee \{A_i \mid A_i \leq A^*, \ \mathbf{T}(A_i) \geq r\}$ for all $A \in L^X$ and $r \in L$. Moreover, $R_T^{-r}(x,y) = \mathcal{K}_{R_{T^*}^{r*}}^*(\top_x)(y)$, for each $x,y \in X$.
- (7) $\mathcal{K}_{R_T^{r*}}(A) = \bigvee \{A_i \mid A_i \leq A^*, \mathbf{T}^*(A_i) \geq r\}$ for all $A \in L^X$ and $r \in L$. Moreover, $R_T^r(x,y) = \mathcal{K}_{R_T^{r*}}^*(\top_x)(y)$, for each $x,y \in X$.

Proof. (1) By a similar method as (1), R_T^{-r} is a fuzzy preorder. Moreover,

$$\begin{array}{ll} R_T^{-r}(x,y) &= \bigwedge \{B(y) \to B(x) \mid \mathbf{T}(B) \ge r\} \\ &= \bigwedge \{B^*(x) \to B^*(y) \mid \mathbf{T}(B^*) = \mathbf{T}^*(B) \ge r\} \\ &= R_{T^*}^r(x,y). \end{array}$$

- (2) By (1), $R_T^{-r}(x,y) = \bigwedge_{B \in \tau_T^r} (B(y) \to B(x))$ is a fuzzy preorder.
- (3) Let $A \in (\tau_T^r)^*$. Then $A^* \in \tau_T^r$ and

$$\begin{array}{ll} A^*(y)\odot R_T^{-r}(x,y) &= A^*(y)\odot \bigwedge_{B\in\tau_T^r}(B(y)\to B(x))\\ &\leq A^*(y)\odot (A^*(y)\to A^*(x))\leq A^*(x). \end{array}$$

Thus $A^*(y) \leq R_T^{-r}(x,y) \to A^*(x) = A(x) \to R_T^{-r*}(x,y)$. Hence $\mathcal{K}_{R_T^{-r*}}(A) = A^*$; i.e. $A \in \tau_{\mathcal{K}_{R_T^{-r*}}}$. So, $(\tau_T^r)^* \subset \tau_{\mathcal{K}_{R_T^{-r*}}}$.

Let
$$A \in \tau_{\mathcal{K}_{R_T^{-r*}}}$$
; i.e. $\mathcal{K}_{R_T^{-r*}}(A) = A^*$. Then

$$\begin{array}{ll} A^* &= \bigwedge_{x \in X} (A(x) \to R_T^{-r*}(x,-)) \\ &= \bigwedge_{x \in X} (A(x) \to (\bigwedge_{B \in \tau_{T*}^r} (B(x) \to B))^*) \\ &= \bigwedge_{x \in X} (A(x) \to \bigvee_{B \in \tau_{T*}^r} (B(x) \odot B^*)) \end{array}$$

Since $\bigvee_{B \in \tau^r_T} (B(x) \odot B^*) \in \tau^r_T$ and $A(x) \to \bigvee_{B \in \tau^r_T} (B(x) \odot B^*) \in \tau^r_T$, we have $A^* \in \tau^r_T$; i.e $A \in (\tau^r_T)^*$. So, $\tau_{\mathcal{K}_{R_T^{-r_*}}} \subset (\tau^r_T)^*$.

(4) Let $\mathcal{K}_{R_x^{r_i*}}(A) = B$ for all $i \in \Gamma \neq \emptyset$. Since

$$\mathcal{K}_{R_T^{r_i*}}(A) = \bigwedge_{x \in X} (A(x) \to (R_T^{r_i}(x, -))^*) \in (\tau_T^{r_i})^*$$

 $\mathbf{T}^{*}(B) = \mathbf{T}^{*}(\mathcal{K}_{R_{T}^{r_{i}*}}(A)) \geq r_{i}$, then $\mathbf{T}^{*}(B) \geq \bigvee_{i \in \Gamma} r_{i} = s$;i.e. $B \in (\tau_{T}^{s})^{*} = \tau_{\mathcal{K}_{R_{T}^{s*}}}$;i.e. $B^{*} \in \tau_{T}^{s*} = \tau_{\mathcal{K}_{R_{T}^{s*}}}$. Since $\mathcal{K}_{R_{T}^{s}}(B^{*}) = B = \mathcal{K}_{R_{T}^{r_{i}*}}(A) \leq A^{*}$, $A \leq \mathcal{K}_{R_{T}^{s}}^{*}(B^{*}) = B^{*}$. Thus

$$\mathcal{K}_{R_T^{s*}}(A) \ge \mathcal{K}_{R_T^{s*}}(\mathcal{K}_{R_T^{s*}}^*(B^*)) = \mathcal{K}_{R_T^{s*}}(B^*) = B.$$

Since $s \geq r_i$, $\mathcal{K}_{R_T^{s*}}(A) \leq \mathcal{K}_{R_T^{r_i*}}(A) = B$. Thus $\mathcal{K}_{R_T^{s*}}(A) = B$.

(6) For each $A \in L^X$ with $A_i \leq A^*$, $\mathbf{T}(A_i) \geq r$, since $A_i \in \tau_T^r = \tau_{\mathcal{K}_{R_T^{r*}}}$ from Theorem 3.2(3), then

$$\mathcal{K}_{R_T^{r*}}(\bigvee_i A_i) = \bigwedge_i \mathcal{K}_{R_T^{r*}}(A_i) = \bigwedge_i A_i^*.$$

Since $\bigvee_i A_i \in \tau_{\mathcal{K}_{R_T^{r*}}} = \tau_T^r$ iff $(\bigvee_i A_i)^* \in \tau_{\mathcal{K}_{R_{T*}^{r*}}} = \tau_{T^*}^r$, then

$$\mathcal{K}_{R_{T^*}^{r*}}((\bigvee_i A_i)^*) = \mathcal{K}_{R_{T^*}^{r*}}(\bigwedge_i A_i^*) = \bigvee_i A_i.$$

Since $\bigwedge_i A_i^* \geq A$. Thus

$$\mathcal{K}_{R_{T^*}^r}(A) \ge \mathcal{K}_{R_{T^*}^{r^*}}(\bigwedge_i A_i^*) = \bigvee_i A_i = \bigvee \{A_i \mid A_i \le A^*, \ \mathbf{T}(A_i) \ge r\}.$$

Since $\mathcal{K}_{R_{T^*}^{r_*}}(\mathcal{K}_{R_{T^*}^{r_*}}^*(A)) = \mathcal{K}_{R_{T^*}^{r_*}}(A) \leq A^*$. Since

$$\mathcal{K}_{R_{T^*}^{r*}}(A) = \bigwedge_{x \in X} (A(x) \to (R_{T^*}^r(x, -))^*) \in \tau_T^r$$

So, $\bigvee \{A_i \mid A_i \leq A^*, \ \mathbf{T}(A_i) \geq r\} \geq \mathcal{K}_{R_{T^*}^{r*}}(A)$. Hence $\bigvee \{A_i \mid A_i \leq A, \ \mathbf{T}(A_i) \geq r\} = \mathcal{K}_{R_{T^*}^{r*}}(A)$ for all $A \in L^X$ and $r \in L$. Moreover, $\mathcal{K}_{R_{T^*}^{r*}}(\top_x)(y) = \bigwedge_{z \in X}(\top_x(z) \to R_{T^*}^{r*}(z,y)) = R_{T^*}^{r*}(x,y) = R_{T}^{-r*}(x,y)$.

(5) and (6) are similarly proved as (4) and (7), respectively.

Theorem 3.4. Let **T** be an Alexandrov fuzzy topology on X. Then the following properties hold.

(1) Define $\mathbf{T}_{K_T}: L^X \to L$ as

$$\mathbf{T}_{K_T}(A) = \bigvee \{ r_i \in L \mid \mathcal{K}_{R_T^{r_i*}}(A) = A^* \}.$$

Then \mathbf{T}_{K_T} is an Alexandrov fuzzy topology on X such that $\mathbf{T}_{K_T} = \mathbf{T}$.

(2) Define $\mathbf{T}_{K_{T^*}}: L^X \to L$ as

$$\mathbf{T}_{K_{T^*}}(A) = \bigvee \{r_i \in L \mid \mathcal{K}_{R_T^{-r_i*}}(A) = A^*\} = \bigvee \{r_i \in L \mid \mathcal{K}_{R_{T^*}^{r_i*}}(A) = A^*\}.$$

Then $\mathbf{T}_{K_{T^*}}$ is an Alexandrov fuzzy topology on X such that $\mathbf{T}_{K_{T^*}} = \mathbf{T}^*$.

(3) There exists an Alexandrov fuzzy topology \mathbf{T}_K^r such that

$$\mathbf{T}_K^r(A) = e_{L^X}(A^*, \mathcal{K}_{R_T^{r*}}(A)).$$

If $r \leq s$, then $\mathbf{T}_K^s \leq \mathbf{T}_K^r$ for all $A \in L^X$.

(4) There exists an Alexandrov fuzzy topology \mathbf{T}_K^{*r} such that

$$\mathbf{T}_{K}^{*r}(A) = e_{L^{X}}(A^{*}, \mathcal{K}_{R_{T}^{-r}}(A)).$$

If $r \leq s$, then $\mathbf{T}_K^{*r} \leq \mathbf{T}_K^{*s}$ for all $A \in L^X$.

(5) Define $\mathbf{T}_K: L^X \to L$ as

$$\mathbf{T}_K(A) = \bigvee \{ r^* \in L \mid \mathbf{T}_K^r(A) = \top \}.$$

Then $\mathbf{T}_K = \mathbf{T} = \mathbf{T}_{K_T}$ is an Alexandrov fuzzy topology on X. (6) Define $\mathbf{T}_{K^*}: L^X \to L$ as

$$\mathbf{T}_{K^*}(A) = \bigvee \{r^* \in L \mid \mathbf{T}_K^{*r}(A) = \top \}.$$

Then $\mathbf{T}_{K^*} = \mathbf{T}^* = \mathbf{T}_{K_{T^*}}$ is an Alexandrov fuzzy topology on X.

Proof. (1) We will show that $\mathbf{T}_{K_T} = \mathbf{T}$. Let $\mathcal{K}_{R_T^{r_i*}}(A) = A^*$. Since $\mathcal{K}_{R_T^{r_i*}}(A) \in (\tau_T^{r_i})^* \text{ and } \mathbf{T}(A) = \mathbf{T}^*(A^*) = \mathbf{T}^*(\mathcal{K}_{R_T^{r_i*}}(A)) \ge r_i, \text{ then } \mathbf{T}^*(A) = \mathbf{T}^*(A^*) = \mathbf{T}^*(A^*)$

$$\mathbf{T}_{K_T}(A) = \bigvee \{r_i \in L \mid \mathcal{K}_{R_T^{r_i}}(A) = A^*\} \le \mathbf{T}(A).$$

Since $\mathbf{T}(A) \geq \mathbf{T}(A)$ and $\tau_T^s = \tau_{\mathcal{K}_{R_T^{s*}}}$, then $\mathcal{K}_{R_T^{s*}}(A) = A$ where $\mathbf{T}(A) = s$. Thus

$$\mathbf{T}_{K_T}(A) = \bigvee \{ r_i \in L \mid \mathcal{K}_{R_T^{r_i*}}(A) = A^* \} \ge \mathbf{T}(A).$$

Hence $\mathbf{T}_{K_T} = \mathbf{T}$.

(3) (T1) By Lemma 2.4(12), since
$$\alpha^* \odot R_T^r(z, x) \leq \alpha^*$$
,

$$\begin{aligned} \mathbf{T}_K^r(\alpha_X) &= \bigwedge_x (\alpha_X^* \to \mathcal{K}_{R_T^{r*}}(\alpha_X)(x)) \\ &= \bigwedge_x (\alpha^* \to \bigwedge_{z \in X} (\alpha \to R_T^{r*}(z,x))) \\ &= \bigwedge_x (\alpha^* \to \bigwedge_{z \in X} (R_T^r(z,x) \to \alpha^*)) \\ &= \bigwedge_x \bigwedge_{z \in X} (\alpha^* \odot R_T^r(z,x) \to \alpha^*) = \top. \end{aligned}$$

(T2)Since
$$\mathcal{K}_{R_T^{r*}}(\bigvee_{i\in\Gamma}A_i)=\bigwedge_{i\in\Gamma}\mathcal{K}_{R_T^{r*}}(A_i)$$
, by Lemma 2.4(8),

$$\begin{split} \mathbf{T}_{K}^{r}(\bigvee_{i\in\Gamma}A_{i}) &= e_{L^{X}}((\bigvee_{i\in\Gamma}A_{i})^{*},\mathcal{K}_{R_{T}^{r*}}(\bigvee_{i\in\Gamma}A_{i})) \\ &= e_{L^{X}}(\bigwedge_{i\in\Gamma}A_{i}^{*},\bigwedge_{i\in\Gamma}\mathcal{K}_{R_{T}^{r*}}(A_{i})) \\ &\geq \bigwedge_{i\in\Gamma}e_{L^{X}}(A_{i}^{*},\mathcal{K}_{R_{T}^{r*}}(A_{i})) = \bigwedge_{i\in\Gamma}\mathbf{T}_{K}^{r}(A_{i}) \end{split}$$

Since $\mathcal{K}_{R_T^{r*}}(\bigwedge_{i\in\Gamma}A_i)\geq\bigvee_{i\in\Gamma}\mathcal{K}_{R_T^{r*}}(A_i)$, by Lemma 2.4(8), we have

$$\begin{split} &\mathbf{T}_{K}^{r}(\bigwedge_{i\in\Gamma}A_{i})=e_{L^{X}}((\bigwedge_{i\in\Gamma}A_{i})^{*},\mathcal{K}_{R_{T}^{r*}}(\bigwedge_{i\in\Gamma}A_{i}))\\ &\geq e_{L^{X}}(\bigvee_{i\in\Gamma}A_{i}^{*},\bigvee_{i\in\Gamma}\mathcal{K}_{R_{T}^{r*}}(A_{i}))\\ &\geq \bigwedge_{i\in\Gamma}e_{L^{X}}(A_{i}^{*},\mathcal{K}_{R_{T}^{r*}}(A_{i}))=\bigwedge_{i\in\Gamma}\mathbf{T}_{K}^{r}(A_{i}) \end{split}$$

(T3) Since

$$\alpha \to \mathcal{K}_{R_T^{r*}}(\alpha \odot A) = \mathcal{K}_{R_T^{r*}}(\alpha \to (\alpha \odot A)) \ge \mathcal{K}_{R_T^{r*}}(A)$$
 iff $\mathcal{K}_{R_T^{r*}}(\alpha \odot A) \ge \alpha \odot \mathcal{K}_{R_T^{r*}}(A)$,

by Lemma 2.4(8),

$$\begin{aligned} &\mathbf{T}_{K}^{r}(\alpha\odot A)=e_{L^{X}}((\alpha\odot A)^{*},\mathcal{K}_{R_{T}^{r*}}(\alpha\odot A))\\ &\geq e_{L^{X}}(\alpha\rightarrow A^{*},\alpha\rightarrow \mathcal{K}_{R_{T}^{r*}}(A))\\ &\geq e_{L^{X}}(A^{*},\mathcal{K}_{R_{T}^{r*}}(A))=\mathbf{T}_{K}^{r*}(A). \text{(by Lemma 2.4(8))} \end{aligned}$$

(T4)

$$\alpha \to \mathcal{K}_{R_T^{r*}}(\alpha \to A) = \mathcal{K}_{R_T^{r*}}(\alpha \odot (\alpha \to A)) \ge \mathcal{K}_{R_T^{r*}}(A)$$

iff $\mathcal{K}_{R_T^{r*}}(\alpha \to A) \ge \alpha \odot \mathcal{K}_{R_T^{r*}}(A)$,

by Lemma 2.4(8),

$$\mathbf{T}_{K}^{r}(\alpha \to A) = e_{L^{X}}((\alpha \to A)^{*}, \mathcal{K}_{R_{T}^{r*}}(\alpha \to A))$$

$$= e_{L^{X}}(\alpha \odot A^{*}, \alpha \odot \mathcal{K}_{R_{T}^{r*}}(A))$$

$$\geq e_{L^{X}}(A^{*}, \mathcal{K}_{R_{T}^{r*}}(A)) = \mathbf{T}_{K}^{r}(A).(\text{by Lemma 2.4(10)})$$

Hence \mathbf{T}_K^r is an Alexandrov fuzzy topology. Since $\mathcal{K}_{R_T^{s*}} \leq \mathcal{K}_{R_T^{r*}}$ for $r \leq s$, $\mathbf{T}_K^s(A) = e_{L^X}(A, \mathcal{K}_{R_T^{s*}}(A)) \leq e_{L^X}(A, \mathcal{K}_{R_T^{r*}}(A)) = \mathbf{T}_K^r(A)$.

(5) Since
$$\mathbf{T}_{K}^{r}(A) = e_{L^{X}}(A^{*}, \mathcal{K}_{R_{T}^{r*}}(A)) = \top$$
 iff $A^{*} = \mathcal{K}_{R_{T}^{r*}}(A)$, by (1),

$$\mathbf{T}_{K}(A) = \bigvee \{ r \in L \mid \mathbf{T}_{K}^{r}(A) = \top \}$$

$$= \bigvee \{ r \in L \mid \mathcal{K}_{R_{T}^{r*}}(A) = A^{*} \}$$

$$= \mathbf{T}_{K_{T}}(A) = \mathbf{T}(A).$$

(2), (4) and (6) are similarly proved.

EXAMPLE 3.5. Let $(L = [0, 1], \odot, \rightarrow, ^*)$ be a complete residuated lattice with a strong negation.

(1) Let
$$X = \{x, y, z\}$$
 be a set. Define a map $\mathbf{T} : [0, 1]^X \to [0, 1]$ as $\mathbf{T}(A) = A(x) \to A(z)$.

Trivially, $\mathbf{T}(\alpha_X) = 1$

Since $\alpha \odot A(x) \to \alpha \odot A(z) \geq A(x) \to A(z)$ from Lemma 2.4 (14), $\mathbf{T}(\alpha \odot A) \geq \mathbf{T}(A)$. Since $(\alpha \to A(x)) \to (\alpha \to A(z)) \geq A(x) \to A(z)$ from Lemma 2.4 (10), $\mathbf{T}(\alpha \to A) \geq \mathbf{T}(A)$. By Lemma 2.4 (8), $\mathbf{T}(\bigvee_{i \in \Gamma} A_i) \geq \bigwedge_{i \in \Gamma} \mathbf{T}(A_i)$ and $\mathbf{T}(\bigwedge_{i \in \Gamma} A_i) \geq \bigwedge_{i \in \Gamma} \mathbf{T}(A_i)$. Hence \mathbf{T} is an Alexandrov fuzzy topology.

Since $\mathbf{T}(A) = A(x) \to A(z) \ge r$, then $A(z) \ge A(x) \odot r$. Put A(x) = 1, A(y) = 0. So, $R_T^r(x, y) = \bigwedge \{A(x) \to A(y) \mid \mathbf{T}(A) \ge r\} = 0$ and $R_T^r(x, z) = \bigwedge \{A(x) \to A(z) \mid \mathbf{T}(A) \ge r\} = r$

$$\begin{pmatrix} R_T^r(x,x) = 1 & R_T^r(x,y) = 0 & R_T^r(x,z) = r \\ R_T^r(y,x) = 0 & R_T^r(y,y) = 1 & R_T^r(y,z) = 0 \\ R_T^r(z,x) = 0 & R_T^r(z,y) = 0 & R_T^r(z,z) = 1 \end{pmatrix}$$

By Theorem 3.1(3), we obtain $\mathcal{K}_{R_T^{r*}}(A)(y) = \bigwedge_{x \in X} (A(x) \to R_T^{r*}(x,y))$ such that

$$\mathcal{K}_{R_T^{r*}}(A) = (A(x) \to 0, A(y) \to 0, (A(x) \to r^*) \land (A(z) \to 0))$$

= $(A^*(x), A^*(y), (A(x) \to r^*) \land A^*(z)))$

If $A^*(z) \leq A(x) \rightarrow r^*$, then $\mathcal{K}_{R_T^{r*}}(A) = A^*$, that is, $A \in \tau_{\mathcal{K}_{R_T^{r*}}}$. If $\mathcal{K}_{R_T^{r*}}(A) = A^*$, then $(A(x) \rightarrow r^*) \wedge A^*(z) = A^*(z)$, that is, $A^*(z) \leq A(x) \rightarrow r^*$. Hence $A^*(z) \leq A(x) \rightarrow r^*$ iff $A^*(z) \leq (A(x) \odot r)^*$ iff $A(z) \geq A(x) \odot r$ iff $r \leq (A(x) \rightarrow A(z)) = \mathbf{T}(A)$ iff $A \in \tau_{\mathcal{K}_{R_T^{r*}}}$.

$$\begin{aligned} \mathbf{T}_{K_T}(A) &= \bigvee \{r \in L \mid \mathcal{K}_{R_T^{r*}}(A) = A^* \} \\ &= \bigvee \{r \in L \mid r \leq A(x) \rightarrow A(z) \} \\ &= A(x) \rightarrow A(z) = \mathbf{T}(A). \end{aligned}$$

Moreover,

$$\mathcal{K}_{R_T^{r*}}(A^*) = (A(x), A(y), (A^*(x) \to r^*) \land A(z)).$$

From Theorem 3.4(1), we obtain

$$\begin{aligned} \mathbf{T}_K^r(A) &= \bigwedge_{x \in X} (A^*(x) \to \mathcal{K}_{R_T^{r*}}(A)(x)) \\ &= A^*(z) \to (r \to A^*(x)) = r \to (A^*(z) \to A^*(x)). \\ \mathbf{T}_K(A) &= \bigvee \{ r \in L \mid \mathbf{T}_K^r(A) = 1 \} \\ &= \bigvee \{ r \in L \mid r \to (A^*(z) \to A^*(x)) = 1 \} \\ &= A(x) \to A(z) = \mathbf{T}(A). \end{aligned}$$

Hence $\mathbf{T}_K = \mathbf{T}_{K_T} = \mathbf{T}$.

(2) By (1), we obtain a map $\mathbf{T}^* : [0,1]^X \to [0,1]$ as

$$T^*(A) = A^*(x) \to A^*(z) = A(z) \to A(x)$$

Since $\mathbf{T}^*(A) = A(z) \to A(x) \ge r$, then $A(x) \ge A(z) \odot r$. Put A(z) = 1, A(y) = 0. So, $R_{T^*}^r(z, y) = \bigwedge \{A(z) \to A(y) \mid \mathbf{T}^*(A) \ge r\} = 0$ and $R_{T^*}^r(z, x) = \bigwedge \{A(z) \to A(x) \mid \mathbf{T}(A) \ge r\} = r$

$$\begin{pmatrix} R_{T^*}^r(x,x) = 1 & R_{T^*}^r(x,y) = 0 & R_{T^*}^r(x,z) = 0 \\ R_{T^*}^r(y,x) = 0 & R_{T^*}^r(y,y) = 1 & R_{T^*}^r(y,z) = 0 \\ R_{T^*}^r(z,x) = r & R_{T^*}^r(z,y) = 0 & R_{T^*}^r(z,z) = 1 \end{pmatrix}$$

Moreover, $R_{T^*}^r(x,y) = R_T^{-r}(x,y) = R_T^r(y,x)$ for all $x,y \in X$.

$$\mathcal{K}_{R_{T*}^{r*}}(A)(y) = \bigwedge_{x \in X} (A(x) \to R_{T*}^{r*}(x,y)).$$

$$\mathcal{K}_{R^r_{T^*}}(A) = (A^*(x) \land (A(z) \to r), A^*(y), A^*(z))$$

Then $A^*(x) \leq A(z) \rightarrow r$ iff $\mathcal{K}_{R^{r*}_{T^*}}(A) = A^*$. Moreover, since $\mathbf{T}^*(A) = A(z) \rightarrow A(x) \geq r$ iff $A(z) \odot r \leq A(x)$ iff $A^*(x) \leq A(z) \rightarrow r$, then $A \in \tau^r_{T^*}$ iff $A \in \tau_{\mathcal{K}_{R^{r*}_{T^*}}}$. Thus $\tau^r_{T^*} = \tau_{\mathcal{K}_{R^{r*}_{T^*}}}$. Moreover,

$$\mathbf{T}_{K_{T^*}}(A) = \bigvee \{r \in L \mid \mathcal{K}_{R_{T^*}^{r*}}(A) = A^*\}$$

= $A(z) \to A(x) = \mathbf{T}^*(A)$.

Moreover, we obtain

$$\begin{aligned} \mathbf{T}_{K}^{*r}(A) &= \bigwedge_{x \in X} (A^{*}(x) \to \mathcal{K}_{R_{T^{*}}^{r*}}(A)(x)) \\ &= A^{*}(x) \to (A(z) \to r^{*}) = r \to (A(z) \to A(x)). \\ \mathbf{T}_{K^{*}}(A) &= \bigvee \{ r \in L \mid \mathbf{T}_{K}^{*r}(A) = 1 \} \\ &= A(z) \to A(x) = \mathbf{T}^{*}(A). \end{aligned}$$

Hence $\mathbf{T}_{K^*} = \mathbf{T}_{K_{T^*}} = \mathbf{T}^*$.

$$\mathcal{K}_{R_{rr*}^{r*}}(1_x)(z) = \bigvee \{B(z) \mid B \le 1_x^*, \ \mathbf{T}(B) \ge r\}$$

Since B(x) = 0 and $T(B) = 0 \to B(z) = 1 \ge r$, then $\mathcal{K}_{R_{r_*}^{r_*}}(1_x)(z) = 1$.

$$\mathcal{K}_{R_{T^*}^{r*}}(1_z)(x) = \bigvee \{B(x) \mid B \le 1_z^*, \ \mathbf{T}(B) \ge r\}$$

Since B(z) = 0 and $\mathbf{T}(B) = B(x) \to 0 \ge r$, then $\mathcal{K}_{R_{T^*}^{r*}}(1_z)(x) = r^*$.

$$\begin{pmatrix} \mathcal{K}_{R_{T^*}^{r*}}(1_x)(x) = 0 & \mathcal{K}_{R_{T^*}^{r*}}(1_x)(y) = 1 & \mathcal{K}_{R_{T^*}^{r*}}(1_x)(z) = 1 \\ \mathcal{K}_{R_{T^*}^{r*}}(1_y)(x) = 1 & \mathcal{K}_{R_{T^*}^{r*}}(1_y)(y) = 0 & \mathcal{K}_{R_{T^*}^{r*}}(1_y)(z) = 1 \\ \mathcal{K}_{R_{T^*}^{r*}}(1_z)(x) = r^* & \mathcal{K}_{R_{T^*}^{r*}}(1_z)(y) = 1 & \mathcal{K}_{R_{T^*}^{r*}}(1_z)(z) = 0 \end{pmatrix}$$

Then $\mathcal{K}_{R_{T*}^{r*}}(1_x)(y) = R_{T*}^{r*}(x,y).$

$$\mathcal{K}_{R_T^{r*}}(1_x)(z) = \bigvee \{B(z) \mid B \le 1_x^*, \ \mathbf{T}^*(B) \ge r\}$$

Since B(x) = 0 and $\mathbf{T}^*(B) = B(z) \to 0 \ge r$, then $\mathcal{K}_{R_T^{r*}}(1_x)(z) = r^*$.

$$\mathcal{K}_{R_T^{r*}}(1_z)(x) = \bigvee \{B(x) \mid B \le 1_z^*, \ \mathbf{T}^*(B) \ge r\}$$

Since B(z) = 0 and $\mathbf{T}^*(B) = 0 \to B(x) = 1 \ge r$, then $\mathcal{K}_{R_T^{r*}}(1_z^*)(x) = 1$.

$$\begin{pmatrix} \mathcal{K}_{R_T^{r*}}(1_x)(x) = 0 & \mathcal{K}_{R_T^{r*}}(1_x)(y) = 1 & \mathcal{K}_{R_T^{r*}}(1_x)(z) = r^* \\ \mathcal{K}_{R_T^{r*}}(1_y)(x) = 1 & \mathcal{K}_{R_T^{r*}}(1_y)(y) = 0 & \mathcal{K}_{R_T^{r*}}(1_y)(z) = 1 \\ \mathcal{K}_{R_T^{r*}}(1_z)(x) = 1 & \mathcal{K}_{R_T^{r*}}(1_z)(y) = 1 & \mathcal{K}_{R_T^{r*}}(1_z)(z) = 0 \end{pmatrix}$$

Then $\mathcal{K}_{R_T^{r*}}(1_x)(y) = R_T^{r*}(x,y).$

(3) Let $(L = [0, 1], \odot, \rightarrow,^*)$ be a complete residuated lattice with a strong negation defined by, for each $n \in N$,

$$x\odot y = ((x^n+y^n-1)\vee 0)^{\frac{1}{n}}, \ x\to y = (1-x^n+y^n)^{\frac{1}{n}}\wedge 1, \ x^* = (1-x^n)^{\frac{1}{n}}.$$

By (1) and (2), we obtain

$$\mathbf{T}(A) = (1 - A(x)^n + A(z)^n)^{\frac{1}{n}} \wedge 1, \quad \mathbf{T}^*(A) = (1 - A(z)^n + A(x)^n)^{\frac{1}{n}} \wedge 1.$$

$$R_T^{r*} = \begin{pmatrix} 1 & 0 & r \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad R_{T^*}^{r*} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ r & 0 & 1 \end{pmatrix}$$

$$\mathcal{K}_{R_T^{r*}}(A) = (A^*(x), A^*(y), A^*(z) \wedge (1 - r^n + (A^*(x))^n)^{\frac{1}{n}})$$

$$\mathcal{K}_{R_{T_{n}}^{r_{*}}}(A) = (A^{*}(x) \wedge (1 - r^{n} + (A^{*}(z))^{n})^{\frac{1}{n}}, A^{*}(y), A^{*}(z)).$$

Since $\mathbf{T}(A) = (1 - A(x)^n + A(z)^n)^{\frac{1}{n}} \wedge 1 \ge r$, we have

$$\tau_T^r = \tau_{\mathcal{K}_{R_T^{r*}}} = \{ A \in L^X \mid A^n(z) - A^n(x) \ge 1 - r^n \}$$

$$\tau_{T^*}^r = \tau_{\mathcal{K}_{R_T^{r*}}} = \{ A \in L^X \mid A^n(x) - A^n(z) \ge 1 - r^n \}.$$

$$\mathbf{T}_{K}^{r}(A) = r \to (A(x) \to A(z)) = (2 - r^{n} - A(x)^{n} + A(z)^{n})^{\frac{1}{n}} \wedge 1$$

$$\mathbf{T}_{K}^{r}(A) = r \to (A(z) \to A(x)) = (2 - r^{n} - A(z)^{n} + A(x)^{n})^{\frac{1}{n}} \wedge 1.$$

References

- R. Bělohlávek, Fuzzy Relational Systems, Kluwer Academic Publishers, New York, 2002.
- [2] P. Hájek, *Metamathematices of Fuzzy Logic*, Kluwer Academic Publishers, Dordrecht, 1998.
- [3] U. Höhle and S.E. Rodabaugh, Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series 3, Kluwer Academic Publishers, Boston.
- [4] Fang Jinming, *I-fuzzy Alexandrov topologies and specialization orders*, Fuzzy Sets and Systems, **158** (2007), 2359–2374.
- [5] Y.C. Kim, Alexandrov L-topologies and L-join meet approximation operators, International Journal of Pure and Applied Mathematics, 91 (1) (2014), 113– 129.
- [6] H. Lai and D. Zhang, Fuzzy preorder and fuzzy topology, Fuzzy Sets and Systems 157 (2006),1865–1885.
- [7] H. Lai and D. Zhang, Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set theory, Int. J. Approx. Reasoning **50** (2009), 695–707.
- [8] Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci. 11 (1982), 341–356.
- [9] Z. Pawlak, Rough probability, Bull. Pol. Acad. Sci. Math. 32 (1984), 607–615.
- [10] A. M. Radzikowska and E.E. Kerre, A comparative study of fuzy rough sets, Fuzzy Sets and Systems 126 (2002), 137–155.
- [11] Y.H. She and G.J. Wang An axiomatic approach of fuzzy rough sets based on residuated lattices, Computers and Mathematics with Applications 58 (2009), 189–201.
- [12] Zhen Ming Ma and Bao Qing Hu, Topological and lattice structures of L-fuzzy rough set determined by lower and upper sets, Information Sciences 218 (2013), 194–204.

Yong Chan Kim Department of Mathematics Gangneung-Wonju National Gangneung 210-702, Korea E-mail: yck@gwnu.ac.kr