AN ADDITIVE FUNCTIONAL INEQUALITY

SUNG JIN LEE, CHOONKIL PARK, AND DONG YUN SHIN*

Abstract. In this paper, we solve the additive functional inequality
\[\|f(x) + f(y) + f(z)\| \leq \|\rho f(s(x + y + z))\|, \]
where \(s \) is a nonzero real number and \(\rho \) is a real number with \(|\rho| < 3\).

Moreover, we prove the Hyers-Ulam stability of the above additive functional inequality in Banach spaces.

1. Introduction and preliminaries

In [5], Gilányi showed that if \(f \) satisfies the functional inequality
\[\|2f(x) + 2f(y) - f(xy^{-1})\| \leq \|f(xy)\| \]
then f satisfies the Jordan-von Neumann functional equation

$$2f(x) + 2f(y) = f(xy) + f(xy^{-1}).$$

In Section 2, we solve the additive functional inequality

$$\|f(x) + f(y) + f(z)\| \leq \|\rho f(s(x + y + z))\|,$$

and prove the Hyers-Ulam stability of the additive functional inequality (2).

Park, Cho and Han [8] investigated the additive functional inequalities for the case $\rho = s = 1$, and the case $\rho = 2$ and $s = \frac{1}{2}$.

Throughout this paper, let X be a normed space with norm $\|\cdot\|$ and Y a Banach space with norm $\|\cdot\|$. Assume that s is a nonzero real number and that ρ is a real number with $|\rho| < 3$.

2. The additive functional inequality (2)

Lemma 2.1. If a mapping $f : X \to Y$ satisfies

$$\|f(x) + f(y) + f(z)\| \leq \|\rho f(s(x + y + z))\|$$

for all $x, y, z \in X$, then $f : X \to Y$ is additive.

Proof. Letting $x = y = z = 0$ in (3), we get

$$\|3f(0)\| \leq \|\rho f(0)\|.$$

So $f(0) = 0$.

Letting $z = -x$ and $y = 0$ in (3), we get

$$\|f(x) + f(-x)\| \leq \|\rho f(0)\| = 0$$

for all $x \in X$. Hence $f(-x) = -f(x)$ for all $x \in X$.

Letting $z = -x - y$ in (3), we get

$$\|f(x) + f(y) + f(-x - y)\| \leq \|\rho f(0)\| = 0$$

for all $x, y \in X$. So $f(x) + f(y) = -f(-x - y) = f(x+y)$ for all $x, y \in X$, as desired. \(\square\)

Corollary 2.2. If a mapping $f : X \to Y$ satisfies

$$f(x) + f(y) + f(z) = \rho f(s(x + y + z))$$

for all $x, y, z \in X$, then $f : X \to Y$ is additive.
Now, we prove the Hyers-Ulam stability of the additive functional inequality (2) in Banach spaces.

Theorem 2.3. Let \(r > 1 \) and \(\theta \) be nonnegative real numbers, and let \(f : X \to Y \) be a mapping such that

\[
\|f(x) + f(y) + f(z)\| \leq \|\rho f(s(x + y + z))\| + \theta(\|x\|^r + \|y\|^r + \|z\|^r)
\]

for all \(x, y, z \in X \). Then there exists a unique additive mapping \(h : X \to Y \) such that

\[
\|f(x) - h(x)\| \leq \frac{2 + 3 \cdot 2^r}{2r - 2} \theta \|x\|^r
\]

for all \(x \in X \).

Proof. Letting \(x = y = z = 0 \) in (5), we get \(f(0) = 0 \).

Letting \(y = -x \) and \(z = 0 \) in (5), we get

\[
\|f(x) + f(-x)\| \leq 2\theta \|x\|^r
\]

for all \(x \in X \). So

\[
\|f(2x) + f(-2x)\| \leq 2 \cdot 2^r \theta \|x\|^r
\]

for all \(x \in X \).

Letting \(y = x \) and \(z = -2x \) in (5), we get

\[
\|2f(x) + f(-2x)\| \leq (2 + 2^r)\theta \|x\|^r
\]

for all \(x \in X \). It follows from (7) and (8) that

\[
\|2f(x) - f(2x)\| \leq (2 + 3 \cdot 2^r)\theta \|x\|^r
\]

for all \(x \in X \). So

\[
\left\|f(x) - 2f\left(\frac{x}{2}\right)\right\| \leq \frac{2 + 3 \cdot 2^r}{2r} \theta \|x\|^r
\]

for all \(x \in X \). Hence

\[
\left\|2^j f\left(\frac{x}{2^j}\right) - 2^m f\left(\frac{x}{2^m}\right)\right\| \leq \sum_{j=l}^{m-1} \left\|2^j f\left(\frac{x}{2^j}\right) - 2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\|
\]

\[
\leq \frac{2 + 3 \cdot 2^r}{2r} \sum_{j=l}^{m-1} \frac{2^j}{2^r} \theta \|x\|^r
\]

for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \). It follows from (10) that the sequence \(\{2^m f\left(\frac{x}{2^m}\right)\} \) is a Cauchy sequence for
all \(x \in X \). Since \(Y \) is complete, the sequence \(\{2^n f(x/2^n)\} \) converges. So one can define the mapping \(h : X \to Y \) by
\[
h(x) := \lim_{n \to \infty} 2^n f(x/2^n)
\]
for all \(x \in X \). Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (10), we get (6).

It follows from (5) that
\[
\|h(x) + h(y) + h(z)\| = \lim_{n \to \infty} 2^n \left\| f\left(\frac{x}{2^n}\right) + f\left(\frac{y}{2^n}\right) + f\left(\frac{z}{2^n}\right)\right\|
\]
\[
\leq \lim_{n \to \infty} 2^n \left\| \rho f\left(\frac{s(x+y+z)}{2^n}\right)\right\|
\]
\[
+ \lim_{n \to \infty} \frac{2^n \theta}{2^n r} (\|x\|^r + \|y\|^r + \|z\|^r)
\]
\[
= \|\rho h(s(x+y+z))\|
\]
for all \(x, y, z \in X \). So
\[
\|h(x) + h(y) + h(z)\| \leq \|\rho h(s(x+y+z))\|
\]
for all \(x, y, z \in X \). By Lemma 2.1, the mapping \(h : X \to Y \) is additive.

Now, let \(T : X \to Y \) be another additive mapping satisfying (6). Then we have
\[
\|h(x) - T(x)\| = 2^n \left\| h\left(\frac{x}{2^n}\right) - T\left(\frac{x}{2^n}\right)\right\|
\]
\[
\leq 2^n \left(\left\| h\left(\frac{x}{2^n}\right) - f\left(\frac{x}{2^n}\right)\right\| + \left\| T\left(\frac{x}{2^n}\right) - f\left(\frac{x}{2^n}\right)\right\|\right)
\]
\[
\leq \frac{2(2 + 3 \cdot 2^r)2^n}{(2^r - 2)2^n - \theta \|x\|^r},
\]
which tends to zero as \(n \to \infty \) for all \(x \in X \). So we can conclude that \(h(x) = T(x) \) for all \(x \in X \). This proves the uniqueness of \(h \). Thus the mapping \(h : X \to Y \) is a unique additive mapping satisfying (6).

Theorem 2.4. Let \(r < 1 \) and \(\theta \) be positive real numbers, and let \(f : X \to Y \) be a mapping satisfying (5). Then there exists a unique additive mapping \(h : X \to Y \) such that
\[
\|f(x) - h(x)\| \leq \frac{2 + 3 \cdot 2^r}{2 - 2^r} \theta \|x\|^r
\]
for all \(x \in X \).
Proof. It follows from (9) that
\[\left\| f(x) - \frac{1}{2} f(2x) \right\| \leq \frac{2 + 3 \cdot 2^r}{2} \theta \|x\|^r \]
for all \(x \in X \). Hence
\[\left\| \frac{1}{2^l} f(2^l x) - \frac{1}{2^m} f(2^m x) \right\| \leq \sum_{j=l}^{m-1} \left\| \frac{1}{2^j} f(2^j x) - \frac{1}{2^{j+1}} f(2^{j+1} x) \right\| \]
for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \). It follows from (12) that the sequence \(\left\{ \frac{1}{2^n} f(2^n x) \right\} \) is a Cauchy sequence for all \(x \in X \). Since \(Y \) is complete, the sequence \(\left\{ \frac{1}{2^n} f(2^n x) \right\} \) converges. So one can define the mapping \(h : X \rightarrow Y \) by
\[h(x) := \lim_{n \to \infty} \frac{1}{2^n} f(2^n x) \]
for all \(x \in X \). Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (12), we get (11).

The rest of the proof is similar to the proof of Theorem 2.3. \(\square \)

By the triangle inequality, we have
\[\| f(x) + f(y) + f(z) - \rho f(s(x + y + z)) \| \leq \| f(x) + f(y) + f(z) - \rho f(s(x + y + z)) \| . \]
As corollaries of Theorems 2.3 and 2.4, we obtain the Hyers-Ulam stability results for the additive functional equation (4) in Banach spaces.

Corollary 2.5. Let \(r > 1 \) and \(\theta \) be nonnegative real numbers, and let \(f : X \rightarrow Y \) be a mapping such that
\[\| f(x) + f(y) + f(z) - \rho f(s(x + y + z)) \| \leq \theta (\|x\|^r + \|y\|^r + \|z\|^r) \]
for all \(x, y, z \in X \). Then there exists a unique additive mapping \(h : X \rightarrow Y \) satisfying (6).

Corollary 2.6. Let \(r < 1 \) and \(\theta \) be nonnegative real numbers, and let \(f : X \rightarrow Y \) be a mapping satisfying (13). Then there exists a unique additive mapping \(h : X \rightarrow Y \) satisfying (11).
References

Sung Jin Lee
Department of Mathematics
Daejin University
Kyeonggi 487-711, Korea
E-mail: hyper@daejin.ac.kr

Choonkil Park
Department of Mathematics
Hanyang University
Seoul 133-791, Korea
E-mail: baak@hanyang.ac.kr

Dong Yun Shin
Department of Mathematics
University of Seoul
Seoul 130-743, Korea
E-mail: dyshin@uos.ac.kr