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AN ADDITIVE FUNCTIONAL INEQUALITY

SUNG JIN LEE, CHOONKIL PARK, AND DONG YUN SHIN*

ABSTRACT. In this paper, we solve the additive functional inequal-
ity
1f (@) + F(y) + f)N < lpf (s(z +y + ),

where s is a nonzero real number and p is a real number with |p| < 3.
Moreover, we prove the Hyers-Ulam stability of the above addi-
tive functional inequality in Banach spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a ques-
tion of Ulam [12] concerning the stability of group homomorphisms. Hy-
ers [7] gave a first affirmative partial answer to the question of Ulam for
Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for additive
mappings and by Rassias [9] for linear mappings by considering an un-
bounded Cauchy difference. A generalization of the Rassias theorem was
obtained by Gavruta [4] by replacing the unbounded Cauchy difference
by a general control function in the spirit of Rassias’ approach.

In [5], Gilanyi showed that if f satisfies the functional inequality

(1) 12/ () +2f(y) = flzy ) < I f(@y)ll
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then f satisfies the Jordan-von Neumann functional equation

2f(x) +2f(y) = flay) + flay ™).
See also [10]. Gildnyi [6] and Fechner [3] proved the Hyers-Ulam stability
of the functional inequality (1).
In Section 2, we solve the additive functional inequality

(2) 1f (@) + f(y) + fEI < lof (s(z+y+2))
and prove the Hyers-Ulam stability of the additive functional inequality

(2).

Park, Cho and Han [8] investigated the additive functional inequalities
for the case p = s =1, and the case p =2 and s = %

Throughout this paper, let X be a normed space with norm || - || and
Y a Banach space with norm || - ||. Assume that s is a nonzero real
number and that p is a real number with |p| < 3.

2. The additive functional inequality (2)

LEMmMA 2.1. If a mapping f : X — Y satisfies

(3) 1f (@) + fy) + fR < llpf(s(z+y+ 2))|
for all x,y,z € X, then f: X — Y is additive.

Proof. Letting x =y =z =0 in (3), we get

13£0)]I < llpf(O)]]-

So f(0) = 0.

Letting z = —x and y = 0 in (3), we get

1f (@) + f(==)| < llpf(0)][ =0

for all z € X. Hence f(—xz) = —f(z) for all z € X.

Letting 2 = —x — y in (3), we get

1f (@) + f(y) + f(=z =yl < lpf(O)]| =0

forall z,y € X. So f(x)+f(y) = —f(—z—y) = f(z+y) forall z,y € X,
as desired. O

COROLLARY 2.2. If a mapping f : X — Y satisfies

(4) f@)+ )+ f(z)=pf (s(x+y+2))
for all x,y,z € X, then f: X — Y is additive.
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Now, we prove the Hyers-Ulam stability of the additive functional
inequality (2) in Banach spaces.

THEOREM 2.3. Let r > 1 and 6 be nonnegative real numbers, and let
f: X — Y be a mapping such that

(@) + Fw) + FEI < of (s(z+y + 2))
() + 0=l + [yl + [I=1")

for all x,y,z € X. Then there exists a unique additive mapping h : X —
Y such that
2+3-27

(6) If(z) = h(z)| < —_9H z||"
forallx € X.
Proof. Letting x =y =z =01in (5), we get f(0) =
Letting y = —x and z = 0 in (5), we get
1f (@) + f(=2)[| < 20]|]|"
for all x € X. So
(7) 1f (2x) + f (—22)[| < 2-270]|||"

for all z € X.

Letting y = x and z = —2z in (5), we get

);
(8) 12 (z) + f(=22)[| < (2+27)0] ="
for all z € X. It follows from (7) and (8) that

(9) 12f () = fRo)|| < (2 +3-27)0]l]"
for all z € X. So

@) —27 ()] < 2522 olalr

2f (23) —2 (%)H
m—1

2+3-2" 2J
(10) < Tor E s 2779”55”
=

for all x € X. Hence

m—1

br(E) (@) < 3

Jj=l

for all nonnegative integers m and [ with m > [ and all x € X. It
follows from (10) that the sequence {2" f(5)} is a Cauchy sequence for
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all z € X. Since Y is complete, the sequence {2"f(57)} converges. So
one can define the mapping h: X — Y by

h(z) = lim 2"f(3)

for all x € X. Moreover, letting [ = 0 and passing the limit m — oo in
(10), we get (6).
It follows from (5) that

Ih(e) + h) + A = T 27 () 47 (L) 47 (2]
< 2 or (5|
4 T 2l ol + 1)
= Jlph(s(e +y -+ )]

for all x,y,z € X. So

1A () + h(y) + h(2)| < llph (s(z +y + 2))|

for all x,y,z € X. By Lemma 2.1, the mapping h : X — Y is additive.
Now, let 7' : X — Y be another additive mapping satisfying (6).

Then we have

@) =@l = 2 1 (5) -7 (5

> (|2 () -+ @)+ &) - (F))
< 2 gt

which tends to zero as n — oo for all z € X. So we can conclude that

h(z) = T(x) for all x € X. This proves the uniqueness of h. Thus the
mapping h : X — Y is a unique additive mapping satisfying (6). O]

IN

THEOREM 2.4. Let r < 1 and 6 be positive real numbers, and let
f: X = Y be a mapping satisfying (5). Then there exists a unique
additive mapping h : X — Y such that

(11) £~ b)) < 222

0|z
for all x € X.
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Proof. Tt follows from (9) that

o) - 31020 <

for all x € X. Hence

2+3-2"

= el

m—1
1 . 1 -
]:
m—1 ;
213.00 o
(12) = — > Pdd

=l
for all nonnegative integers m and [ with m > [ and all x € X. It
follows from (12) that the sequence {5 f(2"z)} is a Cauchy sequence for
all z € X. Since Y is complete, the sequence { 2% f(2"z)} converges. So
one can define the mapping h: X — Y by

.1 n
for all x € X. Moreover, letting [ = 0 and passing the limit m — oo in

(12), we get (11).
The rest of the proof is similar to the proof of Theorem 2.3. O

By the triangle inequality, we have

1f (@) + f(y) + F = llof (s(z+y+2))]l
<|f(@)+ fly) + f(z) —pf (s(z+y+2)l.
As corollaries of Theorems 2.3 and 2.4, we obtain the Hyers-Ulam sta-

bility results for the additive functional equation (4) in Banach spaces.

COROLLARY 2.5. Let r > 1 and 6 be nonnegative real numbers, and
let f : X — 'Y be a mapping such that

1 () + f(y) + f(2) = pf (s(z +y + 2))
(13) < Ol + Nyl + 120"
for all x,y,z € X. Then there exists a unique additive mapping h : X —
Y satisfying (6).

COROLLARY 2.6. Let r < 1 and 6 be nonnegative real numbers, and
let f: X — Y be a mapping satisfying (13). Then there exists a unique
additive mapping h : X — Y satisfying (11).
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