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AFFINE TRANSFORMATION OF A NORMAL

ELEMENT AND ITS APPLICATION

Kitae Kim, Jeongil Namgoong, and Ikkwon Yie

Abstract. In this paper, we study affine transformations of nor-
mal bases and give an explicit formulation of the multiplication table
of an affine transformation of a normal basis. We then discuss con-
structions of self-dual normal bases using affine transformations of
traces of a type I optimal normal basis and of a Gauss period normal
basis.

1. Introduction

Let Fq denote the finite field with q elements, where q is a prime power
and F∗q be its multiplicative group. An element α in an extension Fqn of
Fq is called a normal element of Fqn over Fq if its conjugates form a basis
of Fqn as an Fq-vector space. In this case, the set of conjugates is called
a normal basis. It is well known that any finite extension of a finite field
has a normal element, which is the normal basis theorem. Historically,
normal bases have been considered one of the most important part in
the theory of finite fields. At the practical aspect, characterizations and
constructions of low complexity normal bases are of great interest in
coding theory and cryptography.
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Let α ∈ Fqn be a normal element over Fq and αi = αq
i

for 0 ≤ i ≤
n − 1. The multiplication table of α is defined as the n × n matrix
(ti,j) ∈Matn(Fq) such that

ααi =
n−1∑
j=0

ti,jαj, 0 ≤ i ≤ n− 1.

The complexity of α is defined as the number of non-zero entries of the
multiplication table. Mullin et al. [7] proved that 2n− 1 is the minimal
complexity of normal elements and called a normal basis with the com-
plexity an optimal normal basis, briefly ONB. They also established two
types of optimal normal bases with complexity 2n − 1. In particular,
Type I ONBs are constructed as follows: Let n+ 1 be a prime such that
q is a primitive element of Zn+1. Then the set of n non-unit (n + 1)th
roots of unity is an optimal normal basis of Type I. Gao and Lenstra Jr.
[3] proved that there are only such two types of optimal normal bases
up to equivalence.

Though optimal normal bases are desirable in most applications of
finite fields, such bases do not exist for all finite fields. As an alterna-
tive, constructions of normal bases with low complexity have extensively
studied (see [3] for earlier works). In particular, Christopoulou et al. [1]
investigated the trace of an optimal normal element to provide low com-
plexity normal bases. The result was extended to the case of Gauss
period normal bases by Christopoulou et al. [2] and Liao [6].

On the other hand, self-dual normal bases may be desirable in appli-
cations requiring frequent trace calculations as well as a Frobenius map
computation. A normal basis generated by α ∈ Fqn over Fq is said to
be self-dual if Tr(αiαj) = δi,j, where Tr is the trace map from Fqn to
Fq and δi,j denotes the Kronecker delta. Since not all finite fields admit
self-dual normal bases, characterizations and constructions of self-dual
normal bases are also of great interests. Jungnickel [4] gave several char-
acterizations of self-dual normal bases and their affine transformations,
and an explicit construction of a self-dual normal basis in extension fields
over F2. Following similar approach, Nogami et al. [8] suggested a con-
struction of self-dual normal bases in finite fields of odd characteristic,
where a certain normal basis, called a Type II-X NB, exists.

In this paper, we first study affine transformations of normal bases of
Fqn over Fq. In particular, we give the multiplication table of a trans-
formation of a normal element in terms of the multiplication table of a
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given normal element, and observe complexities of affine transformations
of a type I optimal normal basis and its traces. We then discuss con-
structions of self-dual normal bases by using an affine transformation of
traces of a type I optimal normal basis, and a transformation of a normal
basis built from Gauss periods.

2. Preliminaries

Throughout the present paper, we assume that Fq is the finite field
with q elements and of characteristic p. Note that p = 2 is allowed,
unless otherwise stated.

Proposition 2.1 (Christopoulou et al. [1]). Let α generate a Type
I ONB of Fqn over Fq, q odd, and let β = Trqn/qm(α) with n = mk and
k ≤ m. Then, the complexity of β is bounded by (k+ 2)m− 3k+ 1, if k
is odd and by (k + 1)m− k in the other case. In particular, if k is even
then the dual element of β is 1

n+1
(β − k), which has the complexity at

most (k + 2)m− 2.

Proposition 2.2 (Lempel et al. [5]). The extension field Fqn has a
self-dual normal basis over Fq if and only if either q is even and 4 - n, or
both q and n are odd.

Proposition 2.3 (Jungnickel [4]). Let α be a normal element of Fqn
over Fq, and let a, b ∈ F∗q. Then γ = a + bα is also a normal element if
and only if Tr(γ) = na+ bTr(α) 6= 0.

Let k and n be positive integers such that nk+1 is prime and gcd(nk+
1, q) = 1. Then Fqnk contains a primitive (nk+1)th root ζ of unity, since
q ∈ Z∗nk+1 and F∗

qnk
is a cyclic group of order qnk − 1.

Now, let s denote the order of q in Z∗nk+1, H the cyclic subgroup of
Z∗nk+1 of order k. A type k Gauss period α over Fq is defined as the
following:

α =
∑
h∈H

ζh

Note that α ∈ Fqn , since qnH = H.

Proposition 2.4 (Wassermann, See [3]). gcd(nk/s, n) = 1 if and
only if the set of conjugates of α form a basis of Fqn over Fq.
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If gcd(nk/s, n) = 1 then Z∗nk+1 can be partitioned by cosets giH for
0 ≤ i < n. Hence the normal basis generated by α does not depend on
the choice of ζ. In fact, the Gauss periods are conjugate over Fq each
other in this case.

Proposition 2.5 (Liao, See [6]). Let N be a normal basis of Fqn
generated by α, and αi denote αq

i
for 0 ≤ i < n. The multiplication

table of α is given as the followings:
If k is even:

αα0 = −k
n−1∑
j=0

αj + αa0 + 2

k/2−1∑
v=1

αav ,

ααi =
k−1∑
w=0

αiw for i 6= 0,

where 1+ lv ≡ lkvqav (mod kn+1), v = 0, 1, . . . , k/2−1, 0 ≤ kv ≤ k−1,
0 ≤ av ≤ n − 1, 1 + lwqi ≡ lτwqiw (mod kn + 1), 0 ≤ τw ≤ k − 1, and
0 ≤ iw ≤ n− 1.

Otherwise,

αα0 = αt0 + 2

(k−1)/2∑
j=1

αtj ,

ααn/2 = −k
n−1∑
j=0

αj +
k−1∑
v=1

αsv ,

ααi =
k−1∑
w=0

αiw for i 6= 0, n/2,

where 2 ≡ lh0qs0 (mod kn + 1), 1 − lv ≡ lhvqsv (mod kn + 1), v =
0, 1, . . . , k−1

2
, 0 ≤ hv ≤ k − 1, 0 ≤ sv ≤ n − 1, 1 + lwqi ≡ lnwqiw

(mod kn+ 1), 0 ≤ nw ≤ k − 1, and 0 ≤ iw ≤ n− 1.

3. Affine transformation of normal bases

Let α generate a normal basis of Fqn over Fq. Then using proposition
2.3, we have one of the main results as following.
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Theorem 3.1. Let α be a normal element of Fqn over Fq with a1 =
Trqn/q(α). For c, d ∈ Fq with c 6= 0 and a1c+ nd 6= 0, the multiplication
table of cα + d is given by the following formula:

(cα + d) (cαi + d) =
n−1∑
j=0

{
cti,j + d(δ0,j + δi,j)−

d(cτi + d)

a1c+ nd

}
(cαj + d)

where ti,j and τi denote the (i, j)-entry of the multiplication table of
α and the sum of entries in ith row of the table, respectively, and δi,j
denotes the Kronecker delta function.

Proof. First, note that cα + d is also a normal element.
Let ν = Trqn/q(cα + d). Note that

ν = ca1 + nd 6= 0 and
1

ν

n−1∑
j=0

(cαj + d) = 1.

Let γj = cαj + d for 0 ≤ j < n. Then, for each 0 ≤ j < n,

αj =
1

c
(cαj + d)− d

c
=

1

c
γj −

d

cν

n−1∑
j=0

γj.

Hence, we have the next result:

(cα + d)(cαi + d) = c2ααi + cdα + cdαi + d2

= c2

n−1∑
j=0

tijαj + d(cα0 + d) + d(cαi + d)− d2

= c

n−1∑
j=0

tij

(
γj −

d

ν

n−1∑
`=0

γ`

)

+dγ0 + dγi −
d2

ν

n−1∑
j=0

γj

= c

n−1∑
j=0

tijγj −
cdτi
ν

n−1∑
`=0

γ` + dγ0 + dγi −
d2

ν

n−1∑
j=0

γj

=
n−1∑
j=0

{
cti,j + d(δ0,j + δi,j)−

d(cτi + d)

ν

}
(cαj + d)
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Now we consider the complexity of affine transformations of a type I
optimal normal basis generated by α ∈ Fqn . Since equivalent bases have
the same complexity, we consider only the case c = 1.

Corollary 3.2. Let α generate a Type I ONB of Fqn over Fq, where
n > 6. Then, for d ∈ F∗q with −1 + nd 6= 0, the complexity of α + d
is at least 3n− 3. In particular, d = −1 reaches the lowest complexity:
3n− 2 if q is odd; 3n− 3 otherwise.

Proof. First note that Trqn/q(α) = −1 and Tr(α+ d) = −1 + nd 6= 0
by the definition of Type I ONB. So, by Proposition 2.3, α+d generates
a normal basis.

For simplicity, let γ = α + d and γi = γq
i
. For each i 6= n/2, let µi

denote the column index of nonzero entry of ith row in the multiplication
table of α. Then, µi 6= i and, by Theorem 3.1, we have

γγ0 =

(
2d− d(d+ 1)

nd− 1

)
γ0 +

(
1− d(d+ 1)

nd− 1

)
γµ0

−
n−1∑
j=1,
j 6=µ0

(
d(d+ 1)

nd− 1

)
γj,

γγn/2 =

(
d− 1− d(d− n)

nd− 1

)
γ0 +

(
d− 1− d(d− n)

nd− 1

)
γn/2

+
n−1∑
j=1,
j 6=n/2

(
−1− d(d− n)

nd− 1

)
γj.

For i 6= 0, n/2,

γγi =

(
d− d(d+ 1)

nd− 1

)
γ0 +

(
d− d(d+ 1)

nd− 1

)
γi +

(
1− d(d+ 1)

nd− 1

)
γµi

+
n−1∑
j=1,
j 6=i,µi

(
−d(d+ 1)

nd− 1

)
γj.

Since n > 6, the case d = −1 gives an upper bound of the complexity,
3n− 2. Note that d 6≡ n (mod p) since p - n+ 1, and that the first term
in the representation of γγ0 is zero if q is even. Thus, for d = −1, the
complexity is 3n− 2 if q is odd, and 3n− 3 if q is even.



Affine transformation of a normal element and its application 523

Corollary 3.3. Let α generate a type I ONB of Fqn over Fq, q
odd, and let β = Trqn/qm(α) with m = n/k, 1 < k ≤ m and m ≥ 6.
Then, for d ∈ F∗q with −1 + nd 6= 0, the lowest complexity among the
transformations of the form β+d is achieved in the case d = −k (mod p).

Note that, if k is even then β − k is equivalent to the dual element of
β.

Proof. Since α is a type I ONB, there are µi ∈ Zn (i = 0, . . . , n/2 −
1, n/2 + 1, . . . , n− 1) such that

ααq
i

= αq
µi .

Also, for each i = 0, . . . ,m− 1, there exist λi,ν ∈ Zn such that

ααq
i+νm

= αq
λi,ν

for ν = 0, 1, . . . , k − 1.

Then, as in the proof of Proposition 2.1 (see Theorem 1[1]), we have the
following multiplication table of β:

ββ0 = βq
µ0 + · · ·+ βq

µk−1
+

m−1∑
j=0

(−k)βq
j

(1)

and, for each i = 1, . . . ,m− 1,

ββi = βq
λi,0

+ · · ·+ βq
λi,k−1

.(2)

In Eqs (1) and (2), we may assume that 0 ≤ µj, λi,j ≤ m− 1.
Now, let N0,j (j = 0, . . . ,m−1) denote the number of µt’s (0 ≤ t < k)

such that βq
µt = βq

j
. Then

ββ =
m−1∑
j=0

(N0,j − k) βq
j

.

Similarly, for each i = 1, . . . ,m− 1, j = 1, . . . ,m− 1, let Ni,j denote the

number of βq
λi,t

s (0 ≤ t < k) such that βq
j

= βq
λi,j

. Then, we can write

ββq
i

as

ββq
i

=
m−1∑
j=0

Ni,jβ
qj .
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Now, let γ = β + d and γi = γq
i
. Since Trqm/q(β) = −1, by Theorem

3.1,

γγ0 =
m−1∑
j=0

(N0,j + 2dδ0,j) γj

and, for 0 < i ≤ m− 1,

γγi =

(
Ni,0 + d+

d(k + d)

md− 1

)
γ0 +

(
Ni,i + d+

d(k + d)

md− 1

)
γi

+
m−1∑
j=1,

j∈Λi,j 6=i

(
Ni,j +

d(k + d)

md− 1

)
γj +

m−1∑
j=1,

j 6∈Λi,j 6=i

(
d(k + d)

md− 1

)
γj

where Λi = {λi,j| 0 ≤ j ≤ m− 1} for each 0 ≤ i ≤ m− 1.
Since m ≥ 6, the lowest complexity is achieved in the case when

k + d = 0, as desired.

We remark that low complexity normal bases are often built from
Gauss periods and that an explicit multiplication table of such a normal
basis was given by Liao [6]. Though we do not explain further, it is
possible to discuss an affine transformation of a normal basis generated
by Gauss periods in the same way.

4. Constructions of self-dual normal bases

In this section, we study constructions of self-dual normal bases using
affine transformation of a normal basis. In particular, we suggest a
method for finding a self-dual normal basis from traces of a type I optimal
normal basis, and present elements obtained from a Gauss period which
generate self-dual normal bases. Our approach shares, in essence, the
idea with the works of Jungnickel [4] and Nogami et al. [8].

Let α ∈ Fqn be a normal element over Fq, and αi = αq
i

for 0 ≤ i < n.

Since αiαj = (α0αj−i)
qi , α generates a self-dual normal basis if and only

if Trqn/q(α0αj) = δ0,j for 0 ≤ j < n.
Let (ti,j) be the multiplication table of α and τi the sum of ith row of

the table. Then

(cα + d)(cαi + d) = c2α0αi + cdα0 + cdαi + d2.
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Hence,

Trqn/q ((cα + d)(cαi + d)) = c2Trqn/q(α0αi) + 2cdTrqn/q(α) + nd2

= (c2τi + 2cd)Trqn/q(α) + nd2.(3)

Suppose that Fqn contains a type I ONB. Then n is even and so, by
Proposition 2.2, Fqn , with odd q, does not have a self-dual normal basis.

Theorem 4.1. Let q be even and Fqn contain a type I optimal normal
basis generated by an element α. If n > 2 then no elements of the form
cα + d, with c, d ∈ Fq and c 6= 0, generate a self-dual normal basis.
Otherwise, in the case n = 2, cα + d generates a self-dual normal basis
if and only if c = 1.

Proof. By assumption, n is even, Trqn/q(α) = −1, τn/2 = −n = 0 and

τi = 1 for i 6= n
2
. Let γ = cα + d and γi = γq

i
for 0 ≤ i < n.

If n > 2 and γ generates a self-dual normal basis of Fqn , then

Trqn/q(γγ0) = c2 = 1 and Trqn/q(γγ1) = c2 = 0,

which is a contradiction.
Now suppose that n = 2. If γ = cα + d generates a self-dual normal

basis, then Trq2/q(γγ0) = c2 = 1 and Trq2/q(γγ1) = 2c2 = 0. Thus c = 1.
For the converse, we let γ = α+d. Since Trq2/q(α+d) = Trq2/q(α) = −1,
γ is a normal element. Since Trq2/q(γγ0) = 1 and Trq2/q(γγ1) = 0, α+ d
generates a self-dual normal basis.

Let α generate a type I ONB of Fqn over Fq, where q is odd. Let
n = mk with odd m, β = Trqn/qm(α) and γ = β + d for d ∈ Fq. Let

γi = γq
i

for and 0 ≤ i < m. Suppose that γ generates a normal basis.
By Eqs (1) and (2),

Trqm/q(γγ0) = md2 − 2d+mk − k,
Trqm/q(γγi) = md2 − 2d− k for 0 < i < m.

Hence, γ generates a self-dual normal basis of Fqm over Fq if and only if

md2 − 2d− k = 0 and km− 1 = 0.

Theorem 4.2. Let Fqn be a finite field of odd characteristic p which
contains a type I ONB generated by α. Suppose that m is odd and
n = mk such that 1 ≤ m < n and β = Trqn/qm(α). Then Fqm contains
a self-dual normal basis generated by an element of the form β + d with
d ∈ Fq if and only if n ≡ 1 (mod p) and mX2−2X−k splits completely
in Fq.
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Proof. The sufficient condition follows from the above arguments. To
prove the other direction, we first note that mX2− 2X − k is separable,
since p is odd and mk ≡ 1 (mod p) by the assumption. So, at least one
of the roots, say d, of the polynomial must satisfy −1 +md 6= 0. Then,
β + d generates a self-dual normal basis, as desired.

Now, we consider an affine transformation of a Gauss period that
generates a normal basis Fqn over Fq. Let α ∈ Fqn be a Gauss period:
α =

∑
a∈H ζ

a, where nk + 1 is a prime different from p, ζ ∈ Fqnk is a
primitive (nk+1)th root of unity, and H is the cyclic subgroup of Z∗nk+1

of order k.

Theorem 4.3. Suppose that q is odd and a Gauss period α, defined
as above, generates a normal basis of Fqn over Fq.

1. If k is odd, then Fqn does not contain a self-dual normal basis.
2. Suppose that k is even. (i) If p - nk then no element of the form
α + d, with d ∈ Fq, generates a self-dual normal basis. (ii) If p - n
but p | k, then only α and α + 2

n
generate self-dual normal bases.

(iii) If p | n, then Fqn contains a self-dual normal basis of the form
α + d with d ∈ Fq if and only if nk 6≡ −2 (mod p). In this case,
only α− k

2
generates a self-dual normal basis.

Proof. If k is odd then n must be even. By Proposition 2.2, Fqn does
not contain a self-dual normal basis since q is odd.

For part 2, let us denote by τi the sum of entries in the ith row of the
multiplication table of α. Let γ = α + d and γi = αi + d. Suppose that
k is even and that γ generates a self-dual normal basis. By Proposition
2.5,

τ0 = −nk + 1 + 2(k/2− 1) = −nk + k − 1,

τi = k for i 6= 0.

Then,

1 = Tr(γγ0) = nd2 − 2d+ nk − k + 1,

0 = Tr(γγi) = nd2 − 2d− k.
Equivalently,

nd2 − 2d− k = 0 and nk = 0.(4)

This proves (i). If p - n and p | k then Eq. (4) is equivalent to 0 = nd2−
2d = d(nd−2). Since Trqn/q(α+2/n) = 1, case (ii) is proved. Finally, if
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p | n then Eq. (4) is equivalent to 2d+ k = 0. Since Trqn/q(α − k/2) =
−1− nk/2, γ generates a self-dual normal basis if and only if nk 6≡ −2
(mod p). This proves (iii).
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