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A CLASSIFICATION OF THE SECOND ORDER

PROJECTION METHODS TO SOLVE THE

NAVIER-STOKES EQUATIONS

Jae-Hong Pyo

Abstract. Many projection methods have been progressively con-
structed to find more accurate and efficient solution of the Navier-
Stokes equations. In this paper, we consider most recently con-
structed projection methods: the pressure correction method, the
gauge method, the consistent splitting method, the Gauge-Uzawa
method, and the stabilized Gauge-Uzawa method. Each method has
different background and theoretical proof. We prove equivalentness
of the pressure correction method and the stabilized Gauge-Uzawa
method. Also we will obtain that the Gauge-Uzawa method is equiv-
alent to the gauge method and the consistent splitting method. We
gather theoretical results of them and conclude that the results are
also valid on other equivalent methods.
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1. Introduction

Given an open bounded polyhedral domain Ω in Rd, with d = 2 or 3,
we consider the time-dependent Navier-Stokes equations of incompress-
ible fluids:

(1.1)

ut + (u · ∇)u +∇p− µ4u = f , in Ω,

∇· u = 0, in Ω,

u(0,x) = u0, in Ω,

with vanishing Dirichlet boundary condition u = 0 on ∂Ω and pressure
mean-value

∫
Ω
p = 0. The primitive variables are the (vector) velocity u

and the (scalar) pressure p. The viscosity µ = Re−1 is the reciprocal of
the Reynolds number Re. Hereafter, vectors are denoted in boldface.

The original projection method was introduced by Chorin [1] and
Temam [13] in the late 60’s to decouple the computation of velocity
from the pressure, it quickly gained popularity in the computational fluid
dynamics community, and over the years, an enormous amount of efforts
[2, 4–12, 15] have been devoted to develop more accurate and efficient
projection type schemes. So we can say that recently built methods are
the most advanced algorithms. In this paper, we consider five projection
methods: the pressure correction method [PCM] in [4, 15], the gauge
method [GM] in [2, 6], the consistent splitting method [CSM] in [5], the
Gauge-Uzawa method [GUM] in [7,12], and the stabilized Gauge-Uzawa
method [SGUM] in [9,10]. These are most recently introduced projection
methods. PCM was built in [15] at 1996 and estimated errors for only
the Stokes equations via energy estimate in [4] at 2004 and via normal
mode analysis in [11] at 2005. GM in [2] was introduced at 2003 and
proved stability and estimated errors for only the first order scheme in [6]
at 2005. And then the second order GM was introduced and estimated
errors in normal mode space for the Stokes equations in [11] at 2005.
CSM in [5] had been built in 2003 and it’s error is evaluated in normal
space in [11] at 2005, but analysis via energy estimate of the scheme is
still open problem. Research for the GUM has been started with the back
ward Euler time marching algorithm to solve Navier-Stokes equations
in [7] and to solve Boussinesq equations in [8], and then it is extended
to the second order scheme in [12] at 2007. The stability condition for
the method has been proved in [9] at 2011, but the stability condition
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is too strong to apply to real computational problems. So SGUM has
newly been constructed in [10] at 2013.

As we mention above, each method has been developed independently
and so has different theoretical result. The goal of this paper is to analyze
properties of the five projection methods and then prove the following
classification results:

Theorem 1. SGUM and PCM are equivalent projection methods.

Theorem 2. GUM, GM and CSM are equivalent projection methods.

These main theorems lead that theoretical results for a method are
also valid for other equivalent algorithms. In order to summarize theo-
retical results, we use the following notations. One can find more knowl-
edge for these notations in [3,14]. Let Hs(Ω) be the Sobolev space with

s derivatives in L2(Ω), L2(Ω) = (L2(Ω))
d

and Hs(Ω) = (Hs(Ω))d, where
d = 2, 3. Let ‖·‖0 denote the L2(Ω) norm, and 〈· , ·〉 the corresponding
inner product. Let ‖·‖s denote the norm of Hs(Ω) for s ∈ R.

From Theorem 1, we conclude that both SGUM and PCM satisfy
Lemmas 2.2, 2.3 and 3.1, below. So it means that both of them are
unconditionally stable methods and that error bound of them are, for
the Navier-Stokes equations,

(1.2)

τ
N∑
n=1

(∥∥u(tn+1)− un+1
∥∥2

0
+
∥∥u(tn+1)− ûn+1

∥∥2

0

)
≤ Cτ 4,

τ
N∑
n=1

(∥∥u(tn+1)− ûn+1
∥∥2

1
+
∥∥p(tn+1)− pn+1

∥∥2

0

)
≤ Cτ 2,

‖∇ · ûn+1‖0 ≤ Cτ
3
2

and for the Stokes equations,∥∥u(tn+1)− ûn+1
∥∥

1
≤ Cτ

3
2 .

Additionally, we conclude that Lemma 2.1 for GUM also valid for GM
and CSM by Theorem 2.

This paper is organized as follows. We, in §2, reconstruct GUM and
SGUM and then state the theoretical results in [9] and [10]. We will
derive PCM from SGUM via change variables to prove Theorem 1 in §3.
We introduce GM in §4 and then induce GUM and CSM from GM to
prove Theorem 2. We finally conclude in §5 with numerical tests for both
GUM and SGUM to check accuracy and stability, because we already
prove that others are equivalent to one of them.
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2. The Gauge-Uzawa and the stabilized Gauge-Uzawa meth-
ods

In this section. we summarize GUM and SGUM. We first derive both
method briefly and directly from BDF2 time discrete Stokes equations:

(2.1)
3un+1 − 4un + un−1

2τ
+∇pn+1 − µ4un+1 = f(tn+1).

GUM hires artificial variables ûn+1 and φn+1 satisfying

(2.2) ûn+1 := un+1 −∇
(
φn+1 − 2φn + φn−1

)
.

The main strategy of GUM and SGUM is to compute ûn+1 and φn+1,
and then calculate un+1 by addition of the 2 functions. In the view of
(2.2), ûn+1 and φn+1 depend on each other, so the role of ûn+1 will be
decided automatically, provided that of φn+1 is given. We will define
φn+1 later. If we replace ûn+1 in (2.1) with (2.2), then we obtain

(2.3)

3ûn+1 − 4un + un−1

2τ
+∇

(
pn+1 +

3φn+1 − 6φn + 3φn−1

2τ

)
−µ4

(
ûn+1 +∇

(
φn+1 − 2φn + φn−1

))
= f(tn+1).

We now contemplate to define φn+1 to split (2.3) with 2 decoupled equa-
tions. GUM in [6, 7, 11] impose φn+1 as a solution of time discrete heat
equation as

(2.4)
3φn+1 − 4φn + φn−1

2τ
− µ4φn+1 := −pn+1.

Then (2.3) becomes

(2.5)

3ûn+1 − 4un + un−1

2τ
− µ4ûn+1

−∇
(
φn − φn−1

τ
− µ4

(
2φn − φn−1

))
= f(tn+1).

To deal with the third order term ∇4φn, we introduce a new variable
sn := 4φn, then we arrive at GUM by 3 equations (2.2), (2.4) and (2.5)
with adding a suitable discretized convection term in (2.5):

Algorithm 1 (The Gauge-Uzawa Method). Set φ0 = s0 = 0 and
then compute u1 and φ1 via the first order GUM in [7]. Repeat for
1 ≤ n ≤ N = [T

τ
− 1].



A classification of the second order projection methods to solve NSE 649

Step 1: Set u∗ = 2un − un−1 and find ûn+1 as the solution of

(2.6)

3ûn+1 − 4un + un−1

2τ
+ (u∗ · ∇)ûn+1 − µ4ûn+1

−∇
(
φn − φn−1

τ
− µ

(
2sn − sn−1

))
= f(tn+1).

ûn+1|Γ = 0.

Step 2: Find φn+1 as the solution of

(2.7)
−4φn+1 = −4

(
2φn − φn−1

)
+∇ · ûn+1,

∂νννφ
n+1|Γ = 0.

Step 3: Update un+1 and sn+1 by

(2.8)
un+1 = ûn+1 +∇

(
φn+1 − 2φn + φn−1

)
sn+1 = 2sn − sn−1 −∇ · ûn+1.

Step 4: Update pressure pn+1 by

(2.9) pn+1 = −3φn+1 − 4φn + φn−1

2τ
+ µsn+1.

This GUM performs superior numerical behaviour for accuracy as in
§5, but the method requires rather strong stability constraint for τ in [9]:

Lemma 2.1 (Stability of GUM Algorithm 1). If τ is small enough to
satisfy

τµ2‖∇sn‖2
0 < M, ∀1 < n < N,

then the a priori bound of GUM Algorithm 1 holds

∥∥uN+1
∥∥2

0
+
∥∥2uN+1 − uN

∥∥2

0
+ 2
∥∥∇ (φN+1 − φN

)∥∥2

0
+ τµ

N∑
n=1

∥∥∇ûn+1
∥∥2

0

+
N∑
n=1

(∥∥un+1 − 2un + un−1
∥∥2

0
+ 4
∥∥∇ (φn+1 − 2φn + φn−1

)∥∥2

0

)
+ 2τµ

∥∥sN+1 − sN
∥∥2

0
≤
∥∥u1
∥∥2

0
+
∥∥2u1 − u0

∥∥2

0
+ 2
∥∥∇ (φ1 − φ0

)∥∥2

0

+ C
τ

µ

N∑
n=1

∥∥f(tn+1)
∥∥2

−1
+ 2τµ

∥∥s1 − s0
∥∥2

0
+M.



650 J.-H. Pyo

And the theoretical error estimate for GUM is still open problem.
To make improve stability, the SGUM has been constructed in [10]

with replace pressure equation (2.4) to

(2.10)
3φn+1 − 3φn

2τ
− µ4

(
φn+1 − φn

)
:= −pn+1.

Then we can rewrite (2.3) by

(2.11)

3ûn+1 − 4un + un−1

2τ
−∇

(
3(φn − φn−1)

2τ
− µ4

(
φn − φn−1

))
−µ4ûn+1 = f(tn+1).

Because the functions of φ in (2.2), (2.10) and (2.11) are represented
by the subtraction of 2 consecutive functions, we use simple notation
ψn+1 := φn+1 − φn. Owing to divergence free condition ∇· un+1 = 0,
(2.2) gives

(2.12)
−4ψn+1 = −4

(
φn+1 − φn

)
= −4

(
φn − φn−1

)
+∇· ûn+1 = −4ψn +∇· ûn+1.

To deal with the third order term ∇4φn, which is a source of trouble
due to lack of commutativity of the differential operators at the discrete
level, we denote qn+1 := 4ψn+1. So (2.12) can be rewritten by

qn+1 = qn −∇· ûn+1,

which is connected with the Uzawa iteration. If we added up convection
term in (2.11) with a suitable approximation u∗ ≈ 2un − un−1, then we
arrive at SGUM via gathering above equations.

Algorithm 2 (The stabilized Gauge-Uzawa Method). Compute u1

and p1 via any first order projection method and set ψ1 = −2τ
3
p1 and

q1 = 0. Repeat for 1 ≤ n ≤ N = [T
τ
− 1].

Step 1: Set u∗ = 2un − un−1 and find ûn+1 as the solution of
(2.13)

3ûn+1 − 4un + un−1

2τ
+∇pn + (u∗ · ∇)ûn+1 − µ4ûn+1 = f(tn+1),

ûn+1|Γ = 0.

Step 2: Find ψn+1 as the solution of

−4ψn+1 = −4ψn +∇ · ûn+1,

∂νννψ
n+1|Γ = 0.
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Step 3: Update un+1 and qn+1 by

un+1 = ûn+1 +∇
(
ψn+1 − ψn

)
qn+1 = qn −∇ · ûn+1.

Step 4: Update pressure pn+1 by

(2.14) pn+1 = −3ψn+1

2τ
+ µqn+1.

We remark that Algorithm 2 consists with (1.1), like GUM. The sta-
bility for SGUM Algorithm 2 has been evaluated in [10]:

Lemma 2.2 (Stability for SGUM Algorithm 2). The Algorithm 2 is
unconditionally stable in the sense that for all τ > 0 the following a
priori bound holds:∥∥ûN+1

∥∥2

0
+
∥∥uN+1

∥∥2

0
+
∥∥2uN+1 − uN

∥∥2

0
+ 3
∥∥∇ψN+1

∥∥2

0

+ 2τµ
∥∥qN+1

∥∥2

0
+

N∑
n=1

(∥∥δδuN+1
∥∥2

0
+ 3
∥∥∇δψn+1

∥∥2

0
+ τµ

∥∥∇ûn+1
∥∥2

0

)
≤
∥∥2u1 − u0

∥∥2

0
+
∥∥u0
∥∥2

0
+ 3
∥∥∇ψ1

∥∥2

0
+ 2τµ

∥∥q1
∥∥2

0
+ C

τ

µ

∥∥f(tn+1)
∥∥2

−1
.

Also errors of SGUM Algorithm 2 has been evaluated in [10] as

Lemma 2.3 (Error estimates for SGUM Algorithm 2). The errors of
SGUM Algorithm 2 are bounded by

τ

N∑
n=1

(∥∥u(tn+1)− un+1
∥∥2

0
+
∥∥u(tn+1)− ûn+1

∥∥2

0

)
≤ Cτ 4,

τ
N∑
n=1

(∥∥u(tn+1)− ûn+1
∥∥2

1
+
∥∥p(tn+1)− pn+1

∥∥2

0

)
≤ Cτ 2,

‖∇ · ûn+1‖0 ≤ Cτ
3
2 .

3. The pressure correction projection method and proof of
Theorem 1

The pressure correction method has been constructed in [15] and es-
timated in errors in [4, 11] only for the Stokes equations. In order to
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prove Theorem 1, we derive the method from SGUM Algorithm 2 with
defining a new variable

ξn+1 := −3 (ψn+1 − ψn)

2τ

and we subtract 2 consecutive equations of (2.14) to get

pn+1 = pn + ξn+1 − µ∇ · ûn+1.

Then we arrive at the rotational form of pressure correction projection
method in [4, 11,15]:

Algorithm 3 (The pressure correction projection method). Repeat for
1 ≤ n ≤ N = [T

τ
− 1].

Step 1: Set u∗ = 2un−un−1 and find ûn+1 as the solution of (2.13)
Step 2: Find ξn+1 as the solution of

4ξn+1 =
3

2τ
∇ · ûn+1,

∂νννξ
n+1|Γ = 0.

Step 3: Update un+1 and pn+1 by

un+1 = ûn+1 − 2τ

3
∇ξn+1,

pn+1 = ξn+1 + pn − µ∇ · ûn+1.

So we can conclude Theorem 1. The estimate of error of PCM in L2

space is performed in [4] only for the Stokes equations:

Lemma 3.1 (The error estimates of the PCM for Stokes equations).
PCM Algorithm 3 for the Stokes equations has error bounds

τ

N∑
n=1

(∥∥u(tn+1)− un+1
∥∥2

0
+
∥∥u(tn+1)− ûn+1

∥∥2

0

)
≤ Cτ 4,

‖u(tn+1)− ûn+1‖1 ≤ Cτ
3
2 .

We note that the stability of PCM Algorithm 3 is unknown, but we
conclude that PCM Algorithm 3 is unconditionally stable and holds error
bound (1.2).
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4. The gauge method and the consistent splitting method

In this section, we will prove Theorem 2. We first introduce GM in
§4.1 and then derive GUM Algorithm 1 from GM via change variables
in §4.2 to prove the equivalentness of GM and GUM Algorithms 4 and
1. And then we will derive CSM Algorithm 5 from GM Algorithm 4 in
§4.3. So we will conclude Theorem 2.

4.1. The gauge method. The gauge formulation consists of rewriting
(1.1) in terms of two auxiliary variables, the vector field a and the scalar
field φ (gauge variable), which satisfy u = a +∇φ. Upon replacing this
relation into the momentum equation in (1.1), we get

at + (u · ∇)u +∇ (φt − µ4φ) +∇p− µ4a = f .

Imposing

p = −φt + µ4φ,
we end up with the gauge formulation of (1.1) due to E and Liu [2]:

at + (u · ∇)u− µ4a = f , in Ω,

−4φ = ∇· a, in Ω,

u = a +∇φ, in Ω,

p = −φt + µ4φ, in Ω.

To enforce the boundary condition u = 0, we impose

∂νννφ = 0, a · ννν = 0, a · τττ = −∂τττττττττφ.

In order to decouple the calculation of an+1 and φn+1 at time step n+ 1,
it is necessary to extrapolate the boundary conditions from the previous
time step.

Algorithm 4 (Gauge method). Set initial values φ0, s0 = 0 and
a0 = u0 = u(0,x) and then compute a1, u1, φ1 and s1 by using the first
order gauge method in [6]. Repeat for 1 ≤ n ≤ N

Step 1: Set u∗ = 2un − un−1 and find an+1 as the solution of

(4.1)

3an+1 − 4an + an−1

2τ
+ (u∗ · ∇)an+1

+(u∗ · ∇)∇
(
2φn − φn−1

)
−µ4an+1 = f(tn+1),

an+1 · ννν|Γ = 0, an+1 · τττ |Γ =− ∂τττττττττ
(
2φn − φn−1

)
.
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Step 2: Find φn+1 as the solution of

−4φn+1 = ∇· an+1,

∂νννφ
n+1|Γ = 0.

Step 3: Update un+1

(4.2) un+1 = an+1 +∇φn+1.

One may compute the pressure whenever necessary as

(4.3) pn+1 = −3φn+1 − 4φn−1 + φn−1

2τ
+ µ4φn+1.

The GM has been analyzed only for the first order scheme in [6] and
no theoretical proofs for stability and error evaluates, but stability and
error bound of the 2nd order GM Algorithm 4 are still open problem.

4.2. The equivalentness of GM and GUM. In order to prove The-
orem 2, we first derive GUM from GM Algorithm 4 via using a new
variable

(4.4) ûn+1 = an+1 +∇
(
2φn − φn−1

)
.

If we apply 2 equations (4.2) and (4.4) into Algorithm 4, then we readily
get (2.6) in GUM Algorithm 1. In order to derive other equation in
GUM, we use (4.4) and un+1 = an+1 +∇φn+1 in (4.2) to get

(4.5) ûn+1 = un+1 −∇
(
φn+1 − 2φn + φn−1

)
.

Since we have sn+1 = 4φn+1, we can readily obtain equations (2.7) and
(2.8). Also we already have same pressure formulas (4.3) and (2.9) of
GUM and GM Algorithms 1 and 4, respectively. Thus we conclude that
GUM and GM are equivalent projection methods.

4.3. The consistent splitting method. In this section, we will derive
CSM from GM Algorithm 4 by change variables. We first apply (4.4) in
(4.1), in conjunction with (4.3), to get

(4.6)
3ûn+1 − 4ûn + ûn−1

2τ
+∇

(
2pn − pn−1

)
− µ4ûn+1 = f(tn+1).

And we define a new variable ψn+1 := φn+1 − 2φn + φn−1, then (4.5)
become

ûn+1 = un+1 −∇ψn+1
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and we obtain, in conjunction with ∇ · un+1 = 0,

(4.7) −4ψn+1 = ∇ · ûn+1.

From the pressure formula (4.3) and (4.7), we can get

(4.8)
pn+1 − 2pn + pn−1 = −3ψn+1 − 4ψn−1 + ψn−1

2τ
+ µ4ψn+1

= −3ψn+1 − 4ψn−1 + ψn−1

2τ
− µ∇ · ûn+1.

If we define a new variable

(4.9) ξn−1 := −3ψn+1 − 4ψn−1 + ψn−1

2τ
,

then the pressure equation (4.8) becomes

(4.10) pn+1 = 2pn − pn−1 + ξn−1 − µ∇ · ûn+1.

In light of (4.7), taking Laplace operate in both terms (4.9) yields

(4.11) 4ξ := ∇ ·
(

3ûn+1 − 4ûn−1 + ûn−1

2τ

)
.

Finally we arrive at CSM:

Algorithm 5 (The consistent splitting method). Repeat for 1 ≤ n ≤
N = [T

τ
− 1].

Step 1: Find ûn+1 as the solution of (4.6).
Step 2: Find ξn+1 as the solution of (4.11) with Neumann boundary

condition ∂νννξ
n+1|Γ = 0.

Step 3: Update pn+1 by (4.10).

So we arrive at Theorem 2. No theoretical proof for CSM Algorithm
5 had been known. Because we now have Theorem 2, we can conclude
Lemma 2.1 is valid for CSM Algorithm 5.

5. Numerical tests

In this section, we carried out numerical experiments to compare nu-
merical behaviour of Algorithms 1 and 2, because we proved that others
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are equivalent to one of them. we perform with a known solution:

u =π sin(t) sin(2πy) sin2(πx),

v =− sin(t) sin(2πx) sin2(πy),

p =− sin(t) cos(πx) sin(πy).

In this test, we fix µ = 1, and use Taylor-Hood finite element (P2,P1)
on the uniform mesh.

h 1/16 1/32 1/64 1/128 1/256

‖E‖0
0.000374286 5.83689e-05 1.14962e-05 2.65413e-06 6.50019e-07

Order 2.680869 2.344043 2.114846 2.029685

‖E‖L∞
0.000835976 0.000166414 3.70314e-05 8.70111e-06 2.11636e-06

Order 2.328685 2.167956 2.089478 2.039614

‖E‖1
0.0532202 0.0133404 0.00333751 0.000834537 0.000208653

Order 1.996172 1.998958 1.999724 1.999870

‖e‖0
0.00220608 0.000464423 0.000115444 2.90385e-05 7.28256e-06

Order 2.247974 2.008246 1.991154 1.995449

‖e‖L∞
0.0200976 0.00145889 0.00035159 8.72965e-05 2.18391e-05

Order 3.784080 2.052905 2.009898 1.999010

Table 1. Error decay of Algorithm 1.

h 1/16 1/32 1/64 1/128 1/256

‖E‖0
0.000666171 0.000171224 4.67914e-05 1.26051e-05 3.30152e-06

Order 1.960008 1.871570 1.892236 1.932805

‖E‖L∞
0.00164411 0.000487813 0.000161503 4.89765e-05 1.39134e-05

Order 1.752907 1.594767 1.721399 1.815615

‖E‖1
0.053935 0.0136668 0.00347407 0.000886726 0.00022716

Order 1.980546 1.975977 1.970067 1.964780

‖e‖0
0.00578956 0.00229765 0.000860856 0.000292507 9.15238e-05

Order 1.333295 1.416315 1.557301 1.676252

‖e‖L∞
0.061034 0.0380297 0.0183978 0.00794517 0.00322284

Order 0.682487 1.047593 1.211383 1.301746

Table 2. Error decay of Algorithm 2.

Tables 1 and 2 are the error decays of GUM and SGUM Algorithms
1 and 2, respectively. We can conclude that GUM Algorithm 1 is more
accurate than SGUM Algorithm 2.
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In order to check that SGUM and PCM Algorithms 2 and 3 are un-
conditionally stable, we compute driven cavity with unstable condition
with µ = 1/10, 000 under unstable conditions h = 1/256 and τ = 0.5.
Figure 1 is the numerical result of Algorithm 2 and displays still stable
even for high viscosity flow and so we conclude that SGUM and PCM
Algorithms 2 and 3 are unconditionally stable.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1. Driven cavity for Algorithm 2 with µ =
1/10, 000, h = 1/256, τ = 0.5

References

[1] A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp.
22 (1968), 745–762.

[2] W. E and J.-G. Liu, Gauge method for viscous incompressible flows, Comm.
Math. Sci. (2003) 317–332.

[3] V. Girault, and P.A. Raviart, Finite Element Methods for Navier-Stokes Equa-
tions, Springer-Verlag (1986).

[4] J.L. Guermond and J. Shen, On the error estimates of rotational pressure-
correction projection methods, Math. Comp. 73 (2004), 1719–1737.

[5] J.L. Guermond and J. Shen, A new class of truly consistent splitting schemes
for incompressible flows, J. Comput. Phys. 192 (2003), 262–276.



658 J.-H. Pyo

[6] R.H. Nochetto and J.-H. Pyo, Error estimates for semi-discrete gauge methods
for the Navier-Stokes equations, Math. Comp. 74 (2005), 521–542.

[7] R.H. Nochetto and J.-H. Pyo, A finite element Gauge-Uzawa method. Part I :
the Navier-Stokes equations, SIAM J. Numer. Anal. 43 (2005), 1043–1068.

[8] R.H. Nochetto and J.-H. Pyo, A finite element Gauge-Uzawa method. Part II :
Boussinesq equations, Math. Models Methods Appl. Sci. 16 (2006), 1599–1626.

[9] J.-H. Pyo, An overview of BDF2 Gauge-Uzawa methods for incompressible flows,
KSIAM 15 (2011), 233–251.

[10] J.-H. Pyo, Error estimates for the second order semi-discrete stabilized Gauge-
Uzawa method for the Navier-Stokes equations, IJNAM 10 (2013), 24–41.

[11] J.-H. Pyo and J. Shen, Normal mode analysis of second-order projection methods
for incompressible flows, Discrete Contin. Dyn. Syst. Ser. B 5 (2005), 817–840.

[12] J.-H. Pyo and J. Shen, Gauge Uzawa methods for incompressible flows with
variable density, J. Comput. Phys. 211 (2007), 181–197.

[13] R. Temam, Sur l’approximation de la solution des equations de Navier-Stokes
par la methode des pas fractionnaires. II, Arch. Rational Mech. Anal. 33 (1969),
377–385.

[14] R. Temam, Navier-Stokes Equations, AMS Chelsea Publishing, (2001).
[15] L.J.P. Timmermanns, P.D. Minev, and F.N. Van De Vosse, An approximate

projection scheme for incompressible flow using spectral elements, Int. J. Num.
Meth. Fluids 22 (1996), 673–688.

Jae-Hong Pyo
Department of Mathematics
Kangwon National University
Chun-cheon 200-701, Korea
E-mail : jhpyo@kangwon.ac.kr


	1. Introduction
	2. The Gauge-Uzawa and the stabilized Gauge-Uzawa methods
	3. The pressure correction projection method and proof of Theorem ??
	4. The gauge method and the consistent splitting method
	4.1. The gauge method
	4.2. The equivalentness of GM and GUM
	4.3. The consistent splitting method

	5. Numerical tests
	References

