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THE CLASSIFICATION OF SELF-ORTHOGONAL

CODES OVER Zp2 OF LENGTHS ≤ 3

Whan-hyuk Choi, Kwang Ho Kim and Sook Young Park∗

Abstract. In this paper, we find all inequivalent classes of self-
orthogonal codes over Zp2 of lengths l ≤ 3 for all primes p, using simi-
lar method as in [3]. We find that the classification of self-orthogonal
codes over Zp2 includes the classification of all codes over Zp. Con-
sequently, we classify all the codes over Zp and self-orthogonal codes
over Zp2 of lengths l ≤ 3 according to the automorphism group of
each code.

1. Introduction

As concerns about codes over rings are increasing, many results about
the codes over Zm for an integer m and especially over Zpe for a prime p
are published. In [3], [6], [7] and [8], authors found that the construction
and classification of the self-dual codes over Zm is based on the classifi-
cation of the self-orthogonal codes over Zp and Zp2 of length 4. In this
paper, we focused on the classification of self-orthogonal codes over Zp2
of length 3 upon which the classfication of codes of length 4 is based.

We begin by giving the necessary definitions and notations. A code
over Zp2 of length n is a Zp2-submodule of Znp2 . A code C of length n
over Zp2 has generator matrices permutation equivalent to the standard
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form

(1) G =

(
Ik1 A1 B1 + pB2

0 pIk2 pC1

)
,

where the columns are grouped into blocks of sizes k1, k2 and n−k1−k2
and A1, B1, B2 and C1 are matrices over Zp [7]. A matrix with this
standard form is said to be of type

(2) 1k1pk2 .

The number of nonzero rows is called the rank of C and denoted by rank
C. k1 is called the free rank.

Associated with C there are two codes over Zp, the residue code
R(C) = {x ∈ Znp | ∃y ∈ Znp such that x + py ∈ C} and the torsion
code T (C) = {y ∈ Znp | py ∈ C} which have generator matrices

G1 =
(
Ik1 A1 B1

)
, G2 =

(
Ik1 A1 B1

0 Ik2 C1

)
respectively.

The dual code C⊥ of C is defined by

C⊥ = {v ∈ Znpe|v ·w = 0 for all w ∈ C}.

C is called self-orthogonal (resp. self-dual) if C ⊂ C⊥ (resp. C = C⊥).
For any code C of length n over Zp2

|C||C⊥| = p2n.

Hence if C is self-orthogonal code over Zp2 of length n then |C| ≤ pn,
and if C is self-dual then |C| = pn.

Tnm, the group of all monomial transformations on Znm is defined by

Tnm = {γσ | γ ∈ Dn
m, σ ∈ Sn}.

where Sn is the symmetric group of length n and Dn
m is the set of diagonal

matrices with elements γi ∈ Zm and γ2i = 1. Note that we take γi’s in
Zp or Z2

p occasionally according to the context. Any element t ∈ Tnm has
a unique representation t = γσ for γ ∈ Dn

m and σ ∈ Sn. γ will be called
the sign (part) of t, and σ will be called the permutation part of t.

The group Tnm acts on the set of codes over Zm by Ct = {ct | c ∈ C}.
Notice that this is indeed a right action but σγ = γσσ as well where
γσ = σγσ−1. Two codes C and C ′ are equivalent (denoted C ∼ C ′) if
there exists an element t ∈ Tnm such that Ct = C ′. The group of all
automorphisms of C will be denoted by Aut(C).
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For a subgroup Aut(C) of Tnm,

p(C) = {σ | γσ ∈ Aut(C) for some γ ∈ Dn
m}

is a subgroup of Sn, called the permutation parts of Aut(C). Elements
in s(C) = Aut(C) ∩ Dn

m are called the pure signs of Aut(C).
Since what is important to us is the cardinality k = |s(C)| and the

group p(C) of permutation parts of Aut(C), we will write

(3) Aut(C) = k.p(C).

Theorem 1.1. If C is a code over Zp2 with type 10pk2 , then Aut(C) =
Aut(T (C)).

Proof. Since C is of type 10pk2 , it is easily deduced that for a codeword
c ∈ C there exists a c′ ∈ T (C) such that c = pc′ and there is an one-
to-one correspondence between C and T (C). Let t ∈ Aut(C). Then for
any c1 ∈ C there exists c2 ∈ C such that c1t = c2. Then there exist c′1
and c′2 in T (C) such that c1t = pc′1t = pc′2 = c2 ⇔ c′1t = c′2. Therefore
t ∈ Aut(T (C)). Conversely, let t ∈ Aut(T (C)). Then for any c′1 ∈ T (C)
there exists c′2 ∈ T (C) such that c′1t = c′2. So c′1t = c′2 ⇔ pc′1t = pc′2 ⇔
c1t = c2. Therefore t ∈ Aut(C).

The following theorems are directly from [3].

Theorem 1.2. [3] If C is a self-dual code over Zp2 with type 11pk2 ,
then Aut(C) = Aut(R(C)).

Next theorem tells us that the automorphism of rank 1 code can be
obtained easily.

Theorem 1.3. [3] Let C be a code over Zpe of length 3 for odd prime
p with generator matrix

(
a1 a2 a3

)
. Let (ij) and (123) be elements in

S3 and ω ∈ Zp such that ω6 = 1, ω 6= ±1.

(i) If a2i = a2j , then (ij) ∈ p(C).
(ii) If (ij) ∈ p(C) and a2i 6= a2j , then a

2
i = −a2j . Hence if a4i 6= a4j then

(ij) /∈ p(C).
(iii) a21 = a22 = a23 if and only if p(C) = S3.
(iv) If a22 = ω2a21, a

2
3 = ω4a21, then (123) ∈ p(C) and S3 6= p(C).

(v) If the number of ai’s which are zero is m, then |s(C)| = 21+m.
Moreover, this is also true when C has an arbitrary length with
rank 1.
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A code is called decomposable if the code is a direct sum of two or
more codes. If a code is not decomposable, it is called indecomposable.
Next theorem tells us about automorphism of a decomposable code.

Theorem 1.4. [2] If C = C1 ⊕ C2 then Aut(C) ⊇ Aut(C1)× Aut(C2).

2. Mass formula for self-orthogonal codes

Theorem 2.1. [9, 10] Let σp(n, k) be the number of self-orthogonal
codes of length n and dimension k over Zp, where p is odd prime. Then:

1. If n is odd,

σp(n, k) =

∏k−1
i=0 (p(n−1−2i) − 1)∏k

i=1(p
i − 1)

, (k ≥ 1).

2. If n is even,

σp(n, k) =
(pn−k−1−η((−1)

n
2 )(pn/2−k−pn/2))

∏k−1
i=1 (pn−2i−1)∏k

i=1(p
i−1) , (k ≥ 2)

σp(n, 1) =
pn−1 − 1− η((−1)

n
2 )(pn/2−1 − pn/2)

p− 1

where η(x) is 1 if x is a square, -1 if x is not a square and 0 if
x = 0.

Note that σp(n, 0) = 1 for all n.

The number of self-orthogonal codes of length n over Zp2 is computed
separately by the following theorem.

Theorem 2.2. [1] Let p be an odd prime. Then the number of distinct
self-orthogonal codes of length n over Zp2 of type 1k1pk2 is

(4) Mp2(k1, k2) = σp(n, k1)

[
n− 2k1
k2

]
p

pk1(2n−3k1−1−2k2)/2,

where [
n
k

]
p

=
(pn − 1)(pn − p) · · · (pn − pk−1)
(pk − 1)(pk − p) · · · (pk − pk−1)

.

For given n, p, k1 and k2, we now know the total number of self-
orthogonal codes of length n over Zp2 of type 1k1pk2 . Thus we can create
mass formula which plays a key role in the classfication problem.
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(5)
∑
i

|Tnm|
|Aut(Ci)|

= Mp2(k1, k2),

where Ci’s are all inequivalent codes of type 1k1pk2 .

3. Classification of self-orthogonal codes over Zp2 of length 1
and 2

From now on p is an odd prime, we will denote a code C with generator
matrix G by C : G. And a solution of x2 + 1 = 0 in Zp (or Zp2) by ±i.

3.1. self-orthogonal codes over Zp2 of length 1. (p) generates the
unique self-orthogonal codes of length 1 over Zp2 . Generally, pIn gener-
ates the unique self-orthogonal codes over Zp2 of length n and rank n for
all primes p with the automorphism 2n.Sn. This type of code is called
the trivial code. Actually, a trivial code over Zp2 is a self-dual code.

3.2. self-orthogonal codes over Zp2 of length 2. Since |C| ≤ pn for
a self-orthogonal code C of length n over Zp2 , we have p2k1+k2 ≤ p2, i.e.,
2k1 + k2 = 1 or 2. Thus there exist only three types of codes of length
2, of 10p2, 11p0 and 10p1. Any self-orthogonal code C of length 2 over
Zp2 is equivalent to one of following types.

(1) Type 10p2 code, trivial code p⊕ p : pI2.
(2) Type 11p0 code C1,0a :

(
1 a

)
where a ∈ Zp2 .

(3) Type 10p1 code C0,1a :
(
p pa

)
where a ∈ Zp.

Note that Ck1,k2a ∼ Ck1,k2−a .

Theorem 3.1. There is a unique self-orthogonal code C1,0a up to
equivalence if and only if p ≡ 1 (mod 4). In this case, Aut(C1,0a ) = 2.S2.

Proof. By Theorem 1.3.(v), the number of pure signs is 21 = 2. By
self-orthogonality, a is a solution of 1 + x2 = 0 in Zp2 and we can take
a = i. It is well-known that this equation has solutions when p ≡ 1
(mod 4). Let γσ = (1,−1)(12) ∈ T2

p2 act on C1,0i : (1, i). Then (1, i)γσ =

(i,−1) = i(1, i). Thus (12) ∈ p(C).

Theorem 3.2. The self-orthogonal code C0,1a is equivalent to one of
the following classes of inequivalent codes:

(i) C0,1a with a = 0, Aut(C0,1a ) = 4.(1).
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(ii) C0,1a with a2 = 1, Aut(C0,1a ) = 2.S2.
(iii) C0,1a with a2 = −1, Aut(C0,1a ) = 2.S2.
(iv) C0,1a with a 6= 0, a4 6= 1, Aut(C0,1a ) = 2.(1).

Proof. By Theorem 1.3.(v), the number of pure signs is obtained eas-
ily. To find the permutation parts, by Theorem 1.1, it suffices to classify
permutation parts of codes over Zp with generator matrix

(
1 a

)
. For

γσ ∈ T2
p, γσ ∈ Aut(C0,1a ) if and only if there exists nonzero k ∈ Zp such

that
(1, a)γσ = k(1, a).

Thus according to each solution of above equation, we can determine
permutation parts.

(i) It is trivial that p(C0,1a ) = (1) when a = 0.
(ii) Let a = 1. It is obvious that (1, 1)(1, 1)(12) = (1, 1), it means

(12) ∈ p(C).
(iii) Let a = i. (1, i)(1,−1)(12) = (−i, 1) = −i(1, i). Thus (12) ∈ p(C).
(iv) Suppose that (12) ∈ Aut(C0,1a ). This means that there exist γ and k

such that (1, a)(γ1, γ2)(12) = k(1, a) i.e., (aγ2, γ1) = (k, ka). Hence
a2 = ±1. Thus if a4 6= 1 then Aut(C0,1a ) = (1).

Theorem 3.3. Let N1, N2, N3 and N4 be the numbers of code C0,1a in
the class (i),(ii),(iii) and (iv), respectively, up to equivalence. Then,

(i) Class (i) code C0,10 exists uniquely up to equivalence for all primes
p.

(ii) Class (ii) code C0,11 exists uniquely up to equivalence for all primes
p.

(iii) Class (iii) code C0,1i exists uniquely up to equivalence for all primes
p ≡ 1 (mod 4).

(iv) Class (iv) codes C0,1a exists for all primes p ≥ 7, and

N4 =

{
p−5
4
, p ≡ 1 (mod 4)

p−3
4
, p ≡ 3 (mod 4).

So, N1, N2, N3 and N4 are determined as the following table.

p(mod 4) N1 N2 N3 N4

1 1 1 1 p−5
4

3 1 1 0 p−3
4
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Proof. Class (i), (ii) and (iii) are obvious. In the case of class (iv),
we use the mass formula. The total number of distinct self-orthogonal
codes C0,1a is

Mp2(0, 1) = σp(2, 0)

[
2
1

]
p

p0 =
p2 − 1

p− 1
= p+ 1.

By the mass formula (5),∑
C

22 × 2!

|Aut(C)|
= p+ 1.

By Theorem 3.2, this implies that

2N1 + 2N2 + 2N3 + 4N4 = p+ 1.

As a consequence,

N4 =

{
p−5
4
, p ≡ 1 (mod 4)

p−3
4
, p ≡ 3 (mod 4).

4. Classification of self-orthogonal codes over Zp2 of length 3

By the same argument as in the case of length 2, there are self-
orthogonal codes C of length 3 over Zp2 equivalent to one of following
types.
(1) Type 10p3 code, trivial code p⊕ p⊕ p : pI3.
(2) Type 11p0 code C1,0a,b :

(
1 a b

)
, where a, b ∈ Zp2 .

(3) Type 10p1 code C0,1a,b :
(
p pa pb

)
, where a, b ∈ Zp.

(4) Type 11p1 code C1,1a,b :

(
1 a b
0 p pc

)
, where a, c ∈ Zp, b ∈ Zp2 and c is

determined by a and b.

(5) Type 10p2 code C0,2a,b :

(
p 0 pa
0 p pb

)
, where a, b ∈ Zp.

Note that it is obvious that Ck1,k2a,b ∼ Ck1,k2a,−b ∼ C
k1,k2
−a,b ∼ C

k1,k2
−a,−b.
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4.1. Self-orthogonal codes of type 11p0.

Theorem 4.1. Self-orthogonal code C1,0a,b is equivalent to one of the
following classes of inequivalent codes:

(i) C1,0a,b with a = 0, b2 + 1 = 0, Aut(C1,0a,b ) = 4. 〈(13)〉 . Note that

C1,00,b ∼ C
1,0
b,0 .

(ii) C1,0a,b with a2 = 1, Aut(C1,0a,b ) = 2.S2. Note that C1,01,b ∼ C
1,0
a,b when

a2 = b2 6= 1.
(iii) C1,0a,b with a6 = 1, a4 6= 1, Aut(C1,0a,b ) = 2. 〈(123)〉 . In this case b2 =

a4. When b6 = 1, b4 6= 1, C1,0a,b is also equivalent to the code of this
class.

(iv) C1,0a,b with ab 6= 0, a6 6= 1, b6 6= 1, a4 6= 1, b4 6= 1, a4 6= b2, b4 6= a2 and

a4 6= b4, Aut(C1,0a,b ) = 2.(1).

Proof. By the self-orthogonality 1 + a2 + b2 ≡ 0 (mod p2) and by
Theorem 1.3.(v), the number of pure signs is obtained easily.

(i) Assume a = 0. Let γσ = (1, 1,−1)(13) ∈ T3
p2 .

Then (1, 0, i)(1, 1,−1)(13) = −i(1, 0, i). Thus (13) ∈ p(C). Now
suppose that (12) ∈ p(C) such that Cγ(12) = C. Then there exist
γ and nonzero k such that (1, 0, i)γ(12) = k(1, 0, i), which implies
k = 0, a contradiction. Hence (12) /∈ p(C). Similarly, (23) /∈ p(C).
Suppose that (123) ∈ p(C). Then there exist γ and nonzero k such
that (1, 0, i)γ(123) = k(1, 0, i). It implies that k = 0, which is a
contradiction. Therefore (123) /∈ p(C).

(ii) Let a = 1. By Theorem 1.3, (12) ∈ p(C). To show that (13) /∈ p(C),
suppose that there exists γ = (γ1, γ2, γ3) ∈ D3

p2 such that Cγ(13) =

C. Then there exist γ and nonzero k such that (bγ3, γ2, γ1) =
k(1, 1, b), which implies b2 = 1. It is a contradiction to the condi-
tion b2 + 2 = 0. Similarly, (23) /∈ p(C).

Now, Suppose (123) ∈ p(C). Then there exist γ and nonzero
k such that (1, 1, b)γ(123) = k(1, 1, b), which implies b4 = 1, a
contradiction. Therefore (123) /∈ p(C), and along the same lines,
(132) /∈ p(C).

(iii) By Theorem 1.3.(iv), (123) ∈ p(C). Thus it suffices to show that
(12) /∈ p(C). Suppose that there exits γ and nonzero k such that
(aγ2, γ1, bγ3) = k(1, a, b), which implies a2 = ±1. It is a contradic-
tion to the condition a4 6= 1. Cγ(12) contains (aγ2, γ1, bγ3). Since



The classification of self-orthogonal codes over Zp2 of lengths ≤ 3 733

this element is also in C, (aγ2, γ1, bγ3) = aγ2(1, a, b). However it
leads to a2 = 1 which is a contradiction. Hence, 〈(123)〉 = p(C).

(iv) By Theorem 1.3 and condition a4 6= 1, b4 6= 1 and a4 6= b4,
(12), (13), (23) /∈ p(C). Suppose (123) ∈ p(C). Then there exist
γ and nonzero k such that (1, a, b)γ(123) = k(1, a, b). It implies
that b2 = a4, which is a contradiction. Hence (123) /∈ p(C). Simi-
larly we can check (132) /∈ p(C). Hence p(C) = (1).

Theorem 4.2. LetN1, N2, N3 andN4 be the numbers of class (i),(ii),(iii)
and (iv) of self-orthogonal codes over Zp2 of length 3 up to equivalence,
respectively. Then,

(i) Class (i) code C1,00,b exists uniquely up to equivalence for p ≡ 1
(mod 4).

(ii) Class (ii) code C1,01,b exists uniquely up to equivalence for p ≡ 1, 3
(mod 8).

(iii) Class (ii) code C1,0a,b exists uniquely up to equivalence for p ≡ 1
(mod 6).

(iv) Class (iv) codes C1,0a,b exists for all primes p ≥ 5. N1, N2, N3 and N4

are determined as the following table.

p (mod 24) N1 N2 N3 N4

1 1 1 1 p2+p−26
24

5 1 0 0 p2+p−6
24

7 0 0 1 p2+p−8
24

11 0 1 0 p2+p−12
24

13 1 0 1 p2+p−14
24

17 1 1 0 p2+p−18
24

19 0 1 1 p2+p−20
24

23 0 0 0 p2+p
24

Proof. (i) It is well-known that equation 1 + b2 = 0 has solution
when p ≡ 1 (mod 4).

(ii) The equation b2 + 2 ≡ 0 (mod p2) has a solution when

(
−2

p

)
= 1,

i.e., p ≡ 1, 3 (mod 8).
(iii) a6 = 1 has a solution when p ≡ 1 (mod 6).
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(iv) The number of self-orthogonal codes of length 3 and type 11p0 is

Mp2(1, 0) = σp(3, 1)

[
3− 2

0

]
p

p1(6−3−1)/2 = σp(3, 1)

[
1
0

]
p

p

=
p2 − 1

p− 1
p = (p+ 1)p.

And by the mass formula (5),
∑
C

23×3!
|Aut(C)| = (p + 1)p. Therefore,

N4 = 1
24
{ p(p+ 1)− 6N1 − 12N2 − 8N3}.

4.2. Self-orthogonal codes of type 10p1.

Theorem 4.3. Self-orthogonal code C0,1a,b is equivalent to one of the
following classes of inequivalent codes:

(i) C0,1a,b with a = b = 0, Aut(C0,1a,b ) = 8.〈(23)〉.
(ii) C0,1a,b with b2 = 1, a = 0, Aut(C0,1a,b ) = 4.〈(13)〉. Note that C0,10,1 ∼ C

0,1
1,0 .

(iii) C0,1a,b with b2 = −1, a = 0, Aut(C0,1a,b ) = 4.〈(13)〉. Note that C0,10,b ∼
C0,1b,0 .

(iv) C0,1a,b with b4 6= 1, a = 0, Aut(C0,1a,b ) = 4.(1). Note that C0,10,b ∼ C
0,1
b,0 .

(v) C0,1a,b with a2 = 1 = b2, Aut(C0,1a,b ) = 2.S3.

(vi) C0,1a,b with b2 = 1, a2 6= 0, 1, Aut(C0,1a,b ) = 2.〈(13)〉. Note that C0,1a,1 ∼
C0,11,a ∼ C

0,1
a,b when a2 = b2 6= 1.

(vii) C0,1a,b with a6 = 1, a4 6= 1 and a4 = b2, Aut(C0,1a,b ) = 2.〈(123)〉. When

b6 = 1, b4 6= 1, b4 = a2, C0,1a,b is equivalent to one of this class.

(viii) C0,1a,b with ab 6= 0, a4 6= 1, b4 6= 1, a6 6= 1, b6 6= 1, a4 6= b2, b4 6= a2 and

a4 6= b4, Aut(C0,1a,b ) = 2.(1).

Proof. By Theorem 1.3.(v), the number of pure signs is obtained
easily. By Theorem 1.1, it suffices to classify

(
1 a b

)
over Zp. For

γσ ∈ T3
p, k ∈ Zp, if γσ ∈ Aut(C0,1a,b ) then (1, a, b)γσ = k(1, a, b) ⇐⇒

(1, a2, b2)σ = k2(1, a, b2).

(i) Assume a = b = 0. It is trivial that (23) ∈ p(C).
Suppose that (12) ∈ p(C). Then there exists γ ∈ D3

p and nonzero
k such that (1, 0, 0)γ(12) = k(1, 0, 0) which implies k = 0, a contra-
diction. Hence (12) /∈ p(C). Similarly (13) /∈ p(C). Now, suppose
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that (123) ∈ p(C). Then there exists γ and nonzero k such that
(1, 0, 0)γ(123) = k(1, 0, 0). It implies k = 0, which is a contradic-
tion.

(ii) Let b = 1, a = 0. (1, 0, 1)(1, 1, 1)(13) = (1, 1, 1). Hence (13) ∈ p(C).
Suppose that (12) ∈ p(C). Then there exist γ and nonzero k such
that (1, 0, 1)γ(12) = k(1, 0, 1) which implies k = 0, a contradiction.
Hence (12) /∈ p(C) and similarly (23) /∈ p(C).

Suppose that (123) ∈ p(C). Then there exist γ ∈ D3
p and nonzero

k such that (1, 0, 1)γ(123) = (0, γ3, γ1) = k(1, 0, 1). It implies
k = 0, a contradiction. Similarly (1, 0, 1)γ(132) = k(1, 0, 1) leads
to k = 0, a contradiction.

(iii) Let b = i, a = 0. Then (1, 0, i)(1, 1,−1)(13) = (−i, 0, 1) = −i(1, 0, i).
Thus (13) ∈ p(C). Suppose (12) ∈ p(C). Then there exist γ and
nonzero k such that (1, 0, i)γ(12) = k(1, 0, i) which implies k = 0,
a contradiction. Hence (12) /∈ p(C). Also, we can easily check as
in (ii), (23), (123), (132) /∈ p(C).

(iv) By Theorem 1.3.(ii) and by condition b4 6= 1, (12), (13), (23) /∈
p(C). Suppose that (123) ∈ p(C). Then there exist γ and nonzero
k such that (1, 0, b)γ(123) = k(1, 0, b). It leads to k = 0, a contra-
diction. Hence (123) /∈ p(C).

(v) By Theorem 1.3.(iii), it is obvious.
(vi) Let b = 1. By Theorem 1.3. (ii), (13) ∈ p(C). Suppose that (12) ∈

p(C). Then there exist γ and nonzero k such that (1, a, 1)γ(12) =
k(1, a, 1). It leads to a4 = 1 which is a contradiction to the condi-
tion a2 6= 1. Hence (12) /∈ p(C). Similarly, (23) /∈ p(C).

Suppose that (123) ∈ p(C). Then there exist γ and nonzero k
such that (1, a, 1)γ(123) = k(1, a, 1). It implies a4 = 1, a contra-
diction.

(vii) By Theorem 1.3.(iv), (123) ∈ p(C). To show (13) /∈ p(C), suppose
that there exist γ and nonzero k such that (1, a, b)γ(13) = k(1, a, b).
However it leads to b2 = ±1 which is a contradiction. Thus (13) /∈
p(C).

(viii) By Theorem 1.3 and by the conditions a4 6= 1, b4 6= 1, a4 6= b4,
(12), (13), (23) /∈ p(C). Suppose that (123) ∈ p(C). Then there
eixst γ and nonzero k such that (1, a, b)γ(123) = k(1, a, b). It
implies that b2 = a4, which is a contradiction. Hence it is obvious
that p(C) = (1).
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Theorem 4.4. Let N1, N2, N3, N4, N5, N6, N7, N8 be the number of
class (i) - (viii) of codes C0,1a,b up to equivalence, respectively. N ′is are
determined as follows.

p(mod 12) N1 N2 N3 N4 N5 N6 N7 N8

1 1 1 1 p−5
4

1 p−3
2

1 (p−1)(p−7)
24

5 1 1 1 p−5
4

1 p−3
2

0 (p−3)(p−5)
24

7 1 1 0 p−3
4

1 p−3
2

1 (p−1)(p−7)
24

11 1 1 0 p−3
4

1 p−3
2

0 (p−3)(p−5)
24

Note that we obtained directly all self-orthogonal codes over Z9 at
the next section.

Proof. Note that C0,10,b ∼ C0,1a ⊕ (0). N1, N2, N3 and N4 are same as the
results of Theorem 3.3. Existence of class (v) and (vii) and N5, N7 are
obvious. Now it suffices to find N6 and N8.

(vi) a ∈ Zp, a2 6= 0, 1 imply that the number of choices of a is p − 3.

From the fact that C0,1a,1 ∼ C
0,1
a,−1, we have N6 = p−3

2
for all primes p.

(viii) The number of self-orthogonal codes of length 3 of type 10p1 is

Mp2(0, 1) = σp(3, 0)

[
3
1

]
p

=
p3 − 1

p− 1
= p2 + p+ 1.

By the mass formula (5),∑
C

23 × 3!

|Aut(C)|
= p2 + p+ 1.

Hence,

N8 =
1

24
{p2 + p+ 1− 3N1 − 6N2 − 6N3 − 12N4 − 4N5 − 12N6 − 8N7}.

This formula gives N8.

4.3. Self-orthogonal codes of type 11p1. Actually, self-orthogonal
codes of type 11p1 are self-dual codes. All theorems in this section are
from [3].

Theorem 4.5. The self-dual code over Zp2 of length 3 with type 11p1

is equivalent to one of the following classes of inequivalent codes:
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(i) Suppose a = 0. Then, Aut(C1,10,b ) = 4. 〈(13)〉 . This class exists if
and only if when p ≡ 1 (mod 4).

(ii) Suppose a6 ≡ 1 and a 6= ±1. Then, Aut(C1,1a,b ) = 2. 〈(123)〉 . This
class exists if and only if when p ≡ 1 (mod 3).

(iii) Suppose a = 1. Then, Aut(C1,11,b ) = 2. 〈(12)〉 . This class exists if
and only if when p ≡ 1, 3 (mod 8).

(iv) Suppose a 6= 0, a3 6= ±1 (mod p), b3 6= ±1 (mod p) and a2 6= b2

(mod p). Then, Aut(C1,1a,b ) = 2. 〈(1)〉 . This class exists if and only
if when p ≥ 23.

Theorem 4.6. Let N1, N2, N3, N4 be the number of class (i), (ii),
(iii), (iv) codes C1,1a,b over Zp2 of length 3, respectively. These numbers
are determined as follows.

p (mod 24) N1 N2 N3 N4

1 1 1 1 p−25
24

5 1 0 0 p−5
24

7 0 1 0 p−7
24

11 0 0 1 p−11
24

13 1 1 0 p−13
24

17 1 0 1 p−17
24

19 0 1 1 p−19
24

23 0 0 0 p+1
24

4.4. Self-orthogonal codes of type 10p2.

Theorem 4.7. Self-orthogonal code C0,2a,b is equivalent to one of the
following eight classes of inequivalent codes;

(i) C0,2a,b with a = b = 0, Aut(C0,2a,b ) = 8.S2.

(ii) C0,2a,b with a2 = 1, b = 0, Aut(C0,2a,b ) = 4.〈(13)〉.
(iii) C0,2a,b with a2 = −1, b = 0, Aut(C0,2a,b ) = 4.〈(13)〉.
(iv) C0,2a,b with a4 6= 1, a 6= 0, b = 0, Aut(C0,2a,b ) = 4.(1).

(v) C0,2a,b with a2 = b2 = 1, Aut(C0,2a,b ) = 2.S3.

(vi) C0,2a,b with a2 = 1, b 6= 0, 1, Aut(C0,2a,b ) = 2.〈(13)〉.
(vii) C0,2a,b with a6 = 1, a4 = b2 6= 1, Aut(C0,2a,b ) = 2.〈(123)〉.
(viii) C0,2a,b with a, b 6= 0, a4 6= 1, a2 6= b2 6= 1, a6 6= 1, b2 6= a4, a2 6= b4 and

a4 6= b4, Aut(C0,2a,b ) = 2.(1).
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Note that C0,2a,b (12) = C0,2b,a , i.e., C
0,2
a,b ∼ C

0,2
b,a .

Proof. By Theorem 1.1, it suffices to classify

(
1 0 a
0 1 b

)
over Zp. Let

the generators of this code be f1 = (1, 0, a) and f2 = (0, 1, b). At first,
we check the pure signs of this code.
If γ = (γ1, γ2, γ3) ∈ s(C), then(

1 0 a
0 1 b

)
(γ1, γ2, γ3) =

(
γ1 0 γ3a
0 γ2 γ3b

)
∼
(

1 0 a
0 1 b

)
.

Thus there exist solutions of the following equations;
x(γ1, 0, γ3a) + y(0, γ2, γ3b) = (1, 0, a), and z(γ1, 0, γ3a) + w(0, γ2, γ3b) =
(0, 1, b).
This leads to {

x = γ1, y = 0, γ1γ3a = a

z = 0, w = γ2, γ2γ3b = b.

Accordingly, if ab 6= 0 , then γ1γ3 = 1 and γ2γ3 = 1, i.e., s(C) =
{±(1, 1, 1)} and |s(C)| = 2. If ab = 0 , say a 6= 0 and b = 0, then γ2γ3 = 1
and γ1 = ±1. i.e., s(C) = {±(1, 1, 1),±(−1, 1, 1)} and |s(C)| = 4. Fi-
nally, if a = b = 0 then γ1γ3 = ±1, γ2γ3 = ±1. Hence |s(C)| = 8 and
s(C) = {±(1, 1, 1),±(1, 1,−1),±(1,−1, 1),±(1,−1,−1)}.

Now, we check the permutation parts. Note that σ ∈ p(C) if and only
if

(6)

{
xf3γ + yf4γ = f1

uf3γ + vf4γ = f2

have solutions x, y, u, v and γ where f3 = f1σ and f4 = f2σ. Also, note
that C0,2a,b ∼ C

0,2
−a,b ∼ C

0,2
a,−b ∼ C

0,2
−a,−b.

(i) It is easily deduced that C(12)(1, 1, 1) = C from a = b = 0. Thus
(12) ∈ p(C). C(13) is generated by f3 = f1(13) = (0, 0, 1) and
f4 = f2(13) = (0, 1, 0). However uf3γ + vf4γ = (1, 0, 0) has no
solution. Thus (13) /∈ p(C). Since (123) = (12)(13), (123) /∈ p(C).
By the same argument, (132), (23) /∈ p(C).

(ii) Say a = 1. It is also easily deduced that C(13)(1, 1, 1) = C. Thus
(13) ∈ p(C). Assume (12) ∈ p(C). Then from the equations (6),
we can see that (vγ1, uγ2, uγ3) = (0, 1, 0) have no solution. Thus
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(12) /∈ p(C). By the same argument as in (i), (123), (132), (23) /∈
p(C).

(iii) Similarly to the case in (ii), we can easily see that p(C) = 〈(13)〉.
(iv) Suppose (12) ∈ p(C). Then the equation uf3γ + vf4γ = f2 must

have a solution. But it is obvious that (vγ1, uγ2, uaγ3) = (0, 1, 0)
has no solution. Thus (12) /∈ p(C).

Now, suppose (123) ∈ p(C). Again, uf3γ + vf4γ = f2 i.e.,
(vγ1, uaγ2, uγ3) = (0, 1, 0) has no solution. Thus (123) /∈ p(C).
It is clear that p(C) = (1) by the same argument.

(v) It suffices to show (12), (123) ∈ p(C).
Let σ = (12). From the equations (6),{

x(0, 1, a)γ + y(1, 0, b)γ = (1, 0, a)

u(0, 1, a)γ + v(1, 0, b)γ = (0, 1, b),

it is clear that x = 0, v = 0, y = γ1 and u = γ2. Thus these
equations hav a solution if and only if ybγ3 = a and uaγ3 = b,
i.e., a2 = b2. Thus (12) ∈ p(C) if and only if a2 = b2. Therefore
(12) ∈ p(C).

Without loss of generality, assume a = b = 1. Now, let σ =
(123). It is also clear that the equations,{

x(0, 1, 1)γ + y(1, 1, 0)γ = (1, 0, 1)

u(0, 1, 1)γ + v(1, 1, 0)γ = (0, 1, 1)

has a solution x = −1, y = 1, u = −1, v = 0, γ = (1,−1,−1).
Therefore (123) ∈ p(C).

(vi) By the argument in (v), (12) /∈ p(C), since a2 6= b2.
Let a = 1 and σ = (13). Then it is clear that the equations{

x(1, 0, 1)γ + y(b, 1, 0)γ = (1, 0, 1)

u(1, 0, 1)γ + v(b, 1, 0)γ = (0, 1, b)

has a solution x = 1, y = 0, u = b, v = −1 and γ = (1,−1, 1). Thus
(13) ∈ p(C) and (123) /∈ p(C) since (12) /∈ p(C). Consequently,
p(C) = 〈(13)〉.

Note that if (13) ∈ p(C), then a4 = 1. Because the first part
of equations (6), x(a, 0, 1)γ + y(b, 1, 0)γ = (1, 0, a) tells that y = 0
and xaγ1 = 1, xγ3 = a. Thus x2a2 = 1 and x2 = a2 implies that
a4 = 1.
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(vii) For neither a2 6= b2 nor a4 6= 1, we can deduce that (12), (13) /∈
p(C).

Without loss of generality, assume a3 = 1 and b = a2. Now, let
σ = (123). It is also clear that the equations,{

x(0, a, 1)γ + y(1, a2, 0)γ = (1, 0, a)

u(0, a, 1)γ + v(1, a2, 0)γ = (0, 1, a2)

has a solution x = −a, y = 1, u = −a2, v = 0, γ = (1,−1,−1).
Therefore (123) ∈ p(C).

(viii) By the condition a4 6= b4, (12) /∈ p(C) and by the condition a4 6= 1,
(13) /∈ p(C).

Assume that (123) ∈ p(C). The first part of equations (6),
x(0, a, 1)γ + y(1, b, 0)γ = (1, 0, a) tells that xγ3 = a, y = γ1 and
xaγ2+ybγ2 = 0. Thus x2 = a2, y2 = 1 and x2a2 = b2. Consequently
b2 = a4. The second part of equations (6), u(0, a, 1)γ+v(1, b, 0)γ =
(0, 1, b) tells that v = 0 and uaγ2 = 1, uγ3 = b. Thus u2a2 = 1 and
u2 = b2. Therefore a2b2 = 1. a2b2 = 1 and b2 = a4 implies that
a6 = 1 which is contradict to the condition. Thus (123) /∈ p(C).

Theorem 4.8. Let N1, N2, N3, N4, N5, N6, N7, and N8 be the number
of class (i) - (viii) of codes C0,2a,b up to equivalence, respectively. N ′is are
determined as follows.

p(12) N1 N2 N3 N4 N5 N6 N7 N8

1 1 1 1 p−5
4

1 p−3
2

1 (p−1)(p−7)
24

5 1 1 1 p−5
4

1 p−3
2

0 (p−3)(p−5)
24

7 1 1 0 p−3
4

1 p−3
2

1 (p−1)(p−7)
24

11 1 1 0 p−3
4

1 p−3
2

0 (p−3)(p−5)
24

Proof. C0,2a,0 ∼ C0,1a ⊕ (p). Thus N1, N2, N3 and N4 are exactly same as
Theorem 3.3. N5, N6 and N7 are obtained by the same argument as in
the Theorem 4.4.

The number of self-orthogonal codes of length 3 of type 10p2 is

Mp2(0, 2) = σp(3, 0)

[
3
2

]
p

=
(p3 − 1)(p3 − p)
(p2 − 1)(p2 − p)

= p2 + p+ 1.
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By the mass formula (5),∑
C

23 × 3!

|Aut(C)|
= p2 + p+ 1.

Hence,

N8 =
1

24
{p2 + p+ 1− 3N1 − 6N2 − 6N3 − 12N4 − 4N5 − 12N6 − 8N7}.

5. Examples

Self-orthogonal codes of length 3 over Zp2 for all primes p ≤ 13 are
shown in the following table.
Type Aut. Z22 Z32 Z52 Z72 Z112 Z132

C1,0a,b

4.〈(13)〉 C1,00,7 C1,00,70

2.〈(12)〉 C1,01,4 C1,01,19

2.〈(123)〉 C1,018,19 C1,022,23

2.(1) C1,05,7 C1,02,7 , C
1,0
4,9 C1,03,56, C

1,0
4,15, C

1,0
7,26, C1,03,43, C

1,0
9,16, C

1,0
13,70,

C1,110,25, C
1,1
18,37 C1,026,70, C

1,1
29,61 C

1,1
48,68,

C1,152,70

C1,1a,b

4.〈(13)〉 C1,10,7 C1,10,70

2.〈(12)〉 C1,01,4 C1,11,19

2.〈(123)〉 C1,12,32 C1,13,126

2.(1)

C0,1a,b

8.〈(23)〉 C0,10,0 C0,10,0 C0,10,0 C0,10,0 C0,10,0 C0,10,0

4.〈(13)〉 C0,10,1 C0,10,1 C0,10,1 C0,10,1 C0,10,1 C0,10,1

4.〈(13)〉 C0,10,2 C0,10,5

4.(1) C0,10,2 C0,10,2 , C
0,1
0,3 C0,10,2 , C

0,1
0,3

2.S3 C0,11,1 C0,11,1 C0,11,1 C0,11,1 C0,11,1 C0,11,1

2.〈(12)〉 C0,11,2 C0,11,2 , C
0,1
1,3 C0,11,2 , C

0,1
1,3 C0,11,2 , C

0,1
1,3 , C

0,1
1,4

C0,11,4 , C
0,1
1,5 C0,11,5 , C

0,1
1,6

2.〈(123)〉 C1,12,3 C0,13,4

2.(1) C0,12,3 , C
0,1
2,4 C0,12,3 , C

0,1
2,4 C

0,1
2,5

C0,2a,b

8.〈(12)〉 C0,20,0 C0,20,0 C0,20,0 C0,20,0 C0,20,0 C0,20,0

4.〈(13)〉 C0,21,0 C0,21,0 C0,21,0 C0,21,0 C0,21,0 C0,21,0

4.〈(13)〉 C0,22,0 C0,22,0

4.(1) C0,22,0 C0,22,0 , C
0,2
3,0 C0,22,0 , C

0,2
3,0

2.S3 C0,21,1 C0,21,1 C0,21,1 C0,21,1 C0,21,1 C0,21,1

2.〈(13)〉 C0,21,2 C0,21,2 , C
0,2
1,3 C0,21,2 , C

0,2
1,3 C0,21,2 , C

0,2
1,3 , C

0,2
1,4

C0,21,4 , C
0,2
1,5 C0,21,5 , C

0,2
1,6

2.〈(123)〉 C0,22,3 C0,23,4

2.(1) C0,22,3 , C
0,2
2,4 C0,22,3 , C

0,2
2,4 C

0,2
2,5
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