THE CLASSIFICATION OF SELF-ORTHOGONAL CODES OVER $\mathbb{Z}_{p^{2}}$ OF LENGTHS ≤ 3

Whan-hyuk Choi, Kwang Ho Kim and Sook Young Park*

Abstract

In this paper, we find all inequivalent classes of selforthogonal codes over $\mathbb{Z}_{p^{2}}$ of lengths $l \leq 3$ for all primes p, using similar method as in [3]. We find that the classification of self-orthogonal codes over $\mathbb{Z}_{p^{2}}$ includes the classification of all codes over \mathbb{Z}_{p}. Consequently, we classify all the codes over \mathbb{Z}_{p} and self-orthogonal codes over $\mathbb{Z}_{p^{2}}$ of lengths $l \leq 3$ according to the automorphism group of each code.

1. Introduction

As concerns about codes over rings are increasing, many results about the codes over \mathbb{Z}_{m} for an integer m and especially over $\mathbb{Z}_{p^{e}}$ for a prime p are published. In [3], [6], [7] and [8], authors found that the construction and classification of the self-dual codes over \mathbb{Z}_{m} is based on the classification of the self-orthogonal codes over \mathbb{Z}_{p} and $\mathbb{Z}_{p^{2}}$ of length 4 . In this paper, we focused on the classification of self-orthogonal codes over $\mathbb{Z}_{p^{2}}$ of length 3 upon which the classfication of codes of length 4 is based.

We begin by giving the necessary definitions and notations. A code over $\mathbb{Z}_{p^{2}}$ of length n is a $\mathbb{Z}_{p^{2}}$-submodule of $\mathbb{Z}_{p^{2}}^{n}$. A code \mathcal{C} of length n over $\mathbb{Z}_{p^{2}}$ has generator matrices permutation equivalent to the standard

[^0]form
\[

G=\left($$
\begin{array}{ccc}
I_{k_{1}} & A_{1} & B_{1}+p B_{2} \tag{1}\\
0 & p I_{k_{2}} & p C_{1}
\end{array}
$$\right)
\]

where the columns are grouped into blocks of sizes k_{1}, k_{2} and $n-k_{1}-k_{2}$ and A_{1}, B_{1}, B_{2} and C_{1} are matrices over $\mathbb{Z}_{p}[7]$. A matrix with this standard form is said to be of type

$$
\begin{equation*}
1^{k_{1}} p^{k_{2}} \tag{2}
\end{equation*}
$$

The number of nonzero rows is called the rank of \mathcal{C} and denoted by rank C. k_{1} is called the free rank.

Associated with \mathcal{C} there are two codes over \mathbb{Z}_{p}, the residue code $R(\mathcal{C})=\left\{x \in \mathbb{Z}_{p}^{n} \mid \exists y \in \mathbb{Z}_{p}^{n}\right.$ such that $\left.x+p y \in \mathcal{C}\right\}$ and the torsion code $T(\mathcal{C})=\left\{y \in \mathbb{Z}_{p}^{n} \mid p y \in \mathcal{C}\right\}$ which have generator matrices

$$
G_{1}=\left(I_{k_{1}} A_{1} B_{1}\right), G_{2}=\left(\begin{array}{ccc}
I_{k_{1}} & A_{1} & B_{1} \\
0 & I_{k_{2}} & C_{1}
\end{array}\right)
$$

respectively.
The dual code \mathcal{C}^{\perp} of \mathcal{C} is defined by

$$
\mathcal{C}^{\perp}=\left\{\mathbf{v} \in \mathbb{Z}_{p^{e}}^{n} \mid \mathbf{v} \cdot \mathbf{w}=0 \text { for all } \mathbf{w} \in \mathcal{C}\right\}
$$

\mathcal{C} is called self-orthogonal (resp. self-dual) if $\mathcal{C} \subset \mathcal{C}^{\perp}$ (resp. $\mathcal{C}=\mathcal{C}^{\perp}$).
For any code \mathcal{C} of length n over $\mathbb{Z}_{p^{2}}$

$$
\left|\mathcal{C} \| \mathcal{C}^{\perp}\right|=p^{2 n}
$$

Hence if \mathcal{C} is self-orthogonal code over $\mathbb{Z}_{p^{2}}$ of length n then $|\mathcal{C}| \leq p^{n}$, and if \mathcal{C} is self-dual then $|\mathcal{C}|=p^{n}$.
\mathbb{T}_{m}^{n}, the group of all monomial transformations on \mathbb{Z}_{m}^{n} is defined by

$$
\mathbb{T}_{m}^{n}=\left\{\gamma \sigma \mid \gamma \in \mathbb{D}_{m}^{n}, \sigma \in S_{n}\right\}
$$

where S_{n} is the symmetric group of length n and \mathbb{D}_{m}^{n} is the set of diagonal matrices with elements $\gamma_{i} \in \mathbb{Z}_{m}$ and $\gamma_{i}^{2}=1$. Note that we take γ_{i} 's in \mathbb{Z}_{p} or \mathbb{Z}_{p}^{2} occasionally according to the context. Any element $t \in \mathbb{T}_{m}^{n}$ has a unique representation $t=\gamma \sigma$ for $\gamma \in \mathbb{D}_{m}^{n}$ and $\sigma \in S_{n} . \gamma$ will be called the sign (part) of t, and σ will be called the permutation part of t.

The group \mathbb{T}_{m}^{n} acts on the set of codes over \mathbb{Z}_{m} by $\mathcal{C} t=\{c t \mid c \in \mathcal{C}\}$. Notice that this is indeed a right action but $\sigma \gamma=\gamma^{\sigma} \sigma$ as well where $\gamma^{\sigma}=\sigma \gamma \sigma^{-1}$. Two codes \mathcal{C} and \mathcal{C}^{\prime} are equivalent (denoted $\mathcal{C} \sim \mathcal{C}^{\prime}$) if there exists an element $t \in \mathbb{T}_{m}^{n}$ such that $\mathcal{C} t=\mathcal{C}^{\prime}$. The group of all automorphisms of \mathcal{C} will be denoted by $\operatorname{Aut}(\mathcal{C})$.

For a subgroup $\operatorname{Aut}(\mathcal{C})$ of \mathbb{T}_{m}^{n},

$$
p(\mathcal{C})=\left\{\sigma \mid \gamma \sigma \in \operatorname{Aut}(\mathcal{C}) \text { for some } \gamma \in \mathbb{D}_{m}^{n}\right\}
$$

is a subgroup of S_{n}, called the permutation parts of $\operatorname{Aut}(\mathcal{C})$. Elements in $s(\mathcal{C})=\operatorname{Aut}(\mathcal{C}) \cap \mathbb{D}_{m}^{n}$ are called the pure signs of $\operatorname{Aut}(\mathcal{C})$.

Since what is important to us is the cardinality $k=|s(\mathcal{C})|$ and the group $p(\mathcal{C})$ of permutation parts of $\operatorname{Aut}(\mathcal{C})$, we will write

$$
\begin{equation*}
\operatorname{Aut}(\mathcal{C})=k \cdot p(\mathcal{C}) \tag{3}
\end{equation*}
$$

Theorem 1.1. If \mathcal{C} is a code over $\mathbb{Z}_{p^{2}}$ with type $1^{0} p^{k_{2}}$, then $\operatorname{Aut}(\mathcal{C})=$ $\operatorname{Aut}(T(\mathcal{C}))$.

Proof. Since \mathcal{C} is of type $1^{0} p^{k_{2}}$, it is easily deduced that for a codeword $c \in \mathcal{C}$ there exists a $c^{\prime} \in T(\mathcal{C})$ such that $c=p c^{\prime}$ and there is an one-to-one correspondence between \mathcal{C} and $T(\mathcal{C})$. Let $t \in \operatorname{Aut}(\mathcal{C})$. Then for any $c_{1} \in \mathcal{C}$ there exists $c_{2} \in \mathcal{C}$ such that $c_{1} t=c_{2}$. Then there exist c_{1}^{\prime} and c_{2}^{\prime} in $T(\mathcal{C})$ such that $c_{1} t=p c_{1}^{\prime} t=p c_{2}^{\prime}=c_{2} \Leftrightarrow c_{1}^{\prime} t=c_{2}^{\prime}$. Therefore $t \in \operatorname{Aut}(T(\mathcal{C}))$. Conversely, let $t \in \operatorname{Aut}(T(\mathcal{C}))$. Then for any $c_{1}^{\prime} \in T(\mathcal{C})$ there exists $c_{2}^{\prime} \in T(\mathcal{C})$ such that $c_{1}^{\prime} t=c_{2}^{\prime}$. So $c_{1}^{\prime} t=c_{2}^{\prime} \Leftrightarrow p c_{1}^{\prime} t=p c_{2}^{\prime} \Leftrightarrow$ $c_{1} t=c_{2}$. Therefore $t \in \operatorname{Aut}(\mathcal{C})$.

The following theorems are directly from [3].
Theorem 1.2. [3] If \mathcal{C} is a self-dual code over $\mathbb{Z}_{p^{2}}$ with type $1^{1} p^{k_{2}}$, then $\operatorname{Aut}(\mathcal{C})=\operatorname{Aut}(R(\mathcal{C}))$.

Next theorem tells us that the automorphism of rank 1 code can be obtained easily.

Theorem 1.3. [3] Let \mathcal{C} be a code over $\mathbb{Z}_{p^{e}}$ of length 3 for odd prime p with generator matrix $\left(\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\right)$. Let (ij) and (123) be elements in S_{3} and $\omega \in \mathbb{Z}_{p}$ such that $\omega^{6}=1, \omega \neq \pm 1$.
(i) If $a_{i}^{2}=a_{j}^{2}$, then $(i j) \in p(\mathcal{C})$.
(ii) If $(i j) \in p(\mathcal{C})$ and $a_{i}^{2} \neq a_{j}^{2}$, then $a_{i}^{2}=-a_{j}^{2}$. Hence if $a_{i}^{4} \neq a_{j}^{4}$ then $(i j) \notin p(\mathcal{C})$.
(iii) $a_{1}^{2}=a_{2}^{2}=a_{3}^{2}$ if and only if $p(\mathcal{C})=S_{3}$.
(iv) If $a_{2}^{2}=\omega^{2} a_{1}^{2}, a_{3}^{2}=\omega^{4} a_{1}^{2}$, then (123) $\in p(\mathcal{C})$ and $S_{3} \neq p(\mathcal{C})$.
(v) If the number of a_{i} 's which are zero is m, then $|s(\mathcal{C})|=2^{1+m}$. Moreover, this is also true when \mathcal{C} has an arbitrary length with rank 1.

A code is called decomposable if the code is a direct sum of two or more codes. If a code is not decomposable, it is called indecomposable. Next theorem tells us about automorphism of a decomposable code.

Theorem 1.4. [2] If $\mathcal{C}=\mathcal{C}_{1} \oplus \mathcal{C}_{2}$ then $\operatorname{Aut}(\mathcal{C}) \supseteq \operatorname{Aut}\left(\mathcal{C}_{1}\right) \times \operatorname{Aut}\left(\mathcal{C}_{2}\right)$.

2. Mass formula for self-orthogonal codes

Theorem 2.1. $[9,10]$ Let $\sigma_{p}(n, k)$ be the number of self-orthogonal codes of length n and dimension k over \mathbb{Z}_{p}, where p is odd prime. Then:

1. If n is odd,

$$
\sigma_{p}(n, k)=\frac{\prod_{i=0}^{k-1}\left(p^{(n-1-2 i)}-1\right)}{\prod_{i=1}^{k}\left(p^{i}-1\right)}, \quad(k \geq 1) .
$$

2. If n is even,

$$
\begin{gathered}
\sigma_{p}(n, k)=\frac{\left(p^{n-k}-1-\eta\left((-1)^{\frac{n}{2}}\right)\left(p^{n / 2-k}-p^{n / 2}\right)\right) \prod_{i=1}^{k-1}\left(p^{n-2 i}-1\right)}{\prod_{i=1}^{k}\left(p^{i}-1\right)},(k \geq 2) \\
\sigma_{p}(n, 1)=\frac{p^{n-1}-1-\eta\left((-1)^{\frac{n}{2}}\right)\left(p^{n / 2-1}-p^{n / 2}\right)}{p-1}
\end{gathered}
$$

where $\eta(x)$ is 1 if x is a square, -1 if x is not a square and 0 if $x=0$.
Note that $\sigma_{p}(n, 0)=1$ for all n.
The number of self-orthogonal codes of length n over $\mathbb{Z}_{p^{2}}$ is computed separately by the following theorem.

Theorem 2.2. [1] Let p be an odd prime. Then the number of distinct self-orthogonal codes of length n over $\mathbb{Z}_{p^{2}}$ of type $1^{k_{1}} p^{k_{2}}$ is

$$
M_{p^{2}}\left(k_{1}, k_{2}\right)=\sigma_{p}\left(n, k_{1}\right)\left[\begin{array}{c}
n-2 k_{1} \tag{4}\\
k_{2}
\end{array}\right]_{p} p^{k_{1}\left(2 n-3 k_{1}-1-2 k_{2}\right) / 2},
$$

where

$$
\left[\begin{array}{c}
n \\
k
\end{array}\right]_{p}=\frac{\left(p^{n}-1\right)\left(p^{n}-p\right) \cdots\left(p^{n}-p^{k-1}\right)}{\left(p^{k}-1\right)\left(p^{k}-p\right) \cdots\left(p^{k}-p^{k-1}\right)} .
$$

For given n, p, k_{1} and k_{2}, we now know the total number of selforthogonal codes of length n over $\mathbb{Z}_{p^{2}}$ of type $1^{k_{1}} p^{k_{2}}$. Thus we can create mass formula which plays a key role in the classfication problem.

$$
\begin{equation*}
\sum_{i} \frac{\left|\mathbb{T}_{m}^{n}\right|}{\left|\operatorname{Aut}\left(\mathcal{C}_{i}\right)\right|}=M_{p^{2}}\left(k_{1}, k_{2}\right) \tag{5}
\end{equation*}
$$

where \mathcal{C}_{i} 's are all inequivalent codes of type $1^{k_{1}} p^{k_{2}}$.

3. Classification of self-orthogonal codes over $\mathbb{Z}_{p^{2}}$ of length 1 and 2

From now on p is an odd prime, we will denote a code \mathcal{C} with generator matrix G by $\mathcal{C}: G$. And a solution of $x^{2}+1=0$ in $\mathbb{Z}_{p}\left(\right.$ or $\left.\mathbb{Z}_{p^{2}}\right)$ by $\pm i$.
3.1. self-orthogonal codes over $\mathbb{Z}_{p^{2}}$ of length 1. (p) generates the unique self-orthogonal codes of length 1 over $\mathbb{Z}_{p^{2}}$. Generally, $p I_{n}$ generates the unique self-orthogonal codes over $\mathbb{Z}_{p^{2}}$ of length n and rank n for all primes p with the automorphism $2^{n} . S_{n}$. This type of code is called the trivial code. Actually, a trivial code over $\mathbb{Z}_{p^{2}}$ is a self-dual code.
3.2. self-orthogonal codes over $\mathbb{Z}_{p^{2}}$ of length 2. Since $|\mathcal{C}| \leq p^{n}$ for a self-orthogonal code \mathcal{C} of length n over $\mathbb{Z}_{p^{2}}$, we have $p^{2 k_{1}+k_{2}} \leq p^{2}$, i.e., $2 k_{1}+k_{2}=1$ or 2 . Thus there exist only three types of codes of length 2 , of $1^{0} p^{2}, 1^{1} p^{0}$ and $1^{0} p^{1}$. Any self-orthogonal code \mathcal{C} of length 2 over $\mathbb{Z}_{p^{2}}$ is equivalent to one of following types.
(1) Type $1^{0} p^{2}$ code, trivial code $p \oplus p: p I_{2}$.
(2) Type $1^{1} p^{0}$ code $\mathcal{C}_{a}^{1,0}:\left(\begin{array}{ll}1 & a\end{array}\right)$ where $a \in \mathbb{Z}_{p^{2}}$.
(3) Type $1^{0} p^{1}$ code $\mathcal{C}_{a}^{0,1}:\left(\begin{array}{ll}p & p a\end{array}\right)$ where $a \in \mathbb{Z}_{p}$.

Note that $\mathcal{C}_{a}^{k_{1}, k_{2}} \sim \mathcal{C}_{-a}^{k_{1}, k_{2}}$.
THEOREM 3.1. There is a unique self-orthogonal code $\mathcal{C}_{a}^{1,0}$ up to equivalence if and only if $p \equiv 1(\bmod 4)$. In this case, $\operatorname{Aut}\left(\mathcal{C}_{a}^{1,0}\right)=2 . S_{2}$.

Proof. By Theorem 1.3.(v), the number of pure signs is $2^{1}=2$. By self-orthogonality, a is a solution of $1+x^{2}=0$ in $\mathbb{Z}_{p^{2}}$ and we can take $a=i$. It is well-known that this equation has solutions when $p \equiv 1$ $(\bmod 4)$. Let $\gamma \sigma=(1,-1)(12) \in \mathbb{T}_{p^{2}}^{2}$ act on $\mathcal{C}_{i}^{1,0}:(1, i)$. Then $(1, i) \gamma \sigma=$ $(i,-1)=i(1, i)$. Thus $(12) \in p(\mathcal{C})$.

THEOREM 3.2. The self-orthogonal code $\mathcal{C}_{a}^{0,1}$ is equivalent to one of the following classes of inequivalent codes:
(i) $\mathcal{C}_{a}^{0,1}$ with $a=0, \operatorname{Aut}\left(\mathcal{C}_{a}^{0,1}\right)=4 .(1)$.
(ii) $\mathcal{C}_{a}^{0,1}$ with $a^{2}=1, \operatorname{Aut}\left(\mathcal{C}_{a}^{0,1}\right)=2 . S_{2}$.
(iii) $\mathcal{C}_{a}^{0,1}$ with $a^{2}=-1, \operatorname{Aut}\left(\mathcal{C}_{a}^{0,1}\right)=2 . S_{2}$.
(iv) $\mathcal{C}_{a}^{0,1}$ with $a \neq 0, a^{4} \neq 1, \operatorname{Aut}\left(\mathcal{C}_{a}^{0,1}\right)=2 .(1)$.

Proof. By Theorem 1.3.(v), the number of pure signs is obtained easily. To find the permutation parts, by Theorem 1.1, it suffices to classify permutation parts of codes over \mathbb{Z}_{p} with generator matrix $\left(\begin{array}{ll}1 & a\end{array}\right)$. For $\gamma \sigma \in \mathbb{T}_{p}^{2}, \gamma \sigma \in \operatorname{Aut}\left(\mathcal{C}_{a}^{0,1}\right)$ if and only if there exists nonzero $k \in \mathbb{Z}_{p}$ such that

$$
(1, a) \gamma \sigma=k(1, a) .
$$

Thus according to each solution of above equation, we can determine permutation parts.
(i) It is trivial that $p\left(\mathcal{C}_{a}^{0,1}\right)=(1)$ when $a=0$.
(ii) Let $a=1$. It is obvious that $(1,1)(1,1)(12)=(1,1)$, it means $(12) \in p(\mathcal{C})$.
(iii) Let $a=i$. $(1, i)(1,-1)(12)=(-i, 1)=-i(1, i)$. Thus $(12) \in p(\mathcal{C})$.
(iv) Suppose that (12) $\in \operatorname{Aut}\left(\mathcal{C}_{a}^{0,1}\right)$. This means that there exist γ and k such that $(1, a)\left(\gamma_{1}, \gamma_{2}\right)(12)=k(1, a)$ i.e., $\left(a \gamma_{2}, \gamma_{1}\right)=(k, k a)$. Hence $a^{2}= \pm 1$. Thus if $a^{4} \neq 1$ then $\operatorname{Aut}\left(\mathcal{C}_{a}^{0,1}\right)=(1)$.

Theorem 3.3. Let N_{1}, N_{2}, N_{3} and N_{4} be the numbers of code $\mathcal{C}_{a}^{0,1}$ in the class (i),(ii),(iii) and (iv), respectively, up to equivalence. Then,
(i) Class (i) code $\mathcal{C}_{0}^{0,1}$ exists uniquely up to equivalence for all primes p.
(ii) Class (ii) code $\mathcal{C}_{1}^{0,1}$ exists uniquely up to equivalence for all primes p.
(iii) Class (iii) code $\mathcal{C}_{i}^{0,1}$ exists uniquely up to equivalence for all primes $p \equiv 1(\bmod 4)$.
(iv) Class (iv) codes $\mathcal{C}_{a}^{0,1}$ exists for all primes $p \geq 7$, and

$$
N_{4}=\left\{\begin{array}{lll}
\frac{p-5}{4}, & p \equiv 1 & (\bmod 4) \\
\frac{p-3}{4}, & p \equiv 3 & (\bmod 4) .
\end{array}\right.
$$

So, N_{1}, N_{2}, N_{3} and N_{4} are determined as the following table.

$p(\bmod 4)$	N_{1}	N_{2}	N_{3}	N_{4}
1	1	1	1	$\frac{p-5}{4}$
3	1	1	0	$\frac{p-3}{4}$

Proof. Class (i), (ii) and (iii) are obvious. In the case of class (iv), we use the mass formula. The total number of distinct self-orthogonal codes $\mathcal{C}_{a}^{0,1}$ is

$$
M_{p^{2}}(0,1)=\sigma_{p}(2,0)\left[\begin{array}{l}
2 \\
1
\end{array}\right]_{p} p^{0}=\frac{p^{2}-1}{p-1}=p+1
$$

By the mass formula (5),

$$
\sum_{\mathcal{C}} \frac{2^{2} \times 2!}{|\operatorname{Aut}(\mathcal{C})|}=p+1
$$

By Theorem 3.2, this implies that

$$
2 N_{1}+2 N_{2}+2 N_{3}+4 N_{4}=p+1
$$

As a consequence,

$$
N_{4}=\left\{\begin{array}{lll}
\frac{p-5}{4}, & p \equiv 1 & (\bmod 4) \\
\frac{p-3}{4}, & p \equiv 3 & (\bmod 4)
\end{array}\right.
$$

4. Classification of self-orthogonal codes over $\mathbb{Z}_{p^{2}}$ of length 3

By the same argument as in the case of length 2, there are selforthogonal codes \mathcal{C} of length 3 over $\mathbb{Z}_{p^{2}}$ equivalent to one of following types.
(1) Type $1^{0} p^{3}$ code, trivial code $p \oplus p \oplus p: p I_{3}$.
(2) Type $1^{1} p^{0}$ code $\mathcal{C}_{a, b}^{1,0}:\left(\begin{array}{lll}1 & a & b\end{array}\right)$, where $a, b \in \mathbb{Z}_{p^{2}}$.
(3) Type $1^{0} p^{1}$ code $\mathcal{C}_{a, b}^{0,1}:\left(\begin{array}{lll}p & p a & p b\end{array}\right)$, where $a, b \in \mathbb{Z}_{p}$.
(4) Type $1^{1} p^{1}$ code $\mathcal{C}_{a, b}^{1,1}:\left(\begin{array}{lll}1 & a & b \\ 0 & p & p c\end{array}\right)$, where $a, c \in \mathbb{Z}_{p}, b \in \mathbb{Z}_{p^{2}}$ and c is determined by a and b.
(5) Type $1^{0} p^{2}$ code $\mathcal{C}_{a, b}^{0,2}:\left(\begin{array}{lll}p & 0 & p a \\ 0 & p & p b\end{array}\right)$, where $a, b \in \mathbb{Z}_{p}$.

Note that it is obvious that $\mathcal{C}_{a, b}^{k_{1}, k_{2}} \sim \mathcal{C}_{a,-b}^{k_{1}, k_{2}} \sim \mathcal{C}_{-a, b}^{k_{1}, k_{2}} \sim \mathcal{C}_{-a,-b}^{k_{1}, k_{2}}$.

4.1. Self-orthogonal codes of type $1^{1} p^{0}$.

Theorem 4.1. Self-orthogonal code $\mathcal{C}_{a, b}^{1,0}$ is equivalent to one of the following classes of inequivalent codes:
(i) $\mathcal{C}_{a, b}^{1,0}$ with $a=0, b^{2}+1=0, \operatorname{Aut}\left(\mathcal{C}_{a, b}^{1,0}\right)=4 .\langle(13)\rangle$. Note that $\mathcal{C}_{0, b}^{1,0} \sim \mathcal{C}_{b, 0}^{1,0}$.
(ii) $\mathcal{C}_{a, b}^{1,0}$ with $a^{2}=1, \operatorname{Aut}\left(\mathcal{C}_{a, b}^{1,0}\right)=2 . S_{2}$. Note that $\mathcal{C}_{1, b}^{1,0} \sim \mathcal{C}_{a, b}^{1,0}$ when $a^{2}=b^{2} \neq 1$.
(iii) $\mathcal{C}_{a, b}^{1,0}$ with $a^{6}=1, a^{4} \neq 1, \operatorname{Aut}\left(\mathcal{C}_{a, b}^{1,0}\right)=2 .\langle(123)\rangle$. In this case $b^{2}=$ a^{4}. When $b^{6}=1, b^{4} \neq 1, \mathcal{C}_{a, b}^{1,0}$ is also equivalent to the code of this class.
(iv) $\mathcal{C}_{a, b}^{1,0}$ with $a b \neq 0, a^{6} \neq 1, b^{6} \neq 1, a^{4} \neq 1, b^{4} \neq 1, a^{4} \neq b^{2}, b^{4} \neq a^{2}$ and $a^{4} \neq b^{4}, \operatorname{Aut}\left(\mathcal{C}_{a, b}^{1,0}\right)=2 .(1)$.

Proof. By the self-orthogonality $1+a^{2}+b^{2} \equiv 0\left(\bmod p^{2}\right)$ and by Theorem 1.3.(v), the number of pure signs is obtained easily.
(i) Assume $a=0$. Let $\gamma \sigma=(1,1,-1)(13) \in \mathbb{T}_{p^{2}}^{3}$.

Then $(1,0, i)(1,1,-1)(13)=-i(1,0, i)$. Thus $(13) \in p(\mathcal{C})$. Now suppose that $(12) \in p(\mathcal{C})$ such that $\mathcal{C} \gamma(12)=\mathcal{C}$. Then there exist γ and nonzero k such that $(1,0, i) \gamma(12)=k(1,0, i)$, which implies $k=0$, a contradiction. Hence (12) $\notin p(\mathcal{C})$. Similarly, $(23) \notin p(\mathcal{C})$. Suppose that $(123) \in p(\mathcal{C})$. Then there exist γ and nonzero k such that $(1,0, i) \gamma(123)=k(1,0, i)$. It implies that $k=0$, which is a contradiction. Therefore $(123) \notin p(\mathcal{C})$.
(ii) Let $a=1$. By Theorem 1.3, (12) $\in p(\mathcal{C})$. To show that (13) $\notin p(\mathcal{C})$, suppose that there exists $\gamma=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \in \mathbb{D}_{p^{2}}^{3}$ such that $\mathcal{C} \gamma(13)=$ \mathcal{C}. Then there exist γ and nonzero k such that $\left(b \gamma_{3}, \gamma_{2}, \gamma_{1}\right)=$ $k(1,1, b)$, which implies $b^{2}=1$. It is a contradiction to the condition $b^{2}+2=0$. Similarly, $(23) \notin p(\mathcal{C})$.

Now, Suppose $(123) \in p(\mathcal{C})$. Then there exist γ and nonzero k such that $(1,1, b) \gamma(123)=k(1,1, b)$, which implies $b^{4}=1$, a contradiction. Therefore (123) $\notin p(\mathcal{C})$, and along the same lines, $(132) \notin p(\mathcal{C})$.
(iii) By Theorem 1.3.(iv), $(123) \in p(\mathcal{C})$. Thus it suffices to show that $(12) \notin p(\mathcal{C})$. Suppose that there exits γ and nonzero k such that $\left(a \gamma_{2}, \gamma_{1}, b \gamma_{3}\right)=k(1, a, b)$, which implies $a^{2}= \pm 1$. It is a contradiction to the condition $a^{4} \neq 1$. $\mathcal{C} \gamma(12)$ contains ($a \gamma_{2}, \gamma_{1}, b \gamma_{3}$). Since
this element is also in $\mathcal{C},\left(a \gamma_{2}, \gamma_{1}, b \gamma_{3}\right)=a \gamma_{2}(1, a, b)$. However it leads to $a^{2}=1$ which is a contradiction. Hence, $\langle(123)\rangle=p(\mathcal{C})$.
(iv) By Theorem 1.3 and condition $a^{4} \neq 1, b^{4} \neq 1$ and $a^{4} \neq b^{4}$, $(12),(13),(23) \notin p(\mathcal{C})$. Suppose $(123) \in p(\mathcal{C})$. Then there exist γ and nonzero k such that $(1, a, b) \gamma(123)=k(1, a, b)$. It implies that $b^{2}=a^{4}$, which is a contradiction. Hence (123) $\notin p(\mathcal{C})$. Similarly we can check $(132) \notin p(\mathcal{C})$. Hence $p(\mathcal{C})=(1)$.

Theorem 4.2. Let N_{1}, N_{2}, N_{3} and N_{4} be the numbers of class (i),(ii),(iii) and (iv) of self-orthogonal codes over $\mathbb{Z}_{p^{2}}$ of length 3 up to equivalence, respectively. Then,
(i) Class (i) code $\mathcal{C}_{0, b}^{1,0}$ exists uniquely up to equivalence for $p \equiv 1$ $(\bmod 4)$.
(ii) Class (ii) code $\mathcal{C}_{1, b}^{1,0}$ exists uniquely up to equivalence for $p \equiv 1,3$ $(\bmod 8)$.
(iii) Class (ii) code $\mathcal{C}_{a, b}^{1,0}$ exists uniquely up to equivalence for $p \equiv 1$ $(\bmod 6)$.
(iv) Class (iv) codes $\mathcal{C}_{a, b}^{1,0}$ exists for all primes $p \geq 5 . N_{1}, N_{2}, N_{3}$ and N_{4} are determined as the following table.

$p(\bmod 24)$	N_{1}	N_{2}	N_{3}	N_{4}
1	1	1	1	$\frac{p^{2}+p-26}{24}$
5	1	0	0	$\frac{p^{2}+p-6}{24}$
7	0	0	1	$\frac{p^{2}+p-8}{24}$
11	0	1	0	$\frac{p^{2}+p-12}{24}$
13	1	0	1	$\frac{p^{2}+p-14}{24}$
17	1	1	0	$\frac{p^{2}+p-18}{24}$
19	0	1	1	$\frac{p^{2}+p-20}{24}$
23	0	0	0	$\frac{p^{2}+p}{24}$

Proof. (i) It is well-known that equation $1+b^{2}=0$ has solution when $p \equiv 1(\bmod 4)$.
(ii) The equation $b^{2}+2 \equiv 0\left(\bmod p^{2}\right)$ has a solution when $\left(\frac{-2}{p}\right)=1$, i.e., $p \equiv 1,3(\bmod 8)$.
(iii) $a^{6}=1$ has a solution when $p \equiv 1(\bmod 6)$.
(iv) The number of self-orthogonal codes of length 3 and type $1^{1} p^{0}$ is

$$
\begin{aligned}
M_{p^{2}}(1,0) & =\sigma_{p}(3,1)\left[\begin{array}{c}
3-2 \\
0
\end{array}\right]_{p} p^{1(6-3-1) / 2}=\sigma_{p}(3,1)\left[\begin{array}{l}
1 \\
0
\end{array}\right]_{p} p \\
& =\frac{p^{2}-1}{p-1} p=(p+1) p
\end{aligned}
$$

And by the mass formula (5), $\sum_{\mathcal{C}} \frac{2^{3} \times 3!}{|\operatorname{Aut}(\mathcal{C})|}=(p+1) p$. Therefore, $N_{4}=\frac{1}{24}\left\{p(p+1)-6 N_{1}-12 N_{2}-8 N_{3}\right\}$.

4.2. Self-orthogonal codes of type $1^{0} p^{1}$.

ThEOREM 4.3. Self-orthogonal code $\mathcal{C}_{a, b}^{0,1}$ is equivalent to one of the following classes of inequivalent codes:
(i) $\mathcal{C}_{a, b}^{0,1}$ with $a=b=0, \operatorname{Aut}\left(\mathcal{C}_{a, b}^{0,1}\right)=8 .\langle(23)\rangle$.
(ii) $\mathcal{C}_{a, b}^{0,1}$ with $b^{2}=1, a=0, \operatorname{Aut}\left(\mathcal{C}_{a, b}^{0,1}\right)=4 .\langle(13)\rangle$. Note that $\mathcal{C}_{0,1}^{0,1} \sim \mathcal{C}_{1,0}^{0,1}$.
(iii) $\mathcal{C}_{a, b}^{0,1}$ with $b^{2}=-1, a=0, \operatorname{Aut}\left(\mathcal{C}_{a, b}^{0,1}\right)=4 .\langle(13)\rangle$. Note that $\mathcal{C}_{0, b}^{0,1} \sim$ $\mathcal{C}_{b, 0}^{0,1}$.
(iv) $\mathcal{C}_{a, b}^{0,1}$ with $b^{4} \neq 1, a=0, \operatorname{Aut}\left(\mathcal{C}_{a, b}^{0,1}\right)=4 .(1)$. Note that $\mathcal{C}_{0, b}^{0,1} \sim \mathcal{C}_{b, 0}^{0,1}$.
(v) $\mathcal{C}_{a, b}^{0,1}$ with $a^{2}=1=b^{2}, \operatorname{Aut}\left(\mathcal{C}_{a, b}^{0,1}\right)=2 . S_{3}$.
(vi) $\mathcal{C}_{a, b}^{0,1}$ with $b^{2}=1, a^{2} \neq 0,1, \operatorname{Aut}\left(\mathcal{C}_{a, b}^{0,1}\right)=2 .\langle(13)\rangle$. Note that $\mathcal{C}_{a, 1}^{0,1} \sim$ $\mathcal{C}_{1, a}^{0,1} \sim \mathcal{C}_{a, b}^{0,1}$ when $a^{2}=b^{2} \neq 1$.
(vii) $\mathcal{C}_{a, b}^{0,1}$ with $a^{6}=1, a^{4} \neq 1$ and $a^{4}=b^{2}, \operatorname{Aut}\left(\mathcal{C}_{a, b}^{0,1}\right)=2 .\langle(123)\rangle$. When $b^{6}=1, b^{4} \neq 1, b^{4}=a^{2}, \mathcal{C}_{a, b}^{0,1}$ is equivalent to one of this class.
(viii) $\mathcal{C}_{a, b}^{0,1}$ with $a b \neq 0, a^{4} \neq 1, b^{4} \neq 1, a^{6} \neq 1, b^{6} \neq 1, a^{4} \neq b^{2}, b^{4} \neq a^{2}$ and $a^{4} \neq b^{4}, \operatorname{Aut}\left(\mathcal{C}_{a, b}^{0,1}\right)=2 .(1)$.

Proof. By Theorem 1.3.(v), the number of pure signs is obtained easily. By Theorem 1.1, it suffices to classify ($\left.\begin{array}{lll}1 & a & b\end{array}\right)$ over \mathbb{Z}_{p}. For $\gamma \sigma \in \mathbb{T}_{p}^{3}, k \in \mathbb{Z}_{p}$, if $\gamma \sigma \in \operatorname{Aut}\left(\mathcal{C}_{a, b}^{0,1}\right)$ then $(1, a, b) \gamma \sigma=k(1, a, b) \Longleftrightarrow$ $\left(1, a^{2}, b^{2}\right) \sigma=k^{2}\left(1, a, b^{2}\right)$.
(i) Assume $a=b=0$. It is trivial that $(23) \in p(\mathcal{C})$.

Suppose that $(12) \in p(\mathcal{C})$. Then there exists $\gamma \in \mathbb{D}_{p}^{3}$ and nonzero k such that $(1,0,0) \gamma(12)=k(1,0,0)$ which implies $k=0$, a contradiction. Hence $(12) \notin p(\mathcal{C})$. Similarly (13) $\notin p(\mathcal{C})$. Now, suppose
that $(123) \in p(\mathcal{C})$. Then there exists γ and nonzero k such that $(1,0,0) \gamma(123)=k(1,0,0)$. It implies $k=0$, which is a contradiction.
(ii) Let $b=1, a=0 .(1,0,1)(1,1,1)(13)=(1,1,1)$. Hence $(13) \in p(\mathcal{C})$. Suppose that $(12) \in p(\mathcal{C})$. Then there exist γ and nonzero k such that $(1,0,1) \gamma(12)=k(1,0,1)$ which implies $k=0$, a contradiction. Hence $(12) \notin p(\mathcal{C})$ and similarly $(23) \notin p(\mathcal{C})$.

Suppose that $(123) \in p(\mathcal{C})$. Then there exist $\gamma \in \mathbb{D}_{p}^{3}$ and nonzero k such that $(1,0,1) \gamma(123)=\left(0, \gamma_{3}, \gamma_{1}\right)=k(1,0,1)$. It implies $k=0$, a contradiction. Similarly $(1,0,1) \gamma(132)=k(1,0,1)$ leads to $k=0$, a contradiction.
(iii) Let $b=i, a=0$. Then $(1,0, i)(1,1,-1)(13)=(-i, 0,1)=-i(1,0, i)$. Thus (13) $\in p(\mathcal{C})$. Suppose (12) $\in p(\mathcal{C})$. Then there exist γ and nonzero k such that $(1,0, i) \gamma(12)=k(1,0, i)$ which implies $k=0$, a contradiction. Hence $(12) \notin p(\mathcal{C})$. Also, we can easily check as in (ii), (23), (123), (132) $\notin p(\mathcal{C})$.
(iv) By Theorem 1.3.(ii) and by condition $b^{4} \neq 1$, (12), (13), (23) \notin $p(\mathcal{C})$. Suppose that $(123) \in p(\mathcal{C})$. Then there exist γ and nonzero k such that $(1,0, b) \gamma(123)=k(1,0, b)$. It leads to $k=0$, a contradiction. Hence (123) $\notin p(\mathcal{C})$.
(v) By Theorem 1.3.(iii), it is obvious.
(vi) Let $b=1$. By Theorem 1.3. (ii), $(13) \in p(\mathcal{C})$. Suppose that $(12) \in$ $p(\mathcal{C})$. Then there exist γ and nonzero k such that $(1, a, 1) \gamma(12)=$ $k(1, a, 1)$. It leads to $a^{4}=1$ which is a contradiction to the condition $a^{2} \neq 1$. Hence (12) $\notin p(\mathcal{C})$. Similarly, $(23) \notin p(\mathcal{C})$.

Suppose that $(123) \in p(\mathcal{C})$. Then there exist γ and nonzero k such that $(1, a, 1) \gamma(123)=k(1, a, 1)$. It implies $a^{4}=1$, a contradiction.
(vii) By Theorem 1.3.(iv), $(123) \in p(\mathcal{C})$. To show $(13) \notin p(\mathcal{C})$, suppose that there exist γ and nonzero k such that $(1, a, b) \gamma(13)=k(1, a, b)$. However it leads to $b^{2}= \pm 1$ which is a contradiction. Thus (13) \notin $p(\mathcal{C})$.
(viii) By Theorem 1.3 and by the conditions $a^{4} \neq 1, b^{4} \neq 1, a^{4} \neq b^{4}$, $(12),(13),(23) \notin p(\mathcal{C})$. Suppose that $(123) \in p(\mathcal{C})$. Then there eixst γ and nonzero k such that $(1, a, b) \gamma(123)=k(1, a, b)$. It implies that $b^{2}=a^{4}$, which is a contradiction. Hence it is obvious that $p(\mathcal{C})=(1)$.

Theorem 4.4. Let $N_{1}, N_{2}, N_{3}, N_{4}, N_{5}, N_{6}, N_{7}, N_{8}$ be the number of class (i) - (viii) of codes $\mathcal{C}_{a, b}^{0,1}$ up to equivalence, respectively. $N_{i}^{\prime} s$ are determined as follows.

$p(\bmod 12)$	N_{1}	N_{2}	N_{3}	N_{4}	N_{5}	N_{6}	N_{7}	N_{8}
1	1	1	1	$\frac{p-5}{4}$	1	$\frac{p-3}{2}$	1	$\frac{(p-1)(p-7)}{24}$
5	1	1	1	$\frac{p-5}{4}$	1	$\frac{p-3}{2}$	0	$\frac{(p-3)(p-5)}{24}$
7	1	1	0	$\frac{p-3}{4}$	1	$\frac{p-3}{2}$	1	$\frac{(p-1)(p-7)}{24}$
11	1	1	0	$\frac{p-3}{4}$	1	$\frac{p-3}{2}$	0	$\frac{(p-3)(p-5)}{24}$

Note that we obtained directly all self-orthogonal codes over \mathbb{Z}_{9} at the next section.

Proof. Note that $\mathcal{C}_{0, b}^{0,1} \sim \mathcal{C}_{a}^{0,1} \oplus(0) . N_{1}, N_{2}, N_{3}$ and N_{4} are same as the results of Theorem 3.3. Existence of class (v) and (vii) and N_{5}, N_{7} are obvious. Now it suffices to find N_{6} and N_{8}.
(vi) $a \in \mathbb{Z}_{p}, a^{2} \neq 0,1$ imply that the number of choices of a is $p-3$. From the fact that $\mathcal{C}_{a, 1}^{0,1} \sim \mathcal{C}_{a,-1}^{0,1}$, we have $N_{6}=\frac{p-3}{2}$ for all primes p. (viii) The number of self-orthogonal codes of length 3 of type $1^{0} p^{1}$ is

$$
M_{p^{2}}(0,1)=\sigma_{p}(3,0)\left[\begin{array}{l}
3 \\
1
\end{array}\right]_{p}=\frac{p^{3}-1}{p-1}=p^{2}+p+1
$$

By the mass formula (5),

$$
\sum_{C} \frac{2^{3} \times 3!}{|\operatorname{Aut}(\mathcal{C})|}=p^{2}+p+1
$$

Hence,

$$
N_{8}=\frac{1}{24}\left\{p^{2}+p+1-3 N_{1}-6 N_{2}-6 N_{3}-12 N_{4}-4 N_{5}-12 N_{6}-8 N_{7}\right\}
$$

This formula gives N_{8}.
4.3. Self-orthogonal codes of type $1^{1} p^{1}$. Actually, self-orthogonal codes of type $1^{1} p^{1}$ are self-dual codes. All theorems in this section are from [3].

Theorem 4.5. The self-dual code over $\mathbb{Z}_{p^{2}}$ of length 3 with type $1^{1} p^{1}$ is equivalent to one of the following classes of inequivalent codes:
(i) Suppose $a=0$. Then, $\operatorname{Aut}\left(\mathcal{C}_{0, b}^{1,1}\right)=4 .\langle(13)\rangle$. This class exists if and only if when $p \equiv 1(\bmod 4)$.
(ii) Suppose $a^{6} \equiv 1$ and $a \neq \pm 1$. Then, $\operatorname{Aut}\left(\mathcal{C}_{a, b}^{1,1}\right)=2 .\langle(123)\rangle$. This class exists if and only if when $p \equiv 1(\bmod 3)$.
(iii) Suppose $a=1$. Then, $\operatorname{Aut}\left(\mathcal{C}_{1, b}^{1,1}\right)=2 .\langle(12)\rangle$. This class exists if and only if when $p \equiv 1,3(\bmod 8)$.
(iv) Suppose $a \neq 0, a^{3} \neq \pm 1(\bmod p), b^{3} \neq \pm 1(\bmod p)$ and $a^{2} \neq b^{2}$ $(\bmod p)$. Then, $\operatorname{Aut}\left(\mathcal{C}_{a, b}^{1,1}\right)=2 \cdot\langle(1)\rangle$. This class exists if and only if when $p \geq 23$.

Theorem 4.6. Let $N_{1}, N_{2}, N_{3}, N_{4}$ be the number of class (i), (ii), (iii), (iv) codes $\mathcal{C}_{a, b}^{1,1}$ over $\mathbb{Z}_{p^{2}}$ of length 3, respectively. These numbers are determined as follows.

$p(\bmod 24)$	N_{1}	N_{2}	N_{3}	N_{4}
1	1	1	1	$\frac{p-25}{24}$
5	1	0	0	$\frac{p-5}{24}$
7	0	1	0	$\frac{p-7}{24}$
11	0	0	1	$\frac{p-11}{24}$
13	1	1	0	$\frac{p-13}{24}$
17	1	0	1	$\frac{p-17}{24}$
19	0	1	1	$\frac{p-19}{24}$
23	0	0	0	$\frac{p+1}{24}$

4.4. Self-orthogonal codes of type $1^{0} p^{2}$.

Theorem 4.7. Self-orthogonal code $\mathcal{C}_{a, b}^{0,2}$ is equivalent to one of the following eight classes of inequivalent codes;
(i) $\mathcal{C}_{a, b}^{0,2}$ with $a=b=0, \operatorname{Aut}\left(\mathcal{C}_{a, b}^{0,2}\right)=8 . S_{2}$.
(ii) $\mathcal{C}_{a, b}^{0,2}$ with $a^{2}=1, b=0, \operatorname{Aut}\left(\mathcal{C}_{a, b}^{0,2}\right)=4 .\langle(13)\rangle$.
(iii) $\mathcal{C}_{a, b}^{0,2}$ with $a^{2}=-1, b=0, \operatorname{Aut}\left(\mathcal{C}_{a, b}^{0,2}\right)=4 .\langle(13)\rangle$.
(iv) $\mathcal{C}_{a, b}^{0,2}$ with $a^{4} \neq 1, a \neq 0, b=0, \operatorname{Aut}\left(\mathcal{C}_{a, b}^{0,2}\right)=4 .(1)$.
(v) $\mathcal{C}_{a, b}^{0,2}$ with $a^{2}=b^{2}=1, \operatorname{Aut}\left(\mathcal{C}_{a, b}^{0,2}\right)=2 . S_{3}$.
(vi) $\mathcal{C}_{a, b}^{0,2}$ with $a^{2}=1, b \neq 0,1, \operatorname{Aut}\left(\mathcal{C}_{a, b}^{0,2}\right)=2 \cdot\langle(13)\rangle$.
(vii) $\mathcal{C}_{a, b}^{0,2}$ with $a^{6}=1, a^{4}=b^{2} \neq 1, \operatorname{Aut}\left(\mathcal{C}_{a, b}^{0,2}\right)=2 .\langle(123)\rangle$.
(viii) $\mathcal{C}_{a, b}^{0,2}$ with $a, b \neq 0, a^{4} \neq 1, a^{2} \neq b^{2} \neq 1, a^{6} \neq 1, b^{2} \neq a^{4}, a^{2} \neq b^{4}$ and $a^{4} \neq b^{4}, \operatorname{Aut}\left(\mathcal{C}_{a, b}^{0,2}\right)=2 .(1)$.

Note that $\mathcal{C}_{a, b}^{0,2}(12)=\mathcal{C}_{b, a}^{0,2}$, i.e., $\mathcal{C}_{a, b}^{0,2} \sim \mathcal{C}_{b, a}^{0,2}$.
Proof. By Theorem 1.1, it suffices to classify $\left(\begin{array}{lll}1 & 0 & a \\ 0 & 1 & b\end{array}\right)$ over \mathbb{Z}_{p}. Let the generators of this code be $f_{1}=(1,0, a)$ and $f_{2}=(0,1, b)$. At first, we check the pure signs of this code.
If $\gamma=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \in s(\mathcal{C})$, then

$$
\left(\begin{array}{ccc}
1 & 0 & a \\
0 & 1 & b
\end{array}\right)\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\left(\begin{array}{ccc}
\gamma_{1} & 0 & \gamma_{3} a \\
0 & \gamma_{2} & \gamma_{3} b
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & a \\
0 & 1 & b
\end{array}\right) .
$$

Thus there exist solutions of the following equations;
$x\left(\gamma_{1}, 0, \gamma_{3} a\right)+y\left(0, \gamma_{2}, \gamma_{3} b\right)=(1,0, a)$, and $z\left(\gamma_{1}, 0, \gamma_{3} a\right)+w\left(0, \gamma_{2}, \gamma_{3} b\right)=$ $(0,1, b)$.
This leads to

$$
\left\{\begin{array}{l}
x=\gamma_{1}, y=0, \gamma_{1} \gamma_{3} a=a \\
z=0, w=\gamma_{2}, \gamma_{2} \gamma_{3} b=b .
\end{array}\right.
$$

Accordingly, if $a b \neq 0$, then $\gamma_{1} \gamma_{3}=1$ and $\gamma_{2} \gamma_{3}=1$, i.e., $s(\mathcal{C})=$ $\{ \pm(1,1,1)\}$ and $|s(\mathcal{C})|=2$. If $a b=0$, say $a \neq 0$ and $b=0$, then $\gamma_{2} \gamma_{3}=1$ and $\gamma_{1}= \pm$. i.e., $s(\mathcal{C})=\{ \pm(1,1,1), \pm(-1,1,1)\}$ and $|s(\mathcal{C})|=4$. Finally, if $a=b=0$ then $\gamma_{1} \gamma_{3}= \pm 1, \gamma_{2} \gamma_{3}= \pm 1$. Hence $|s(\mathcal{C})|=8$ and $s(\mathcal{C})=\{ \pm(1,1,1), \pm(1,1,-1), \pm(1,-1,1), \pm(1,-1,-1)\}$.

Now, we check the permutation parts. Note that $\sigma \in p(\mathcal{C})$ if and only if

$$
\left\{\begin{array}{l}
x f_{3} \gamma+y f_{4} \gamma=f_{1} \tag{6}\\
u f_{3} \gamma+v f_{4} \gamma=f_{2}
\end{array}\right.
$$

have solutions x, y, u, v and γ where $f_{3}=f_{1} \sigma$ and $f_{4}=f_{2} \sigma$. Also, note that $\mathcal{C}_{a, b}^{0,2} \sim \mathcal{C}_{-a, b}^{0,2} \sim \mathcal{C}_{a,-b}^{0,2} \sim \mathcal{C}_{-a,-b}^{0,2}$.
(i) It is easily deduced that $\mathcal{C}(12)(1,1,1)=\mathcal{C}$ from $a=b=0$. Thus $(12) \in p(\mathcal{C}) . \mathcal{C}(13)$ is generated by $f_{3}=f_{1}(13)=(0,0,1)$ and $f_{4}=f_{2}(13)=(0,1,0)$. However $u f_{3} \gamma+v f_{4} \gamma=(1,0,0)$ has no solution. Thus $(13) \notin p(\mathcal{C})$. Since $(123)=(12)(13),(123) \notin p(\mathcal{C})$. By the same argument, (132), (23) $\notin p(\mathcal{C})$.
(ii) Say $a=1$. It is also easily deduced that $\mathcal{C}(13)(1,1,1)=\mathcal{C}$. Thus $(13) \in p(\mathcal{C})$. Assume $(12) \in p(\mathcal{C})$. Then from the equations (6), we can see that $\left(v \gamma_{1}, u \gamma_{2}, u \gamma_{3}\right)=(0,1,0)$ have no solution. Thus
(12) $\notin p(\mathcal{C})$. By the same argument as in (i), (123), (132), (23) \notin $p(\mathcal{C})$.
(iii) Similarly to the case in (ii), we can easily see that $p(\mathcal{C})=\langle(13)\rangle$.
(iv) Suppose (12) $\in p(\mathcal{C})$. Then the equation $u f_{3} \gamma+v f_{4} \gamma=f_{2}$ must have a solution. But it is obvious that $\left(v \gamma_{1}, u \gamma_{2}, u a \gamma_{3}\right)=(0,1,0)$ has no solution. Thus (12) $\notin p(\mathcal{C})$.

Now, suppose (123) $\in p(\mathcal{C})$. Again, $u f_{3} \gamma+v f_{4} \gamma=f_{2}$ i.e., $\left(v \gamma_{1}, u a \gamma_{2}, u \gamma_{3}\right)=(0,1,0)$ has no solution. Thus (123) $\notin p(\mathcal{C})$. It is clear that $p(\mathcal{C})=(1)$ by the same argument.
(v) It suffices to show $(12),(123) \in p(\mathcal{C})$.

Let $\sigma=(12)$. From the equations (6),

$$
\left\{\begin{array}{l}
x(0,1, a) \gamma+y(1,0, b) \gamma=(1,0, a) \\
u(0,1, a) \gamma+v(1,0, b) \gamma=(0,1, b)
\end{array}\right.
$$

it is clear that $x=0, v=0, y=\gamma_{1}$ and $u=\gamma_{2}$. Thus these equations hav a solution if and only if $y b \gamma_{3}=a$ and $u a \gamma_{3}=b$, i.e., $a^{2}=b^{2}$. Thus $(12) \in p(\mathcal{C})$ if and only if $a^{2}=b^{2}$. Therefore $(12) \in p(\mathcal{C})$.

Without loss of generality, assume $a=b=1$. Now, let $\sigma=$ (123). It is also clear that the equations,

$$
\left\{\begin{array}{l}
x(0,1,1) \gamma+y(1,1,0) \gamma=(1,0,1) \\
u(0,1,1) \gamma+v(1,1,0) \gamma=(0,1,1)
\end{array}\right.
$$

has a solution $x=-1, y=1, u=-1, v=0, \gamma=(1,-1,-1)$. Therefore $(123) \in p(\mathcal{C})$.
(vi) By the argument in (v), (12) $\notin p(\mathcal{C})$, since $a^{2} \neq b^{2}$.

Let $a=1$ and $\sigma=(13)$. Then it is clear that the equations

$$
\left\{\begin{array}{l}
x(1,0,1) \gamma+y(b, 1,0) \gamma=(1,0,1) \\
u(1,0,1) \gamma+v(b, 1,0) \gamma=(0,1, b)
\end{array}\right.
$$

has a solution $x=1, y=0, u=b, v=-1$ and $\gamma=(1,-1,1)$. Thus $(13) \in p(\mathcal{C})$ and $(123) \notin p(\mathcal{C})$ since $(12) \notin p(\mathcal{C})$. Consequently, $p(\mathcal{C})=\langle(13)\rangle$.

Note that if $(13) \in p(\mathcal{C})$, then $a^{4}=1$. Because the first part of equations (6), $x(a, 0,1) \gamma+y(b, 1,0) \gamma=(1,0, a)$ tells that $y=0$ and $x a \gamma_{1}=1, x \gamma_{3}=a$. Thus $x^{2} a^{2}=1$ and $x^{2}=a^{2}$ implies that $a^{4}=1$.
(vii) For neither $a^{2} \neq b^{2}$ nor $a^{4} \neq 1$, we can deduce that (12), (13) \notin $p(\mathcal{C})$.

Without loss of generality, assume $a^{3}=1$ and $b=a^{2}$. Now, let $\sigma=(123)$. It is also clear that the equations,

$$
\left\{\begin{array}{l}
x(0, a, 1) \gamma+y\left(1, a^{2}, 0\right) \gamma=(1,0, a) \\
u(0, a, 1) \gamma+v\left(1, a^{2}, 0\right) \gamma=\left(0,1, a^{2}\right)
\end{array}\right.
$$

has a solution $x=-a, y=1, u=-a^{2}, v=0, \gamma=(1,-1,-1)$. Therefore $(123) \in p(\mathcal{C})$.
(viii) By the condition $a^{4} \neq b^{4},(12) \notin p(\mathcal{C})$ and by the condition $a^{4} \neq 1$, $(13) \notin p(\mathcal{C})$.

Assume that $(123) \in p(\mathcal{C})$. The first part of equations (6), $x(0, a, 1) \gamma+y(1, b, 0) \gamma=(1,0, a)$ tells that $x \gamma_{3}=a, y=\gamma_{1}$ and $x a \gamma_{2}+y b \gamma_{2}=0$. Thus $x^{2}=a^{2}, y^{2}=1$ and $x^{2} a^{2}=b^{2}$. Consequently $b^{2}=a^{4}$. The second part of equations (6), $u(0, a, 1) \gamma+v(1, b, 0) \gamma=$ $(0,1, b)$ tells that $v=0$ and $u a \gamma_{2}=1, u \gamma_{3}=b$. Thus $u^{2} a^{2}=1$ and $u^{2}=b^{2}$. Therefore $a^{2} b^{2}=1 . a^{2} b^{2}=1$ and $b^{2}=a^{4}$ implies that $a^{6}=1$ which is contradict to the condition. Thus (123) $\notin p(\mathcal{C})$.

Theorem 4.8. Let $N_{1}, N_{2}, N_{3}, N_{4}, N_{5}, N_{6}, N_{7}$, and N_{8} be the number of class (i) - (viii) of codes $\mathcal{C}_{a, b}^{0,2}$ up to equivalence, respectively. $N_{i}^{\prime} s$ are determined as follows.

$p(12)$	N_{1}	N_{2}	N_{3}	N_{4}	N_{5}	N_{6}	N_{7}	N_{8}
1	1	1	1	$\frac{p-5}{4}$	1	$\frac{p-3}{2}$	1	$\frac{(p-1)(p-7)}{24}$
5	1	1	1	$\frac{p-5}{4}$	1	$\frac{p-3}{2}$	0	$\frac{(p-2)(p-5)}{24}$
7	1	1	0	$\frac{p-3}{4}$	1	$\frac{p-3}{2}$	1	$\frac{(p-1)(p-7)}{24}$
11	1	1	0	$\frac{p-3}{4}$	1	$\frac{p-3}{2}$	0	$\frac{(p-3)(p-5)}{24}$

Proof. $\mathcal{C}_{a, 0}^{0,2} \sim \mathcal{C}_{a}^{0,1} \oplus(p)$. Thus N_{1}, N_{2}, N_{3} and N_{4} are exactly same as Theorem 3.3. N_{5}, N_{6} and N_{7} are obtained by the same argument as in the Theorem 4.4.

The number of self-orthogonal codes of length 3 of type $1^{0} p^{2}$ is

$$
M_{p^{2}}(0,2)=\sigma_{p}(3,0)\left[\begin{array}{l}
3 \\
2
\end{array}\right]_{p}=\frac{\left(p^{3}-1\right)\left(p^{3}-p\right)}{\left(p^{2}-1\right)\left(p^{2}-p\right)}=p^{2}+p+1 .
$$

By the mass formula (5),

$$
\sum_{C} \frac{2^{3} \times 3!}{|\operatorname{Aut}(\mathcal{C})|}=p^{2}+p+1
$$

Hence,

$$
N_{8}=\frac{1}{24}\left\{p^{2}+p+1-3 N_{1}-6 N_{2}-6 N_{3}-12 N_{4}-4 N_{5}-12 N_{6}-8 N_{7}\right\}
$$

5. Examples

Self-orthogonal codes of length 3 over $\mathbb{Z}_{p^{2}}$ for all primes $p \leq 13$ are shown in the following table.

References

[1] R.A.L. Betty and A. Munemasa, Mass formula for self-orthogonal codes over $\mathbb{Z}_{p^{2}}$, Journal of combinatorics, information \& system sciences 34 (2009), 51-66.
[2] W. Cary Huffman and Vera Pless, Fundamentals of error correcting codes, Cambridge University Pless, New York, 2003.
[3] W. Choi and Y.H. Park, Self-dual codes over $\mathbb{Z}_{p^{2}}$ of length 4, preprint.
[4] J.H. Conway and N.J.A. Sloane, Self-dual codes over the integers modulo 4, J. Comin. Theory Ser. A. 62 (1993), 30-45.
[5] S.T. Dougherty, T.A. Gulliver, Y.H. Park, J.N.C. Wong, Optimal linear codes oner \mathbb{Z}_{m}, J. Korean. Math. Soc. 44 (2007), 1136-1162.
[6] Y. Lee and J. Kim, An efficient construction of self-dual codes, CoRR, 2012.
[7] K. Nagata, F. Nemenzo and H. Wada, Constructive algorithm of self-dual errorcorrecting codes, 11th International Workshop on Algebraic and Combinatorial Coding Theory, 215-220, 2008.
[8] Y.H. Park, The classification of self-dual modular codes, Finite Fields and Their Applications 17 (5) (2011), 442-460.
[9] V.S. Pless, The number of isotropic subspace in a finite geometry, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei 39 (1965), 418-421.
[10] V.S. Pless, On the uniqueness of the Golay codes, J. Combin. Theory 5 (1968), 215-228.

Whan-hyuk Choi
Department of Mathematics
Kangwon National University
Chuncheon 200-701, Korea
E-mail: whanhyuk@gmail.com
Kwang Ho Kim
Department of Mathematics
Kangwon National University
Chuncheon 200-701, Korea
E-mail: prime229@gmail.com

Sook Young Park
Department of Mathematics
Kangwon National University
Chuncheon 200-701, Korea
E-mail: erestugypsy@gmail.com

[^0]: Received December 1, 2014. Revised December 10, 2014. Accepted December 10, 2014.

 2010 Mathematics Subject Classification: 94B05.
 Key words and phrases: codes over rings, self-orthogonal codes, classification.
 *Corresponding author.
 (c) The Kangwon-Kyungki Mathematical Society, 2014.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

