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TRAVELLING WAVE SOLUTIONS FOR SOME

NONLINEAR EVOLUTION EQUATIONS

Hyunsoo Kim and Jin Hyuk Choi∗

Abstract. Nonlinear partial differential equations are more suit-
able to model many physical phenomena in science and engineering.
In this paper, we consider three nonlinear partial differential equa-
tions such as Novikov equation, an equation for surface water waves
and the Geng-Xue coupled equation which serves as a model for the
unidirectional propagation of the shallow water waves over a flat bot-
tom. The main objective in this paper is to apply the generalized
Riccati equation mapping method for obtaining more exact trav-
eling wave solutions of Novikov equation, an equation for surface
water waves and the Geng-Xue coupled equation. More precisely,
the obtained solutions are expressed in terms of the hyperbolic, the
trigonometric and the rational functional form. Solutions obtained
are potentially significant for the explanation of better insight of
physical aspects of the considered nonlinear physical models.

1. Introduction

Nonlinear partial differential equations (PDEs) are widely used as
model to describe complex physical phenomena in several branches of
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science and engineering such as solid state physics, plasma wave, ther-
modynamics, soil mechanics, civil engineering, population ecology, in-
fectious disease epidemiology, neural networks and so on. More pre-
cisely, it is complicated to solve partial differential equations and even
if an exact solution is obtainable, the required calculations may be too
complicated in derivation or it may be difficult to interpret the out-
come. Therefore, for the past few decades, much attention has been
paid for finding exact solutions of nonlinear partial differential equa-
tions [2, 3, 6, 8]. With the use of these solutions, one may give better
insight into the physical aspects of the particular nonlinear models. In
this connection, a considerable number of analytic methods have been
successfully developed and applied for finding exact traveling wave so-
lutions to nonlinear evolution equations such as extended Jacobi elliptic
function expansion method [1, 5], (G′/G)-expansion method [9, 10, 15],
Adomian decomposition method [4], modified F-expansion method [11],
Kudryashov Method [16] and so on. However, there is no unified method
in the literature that can be used to find exact solution to all kinds of
nonlinear evolution equations.

Consider the Novikov equation in the following form [19];

uxxt − ut = 4u2ux − 3uuxuxx − u2uxxx(1)

which is an integrable and can be regarded as a generalization for the
Camassa-Holm type equation with cubic nonlinearity. It is a model for
the unidirectional propagation of the shallow water waves over a flat
bottom and is attracted much attention due to its interesting properties
such as complete integrability, existence of peaked solitons and multi-
peakons. Next, we consider the Geng-Xue system [20];{

uxxt − ut = (ux − uxxx)uv + 3 (u− uxx) vux,
vxxt − vt = (vx − vxxx)uv + 3 (v − vxx)uvx.

(2)

It should be noted that u and v play the same role and can be inter-
changed without changing the system. Further, we focus on an equation
for surface water waves of moderate amplitude in the shallow water
regime [13];

ut + ux + 6uux − 6u2ux + 12u3ux + uxxx − uxxt
+14uuxxx + 28uxuxx = 0(3)

which arises as an approximation to the Euler equations and modeling
the unidirectional propagation of surface water waves.
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One of most effectively straightforward method to construct exact so-
lution of nonlinear partial differential equations is the generalized Riccati
equation mapping method [12, 14]. This method is a very powerful one
for finding exact solutions of nonlinear partial differential equations. The
key idea of this method is to take full advantages of a generalized Ric-
cati equation involving a parameter and use its solutions to replace the
tanh function which is similar to the improved Riccati equation mapping
method [17, 18]. Recently, Naher and Abdullah [7] obtained traveling
wave solutions for the (2+1)-dimensional modified Zakharov-Kuznetsov
equation by applying the generalized Riccati equation mapping method.
In this paper, we implement the generalized Riccati equation mapping
method [17,18] to find the exact traveling wave solutions such as hyper-
bolic and trigonometric function solutions to the models Eq.(1), Eq.(2)
and Eq.(3). In particular, hyperbolic and trigonometric function solu-
tions of the considered models are obtained.

2. Summary of the Riccati equation mapping method

The generalized Riccati equation mapping method is a direct tech-
nique to find more and new traveling wave solutions for nonlinear partial
differential equations. Now, let us present the algorithm of the gener-
alized Riccati equation mapping method for finding exact solutions of
nonlinear partial differential equation (PDE) [17,18]. The main idea be-
hind this method is to use the solution of the generalized Riccati equa-
tion mapping method to replace the tanh function in the tanh method.
Consider a nonlinear PDE in the following form:

P (u, v, ut, vt, ux, vx, uxx, vxx, ...) = 0.(4)

Now, the first step is to unite the independent variables x and t into one
particular variable through the wave transformation

ξ = l(x− ωt), u(x, t) = u(ξ).(5)

By using the wave transformation (5), nonlinear PDE (4) can be reduced
to the following ordinary differential equation (ODE)

Q(u, u′, u′′, u′′′, ...) = 0.(6)
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Suppose that the equation (6) has the following solution

u(x, t) = u(ξ) =
m∑

i=−m

aiψ
i,(7)

where a−m and am are constants to be determined later such that a−m 6=
0 or am 6= 0. Now, we introduce a new variable ψ = ψ(ξ) which is a
solution of the generalized Riccati equation

ψ′ = r + pψ + qψ2,(8)

where r, p and q are constants and q 6= 0. The parameter m is determined
by balancing the linear terms of highest order with the nonlinear ones
of highest order. Normally m is a positive integer, so that an analytical
solution in closed form may be obtained. Substituting Eq.(8) into Eq.(7)
and comparing the coefficients of each power of ψ in both sides, we get
an over-determined system of nonlinear algebraic equations with respect
to r, a−m, a−m+1, · · · , am. Finally, we obtain over-determined systems of
equations. Solving this resulting system, we get values for the unknown
parameters. Further, it is well known that Eq.(8) has many families
of solutions which are provided in [17, 18]. Finally, we substitute these
values together with the well known solutions of Eq.(8) into Eq.(7), we
can construct explicit traveling wave solutions of Eq.(4).

3. Exact solutions of models

In this section, we obtain the exact solutions for the Novikov equation,
Geng-Xue coupled equations and an equation for surface water waves by
using the generalized Riccati equation mapping method. In order to seek
traveling wave solutions to the Novikov equation [19], by applying the
wave transformation defined as in Eq.(5) into the Eq.(1), we can obtain
an ordinary differential equation in the form

l2ωu′′′ − ωu′ + 4u2u′ − 3l2uu′u′′ − l2u2u′′′ = 0.(9)

Now, we employ the improved Riccati equation mapping method, to
solve the ODE (9) and as a result we obtain the exact solutions of
Novikov equation Eq.(1). To determine the parameter m, we balance
the linear terms of highest order in OED (9) with the highest order non-
linear terms. The balancing procedure yields m = 1, so the solution of
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the OED (9) is of the form

u(η) =
a−1

ψ(ξ)
+ a0 + a1ψ(ξ).(10)

By substituting Eq.(10) into (9) and making use of Eq.(8), we obtain the
system of algebraic equations for a−1, a0, a1, ω, r, p, q and l by equating all
coefficients of the functions ψ(ξ) to zero. Solving the system of algebraic
equations with the aid of MAPLE, we can obtain the following set of
solutions;{

l = ±1
p
, r = 0, p = p, q = q, ω = ω, a−1 = pa0

q
, a0 = a0, a1 = 0.(11)

Substituting Eq.(11) into Eq.(10), the traveling wave solution of Eq.(1)
can be obtained. For the coefficient set Eq.(11), the value ∆ = p2 − 4qr
in the generalized Riccati equation mapping method is positive because
p2 − 4qr = p2 > 0 for all real number q and r = 0. Therefore, we can
get solutions based on Type.1 which is provided in [18] and also when
r = 0 and qp 6= 0, we can obtain the solutions from Type.3 as in [18].
According to the solutions of Type.1 as in [18], we obtain the following
hyperbolic wave solutions for Eq.(1):

u1(x, t) = −2pa0

[
p+ |p|tanh

(
±|p|

2p
(x− ωt)

)]−1

+ a0,

u2(x, t) = −2pa0

[
p+ |p|coth

(
±|p|

2p
(x− ωt)

)]−1

+ a0,

u3(x, t) = −2pa0

[
p+ |p|

(
tanh

(
±|p|
p

(x− ωt)
)

± isech

(
±|p|
p

(x− ωt)
))]−1

+ a0,

u4(x, t) = −2pa0

[
p+ |p|

(
coth

(
±|p|
p

(x− ωt)
)

± csch

(
±|p|
p

(x− ωt)
))]−1

+ a0,

u5(x, t) = −4pa0

[
2p+ |p|

(
tanh

(
±|p|

4p
(x− ωt)

)
± coth

(
±|p|

4p
(x− ωt)

))]−1

+ a0,
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u6(x, t) = 2pa0

−p+

√
p2(A2 +B2)− A|p|cosh

(
± |p|

p
(x− ωt)

)
Asinh

(
± |p|

p
(x− ωt)

)
+B

−1

+ a0,

u7(x, t) = 2pa0

−p−
√
p2(B2 − A2) + A|p|cosh

(
± |p|

p
(x− ωt)

)
Asinh

(
± |p|

p
(x− ωt)

)
+B

−1

+ a0,

where A and B are two non-zero real constants satisfying B2 − A2 > 0.
Further, we obtain the following set of exact solutions for Eq.(1);

u25(x, t) = −a0

d
(d+ cosh (±(x− ωt))− sinh (±(x− ωt))) ,

u26(x, t) = −a0 (d+ cosh (±(x− ωt)) + sinh (±(x− ωt)))
cosh (±(x− ωt)) + sinh (±(x− ωt))

,(12)

where d is an arbitrary constant.
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Figure 1. The first figure represents three dimensional
plot of the solution u5 and the second figure represents
two dimensional plot for the Novikov equation (1) under
the given parameters ω = 3.5, a0 = −2, p = −10 when
t = 0, 1, 2.

Next, we obtain wave solutions for the Geng-Xue coupled equations
Eq.(2). By applying the wave transformation defined as in Eq.(5), the
Eq.(2) becomes a system of ordinary differential equation which can be
written as{

l2ωu′′′ − ωu′ + (u′ − l2u′′′)uv + 3(u− l2u′′)vu′ = 0,

l2ωv′′′ − ωv′ + (v′ − l2v′′′)uv + 3(v − l2v′′)uv′ = 0.
(13)
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Now, we employ the improved Riccati equation mapping method, to
solve the ODE Eq.(13) and as a result we can obtain exact traveling
wave solutions of Geng-Xue system Eq.(2). To determine parameters m
and n of u and v, we balance the linear terms of highest order in Eq.(13)
with the highest order nonlinear terms. The balancing procedure yields
m + n = 2 ⇒ m = 1, n = 1, so the solution of the ordinary differential
equation Eq.(13) can be written in form{

u(η) = a−1

ψ(ξ)
+ a0 + a1ψ(ξ),

v(η) = b−1

ψ(ξ)
+ b0 + b1ψ(ξ).

(14)

By substituting Eq.(14) into (13) and making use of Eq.(8), we obtain
the system of algebraic equations for a−1, a0, a1, b−1, b0, b1, ω, r, p, q and
l by equating all coefficients of the functions ψ(ξ) to zero. Solving the
system of algebraic equations with the aid of MAPLE, two possible sets
of solutions obtained;
Case 1. {

l = l , r = 1
2l2q

, p = 0, q = q, ω = ω, a−1 = ω
2b1
,

a0 = 0, a1 = 0, b−1 = b−1, b0 = 0, b1 = b1.
(15)

Case 2. {
l = l , r = 1

2l2q
, p = 0, q = q, ω = ω, a−1 = a−1,

a0 = 0, a1 = a1, b−1 = ω
2a1
, b0 = 0, b1 = 0.

(16)

For Case 1 and Case 2, the value ∆ = p2 − 4qr in the generalized
Riccati equation mapping method is negative because p2−4qr = − 2

l2
< 0

for all real number l . Therefore, we have to apply solutions of each case
in Type 2 of [18] and write the family of solutions for the two cases of
coefficient sets.

According to the solution Type.2 as in [18], we obtain the following
trigonometric solutions for Eq.(2) with ξ = l(x− ω)t:

u13(x, t) = ωq
b1

√
l2

2
cot
(

1√
2l2
ξ
)
,

v13(x, t) = b−1q
√

2l2cot
(

1√
2l2
ξ
)

+ b1
q
√

2l2
tan
(

1√
2l2
ξ
)

;

u14(x, t) = −ωq
b1

√
l2

2
tan
(

1√
2l2
ξ
)
,

v14(x, t) = −b−1q
√

2l2tan
(

1√
2l2
ξ
)

+ b1
q
√

2l2
cot
(

1√
2l2
ξ
)

;
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u15(x, t) = ωq
b1

√
l2

2

[
tan
(√

2
l2
ξ
)
± sec

(√
2
l2
ξ
)]−1

,

v15(x, t) = b−1q
√

2l2
[
tan
(√

2
l2
ξ
)
± sec

(√
2
l2
ξ
)]−1

+ b1
q
√

2l2

[
tan
(√

2
l2
ξ
)
± sec

(√
2
l2
ξ
)]

;

u16(x, t) = −ωq
b1

√
l2

2

[
cot
(√

2
l2
ξ
)
± csc

(√
2
l2
ξ
)]−1

,

v16(x, t) = −b−1q
√

2l2
[
cot
(√

2
l2
ξ
)
± csc

(√
2
l2
ξ
)]−1

+ b1
q
√

2l2

[
cot
(√

2
l2
ξ
)
± csc

(√
2
l2
ξ
)]

;

u17(x, t) = 2ωq
b1

√
l2

2

[
tan
(

1√
8l2
ξ
)
− cot

(
1√
8l2
ξ
)]−1

,

v17(x, t) = 4b−1q
√

l2

2

[
tan
(

1√
8l2
ξ
)
− cot

(
1√
8l2
ξ
)]−1

+ b1
4q

√
l2

2

[
tan
(

1√
8l2
ξ
)
− cot

(
1√
8l2
ξ
)]

;

u18(x, t) = ωq
b1

Asin
(√

2/l2ξ
)

+B

±
√

2(A2−B2)/l2−A
√

2/l2cos
(√

2/l2ξ
) ,

v18(x, t) = 2b−1q
Asin

(√
2/l2ξ

)
+B

±
√

2(A2−B2)/l2−A
√

2/l2cos
(√

2/l2ξ
)

+ b1
2q

±
√

2(A2−B2)/l2−A
√

2/l2cos
(√

2/l2ξ
)

Asin
(√

2/l2ξ
)

+B
;

u19(x, t) = −ωq
b1

Asin
(√

2/l2ξ
)

+B

±
√

2(A2−B2)/l2+A
√

2/l2cos
(√

2/l2ξ
) ,

v19(x, t) = −2b−1q
Asin

(√
2/l2ξ

)
+B

±
√

2(A2−B2)/l2+A
√

2/l2cos
(√

2/l2ξ
)

+ b1
2q

±
√

2(A2−B2)/l2+A
√

2/l2cos
(√

2/l2ξ
)

Asin
(√

2/l2ξ
)

+B
,

where A and B are two non-zero real constants satisfying A2 −B2 > 0.

u20(x, t) = ω
4b1r

√
2
l2

tan
(

1√
2l2
ξ
)
,

v20(x, t) = b−1

2r

√
2
l2

tan
(

1√
2l2
ξ
)

+ b1r
√

2l2cot
(

1√
2l2
ξ
)

;

u21(x, t) = ω
4b1r

√
2
l2

cot
(

1√
2l2
ξ
)
,

v21(x, t) = b−1

2r

√
2
l2

cot
(

1√
2l2
ξ
)

+ b1r
√

2l2tan
(

1√
2l2
ξ
)

;
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u22(x, t) = ω

2b1r
√

2l2

sin
(√

2/l2ξ
)
±1

cos
(√

2/l2ξ
) ,

v22(x, t) = b−1

r
√

2l2

sin
(√

2/l2ξ
)
±1

cos
(√

2/l2ξ
) + b1r

√
2l2

cos
(√

2/l2ξ
)

sin
(√

2/l2ξ
)
±1

;

u23(x, t) = ω

2b1r
√

2l2

cos
(√

2/l2ξ
)
±1

sin
(√

2/l2ξ
) ,

v23(x, t) = b−1

r
√

2l2

cos
(√

2/l2ξ
)
±1

sin
(√

2/l2ξ
) + b1r

√
2l2

sin
(√

2/l2ξ
)

cos
(√

2/l2ξ
)
±1

;

u24(x, t) = ω

2b1r
√

2l2

cos
(√

2/l2ξ
)

sin
(√

1/2l2ξ
) ,

v24(x, t) = b−1

r
√

2l2

cos
(√

2/l2ξ
)

sin
(√

1/2l2ξ
) + b1r

√
2l2

sin
(√

1/2l2ξ
)

cos
(√

2/l2ξ
) .

Further, we obtain the following exact traveling wave solutions for
Eq.(2) with ξ = l(x− ω)t:

u13(x, t) = a−1q
√

2l2cot
(

1√
2l2
ξ
)

+ a1

q
√

2l2
tan
(

1√
2l2
ξ
)
,

v13(x, t) = ωq
a1

√
l2

2
cot
(

1√
2l2
ξ
)

;

u14(x, t) = −a−1q
√

2l2tan
(

1√
2l2
ξ
)

+ a1

q
√

2l2
cot
(

1√
2l2
ξ
)
,

v14(x, t) = −ωq
a1

√
l2

2
tan
(

1√
2l2
ξ
)

;

u15(x, t) = a−1q
√

2l2
[
tan
(√

2
l2
ξ
)
± sec

(√
2
l2
ξ
)]−1

+ a1

q
√

2l2

[
tan
(√

2
l2
ξ
)
± sec

(√
2
l2
ξ
)]
,

v15(x, t) = ωq
a1

√
l2

2

[
tan
(√

2
l2
ξ
)
± sec

(√
2
l2
ξ
)]−1

;

u16(x, t) = −a−1q
√

2l2
[
cot
(√

2
l2
ξ
)
± csc

(√
2
l2
ξ
)]−1

+ a1

q
√

2l2

[
cot
(√

2
l2
ξ
)
± csc

(√
2
l2
ξ
)]
,

v16(x, t) = −ωq
a1

√
l2

2

[
cot
(√

2
l2
ξ
)
± csc

(√
2
l2
ξ
)]−1

;

u17(x, t) = 4a−1q
√

l2

2

[
tan
(

1√
8l2
ξ
)
− cot

(
1√
8l2
ξ
)]−1

+a1

4q

√
l2

2

[
tan
(

1√
8l2
ξ
)
− cot

(
1√
8l2
ξ
)]
,

v17(x, t) = 2ωq
a1

√
l2

2

[
tan
(

1√
8l2
ξ
)
− cot

(
1√
8l2
ξ
)]−1

;
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u18(x, t) = 2a−1q
Asin

(√
2/l2ξ

)
+B

±
√

2(A2−B2)/l2−A
√

2/l2cos
(√

2/l2ξ
)

+a1

2q

±
√

2(A2−B2)/l2−A
√

2/l2cos
(√

2/l2ξ
)

Asin
(√

2/l2ξ
)

+B
,

v18(x, t) = ωq
a1

Asin
(√

2/l2ξ
)

+B

±
√

2(A2−B2)/l2−A
√

2/l2cos
(√

2/l2ξ
) ;

u19(x, t) = −2a−1q
Asin

(√
2/l2ξ

)
+B

±
√

2(A2−B2)/l2+A
√

2/l2cos
(√

2/l2ξ
)

+a1

2q

±
√

2(A2−B2)/l2+A
√

2/l2cos
(√

2/l2ξ
)

Asin
(√

2/l2ξ
)

+B
,

v19(x, t) = −ωq
a1

Asin
(√

2/l2ξ
)

+B

±
√

2(A2−B2)/l2+A
√

2/l2cos
(√

2/l2ξ
) ,

where A and B are two non-zero real constants satisfying A2 −B2 > 0.

u20(x, t) = a−1

2r

√
2
l2

tan
(

1√
2l2
ξ
)

+ a1r
√

2l2cot
(

1√
2l2
ξ
)
,

v20(x, t) = ω
4a1r

√
2
l2

tan
(

1√
2l2
ξ
)

;

u21(x, t) = a−1

2r

√
2
l2

cot
(

1√
2l2
ξ
)

+ a1r
√

2l2tan
(

1√
2l2
ξ
)
,

v21(x, t) = ω
4a1r

√
2
l2

cot
(

1√
2l2
ξ
)

;

u22(x, t) = a−1

r
√

2l2

sin
(√

2/l2ξ
)
±1

cos
(√

2/l2ξ
) + a1r

√
2l2

cos
(√

2/l2ξ
)

sin
(√

2/l2ξ
)
±1
,

v22(x, t) = ω

2a1r
√

2l2

sin
(√

2/l2ξ
)
±1

cos
(√

2/l2ξ
) ;

u23(x, t) = a−1

r
√

2l2

cos
(√

2/l2ξ
)
±1

sin
(√

2/l2ξ
) + a1r

√
2l2

sin
(√

2/l2ξ
)

cos
(√

2/l2ξ
)
±1
,

v23(x, t) = ω

2a1r
√

2l2

cos
(√

2/l2ξ
)
±1

sin
(√

2/l2ξ
) ;

u24(x, t) = a−1

r
√

2l2

cos
(√

2/l2ξ
)

sin
(√

1/2l2ξ
) + a1r

√
2l2

sin
(√

1/2l2ξ
)

cos
(√

2/l2ξ
) ,

v24(x, t) = ω

2a1r
√

2l2

cos
(√

2/l2ξ
)

sin
(√

1/2l2ξ
) .

In order to obtain exact traveling wave solutions to the surface wave
Eq.(3), by applying the wave transformation defined as in Eq.(5) into the
Eq.(3), we can obtain an ordinary differential equation in the following
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Figure 2. Figures represent the solutions u19 and v19

for the Geng-Xue coupled equations (2) under the given
parameters ω = 3.5, l = 0.1, q = −1, b1 = 1, A = −10, B =
1.
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Figure 3. Figures represent the solutions u19 for the
Geng-Xue coupled equations (2) under t = 0, 0.5, 1.

form

l(1− ω)u′ + 6l(u− u2 + 2u3)u′ + l(1 + ω)u′′′

+14l(uu′′′ + 2u′u′′) = 0.(17)

Now, we employ the improved Riccati equation mapping method, to
solve the ODE Eq.(17) and as a result we can obtain exact traveling wave
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Figure 4. Figures represent the solutions v19 for the
Geng-Xue coupled equations (2) under t = 0, 0.5, 1.

solutions of the surface waves equation Eq.(3). To determine parameters
m of u, we balance the linear terms of highest order in Eq.(17) with
the highest order nonlinear terms. The balancing procedure provides
3m + 1 = m + 3 ⇒ m = 1, so the solution of the ordinary differential
equation Eq.(17) can be written in form

u(η) =
a−1

ψ(ξ)
+ a0 + a1ψ(ξ).(18)

By substituting Eq.(18) into (17) and making use of Eq.(8), we obtain
the system of algebraic equations for a−1, a0, a1, ω, r, p, q and l by equat-
ing all coefficients of the functions ψ(ξ) to zero. Solving the system of
algebraic equations with the aid of MAPLE, two possible sets of solutions
obtained;
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Case 1.

l = ±
√

3228.0345
2849.8270p2−51399.3079qr

, r = r, p = p, q = q,

ω = −3.333
(

263− 52.7546p2

p4−4qr
+ 211.0183qr

p2−4qr

)
×
(
−52.7546p2

p4−4qr
+ 211.0183qr

p2−4qr
− 395

)−1

,

a−1 = 0,

a0 = 0.5
(
−17.5849p2+70.3394qr

p2−4qr
+ 212.5123p

(−0.0988p2+0.3950qr)1/2

± −2.8031p3+11.2123pqr
(−0.0988p2+0.3950qr)3/2 − 210

)
×
(
−52.7546p2

p2−4qr
+ 211.0183qr

p2−4qr
− 395

)−1

,

a1 = ∓ 5.3801q√
−0.0988p2+0.3950qr

.

(19)

Case 2.

l = ±
√

3228.0345
2849.8270p2−51399.3079qr

, r = r, p = p, q = q,

ω = −3.333
(

263− 52.7546p2

p4−4qr
+ 211.0183qr

p2−4qr

)
×
(
−52.7546p2

p4−4qr
+ 211.0183qr

p2−4qr
− 395

)−1

,

a−1 = ∓ 5.3801q√
−0.0988p2+0.3950qr

,

a0 = 0.5
(
−17.5849p2+70.3394qr

p2−4qr
+ 212.5123p

(−0.0988p2+0.3950qr)1/2

± −2.8031p3+11.2123pqr
(−0.0988p2+0.3950qr)3/2 − 210

)
×
(
−52.7546p2

p2−4qr
+ 211.0183qr

p2−4qr
− 395

)−1

, a1 = 0.

(20)

For Case 1, we obtained many solutions of Eq.(3) as follows: When
∆ = p2 − 4qr > 0 and pq 6= 0 or qr 6= 0, we have the following exact
traveling wave solutions for Eq.(3) with ξ = l(x− ω)t:

u1(x, t) = ± 5.3801

2
√
−0.0988p2+0.3950qr

[
p+
√

∆tanh(
√

∆
2
ξ)
]

+ a0,

u2(x, t) = ± 5.3801

2
√
−0.0988p2+0.3950qr

[
p+
√

∆coth(
√

∆
2
ξ)
]

+ a0,

u3(x, t) = ± 5.3801

2
√
−0.0988p2+0.3950qr

[
p+
√

∆
(

tanh(
√

∆ξ)± isech(
√

∆ξ)
)]

+a0,

u4(x, t) = ± 5.3801

2
√
−0.0988p2+0.3950qr

[
p+
√

∆
(

coth(
√

∆ξ)± csch(
√

∆ξ)
)]

+a0,
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u5(x, t) = ± 5.3801

4(
√
−0.0988p2+0.3950qr

[
p+
√

∆
(

tanh(
√

∆
4
ξ)± coth(

√
∆
4
ξ)
)]

+ a0,

u6(x, t) = ∓ 5.3801

2
√
−0.0988p2+0.3950qr

[
−p+

√
∆(A2+B2)−A

√
∆cosh(

√
∆ξ)

Asinh(
√

∆ξ)+B

]
+ a0,

u7(x, t) = ± 5.3801

2
√
−0.0988p2+0.3950qr

[
−p−

√
∆(B2−A2)+A

√
∆cosh(

√
∆ξ)

Asinh(
√

∆ξ)+B

]
+ a0,

where A and B are two non-zero real constants satisfying B2 − A2 > 0,

u8(x, t) = ∓ 5.3801q

2
√
−0.0988p2+0.3950qr

[
2rcosh(

√
∆
2
ξ)

√
∆sinh(

√
∆
2
ξ)−pcosh(

√
∆
2
ξ)

]
+ a0,

u9(x, t) = ± 5.3801q

2
√
−0.0988p2+0.3950qr

[
2rsinh(

√
∆
2
ξ)

psinh(
√

∆
2
ξ)−
√

∆cosh(
√

∆
2
ξ)

]
+ a0,

u10(x, t) = ∓ 5.3801q

2
√
−0.0988p2+0.3950qr

[
2rcosh(

√
∆
2
ξ)√

∆sinh(
√

∆ξ)−pcosh(
√

∆ξ)±i
√

∆

]
+ a0,

u11(x, t) = ∓ 5.3801q

2
√
−0.0988p2+0.3950qr

[
2rsinh(

√
∆
2
ξ)

−psinh(
√

∆ξ)+
√

∆cosh(
√

∆ξ)±
√

∆

]
+ a0,

u12(x, t) = ∓ 5.3801q

2
√
−0.0988p2+0.3950qr

[
4rsinh(

√
∆
4
ξ)cosh(

√
∆
4
ξ)

−2psinh(
√

∆
4
ξ)cosh(

√
∆
4
ξ)+2

√
∆cosh2(

√
∆
2
ξ)−
√

∆

]
+a0.

When ∆ = p2 − 4qr < 0 and pq 6= 0 or qr 6= 0, we have the following
exact traveling wave solutions for Eq.(3) with ξ = l(x− ω)t:

u13(x, t) = ∓ 5.3801

2
√
−0.0988p2+0.3950qr

[
−p+

√
−∆tan(

√
−∆
2
ξ)
]

+ a0,

u14(x, t) = ± 5.3801

2
√
−0.0988p2+0.3950qr

[
p+
√
−∆cot(

√
−∆
2
ξ)
]

+ a0,

u15(x, t) = ∓ 5.3801

2
√
−0.0988p2+0.3950qr

[
−p+

√
−∆

(
tan(
√
−∆ξ)± sec(

√
−∆ξ)

)]
+a0,

u16(x, t) = ± 5.3801

2
√
−0.0988p2+0.3950qr

[
p+
√
−∆

(
cot(
√
−∆ξ)± csc(

√
−∆ξ)

)]
+a0,

u17(x, t) = ± 5.3801

4
√
−0.0988p2+0.3950qr

[
−2p+

√
−∆

(
tan(

√
−∆
4
ξ)− cot(

√
−∆
4
ξ)
)]

+a0,

u18(x, t) = ± 5.3801

2
√
−0.0988p2+0.3950qr

[
−p+

±
√
−∆(A2−B2)−A

√
−∆cos(

√
−∆ξ)

Asin(
√
−∆ξ)+B

]
+ a0,

u19(x, t) = ± 5.3801

2
√
−0.0988p2+0.3950qr

[
−p− ±

√
−∆(A2−B2)+A

√
−∆cos(

√
−∆ξ)

Asin(
√
−∆ξ)+B

]
+ a0,



Travelling wave solutions for some nonlinear evolution equations 25

where A and B are two non-zero real constants satisfying A2 −B2 > 0,

u20(x, t) = ± 5.3801q

2
√
−0.0988p2+0.3950qr

[
2rcos(

√
−∆
2

ξ)
√
−∆sin(

√
−∆
2

ξ)+pcos(
√
−∆
2

ξ)

]
+ a0,

u21(x, t) = ∓ 5.3801q

2
√
−0.0988p2+0.3950qr

[
2rsin(

√
−∆
2

ξ)

−psin(
√
−∆
2

ξ)+
√
−∆cos(

√
−∆
2

ξ)

]
+ a0,

u22(x, t) = ∓ 5.3801q

2
√
−0.0988p2+0.3950qr

[
2rcos(

√
−∆
2

ξ)√
−∆sin(

√
−∆ξ)+pcos(

√
−∆ξ)±

√
−∆

]
+ a0,

u23(x, t) = ∓ 5.3801q

2
√
−0.0988p2+0.3950qr

[
2rcos(

√
−∆
2

ξ)

−psin(
√
−∆ξ)+

√
−∆cos(

√
−∆ξ)±

√
−∆

]
+ a0,

u24(x, t) = ∓ 5.3801q

2
√
−0.0988p2+0.3950qr[

4rsin(
√
−∆
4

ξ)cos(
√
−∆
4

ξ

−2psin(
√
−∆
4

ξ)cos(
√
−∆
4

ξ)+2
√
−∆cos2(

√
−∆
2

ξ)−
√
−∆)

]
+ a0.

When r = 0 and pq 6= 0, we have the following exact traveling wave
solutions for Eq.(3) with ξ = l(x− ω)t:

u25(x, t) = ± 5.3801p

2
√
−0.0988p2

[
d

d+cosh(pξ)−sinh(pξ)

]
,

u26(x, t) = ± 5.3801p

2
√
−0.0988p2

[
cosh(pξ)+sinh(pξ)
d+cosh(pξ)+sinh(pξ)

]
+ a0,

where d is an arbitrary constant.

4. Conclusion

In this paper, the generalized Riccati equation mapping technique
is implemented to obtain exact traveling wave solutions of three im-
portant nonlinear partial differential equations. Also, many number of
closed-form exact traveling wave solutions to the considered equations
are presented. In particular, with the aid of symbolic computation such
as Maple, we obtain exact traveling wave solutions of the considered
equations. Also, graphs of some solution structure are provided in order
to understand those new solutions and understand physical phenomena
of considered equations.

It should be noted that the obtained solutions contain some arbi-
trary constants. Also, the arbitrary constants provide the enough free-
dom to construct exact travelling wave solutions that may be used to
study real structure of the considered physical problem. The graphical
descriptions of some obtained solutions are represented in Figs. 1-4.
Fig.1 shows the profile of travelling wave solutions u5 of Eq.(1) with
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ω = 3.5, a0 = −2, p = −10 and also the two dimensional plot of the
solution for different time parameters t = 0, 1, 2. Fig.2 and 3 present the
behaviour of three and two dimensional plot of the obtained solutions
u19 and v19 of Eq.(2) under the given parameters ω = 3.5, l = 0.1, q =
−1, b1 = 1, A = −10, B = 1. It should be mentioned that the obtained
solutions are depicted in terms of the hyperbolic, the trigonometric and
the rational functional form. It is noted that the Novikov and Geng-Xue
equations both admit peakon solutions in a weak sense.

The results reveal that the generalized Riccati equation mapping
method can be more suitable to obtain exact solutions for the nonlinear
PDEs with higher order nonlinearity. Also, all the obtained solutions
are verified by putting them back into the original equations.
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