STRUCTURAL AND SPECTRAL PROPERTIES OF
k-QUASI-*-PARANORMAL OPERATORS

FEI ZUO AND HONGLIANG ZUO

Abstract. For a positive integer \(k \), an operator \(T \) is said to be \(k \)-quasi-*-paranormal if \(||T^{k+2}x||/||T^k x|| \geq ||T^*T^k x||^2 \) for all \(x \in H \), which is a generalization of *-paranormal operator. In this paper, we give a necessary and sufficient condition for \(T \) to be a \(k \)-quasi-*-paranormal operator. We also prove that the spectrum is continuous on the class of all \(k \)-quasi-*-paranormal operators.

1. Introduction

Let \(B(H) \) denote the \(C^* \)-algebra of all bounded linear operators on an infinite dimensional separable Hilbert space \(H \). In paper [10] authors introduced the class of \(k \)-quasi-*-paranormal operators defined as follows:

Definition 1.1. \(T \) is a \(k \)-quasi-*-paranormal operator if
\[
||T^{k+2}x||/||T^k x|| \geq ||T^*T^k x||^2
\]
for every \(x \in H \), where \(k \) is a natural number.
A \(k \)-quasi-\(*\)-paranormal operator for a positive integer \(k \) is an extension of \(*\)-paranormal operator, i.e., \(||T^2x|| \geq ||T^*x||^2 \) for unit vector \(x \). A 1-quasi-\(*\)-paranormal operator is called a quasi-\(*\)-paranormal operator and it is normaloid [10], i.e., \(||T^n|| = ||T||^n \) for \(n \in \mathbb{N} \) (equivalently, \(||T|| = r(T) \), the spectral radius of \(T \)). *-paranormal operator and quasi-*-paranormal operator have been studied by many authors and it is known that they have many interesting properties similar to those of hyponormal operators (see [5, 9, 11, 14]).

It is clear that

\[*\text{-paranormal} \Rightarrow \text{quasi-} *\text{-paranormal} \Rightarrow \text{normaloid} \]

and

\[\text{quasi-} *\text{-paranormal} \Rightarrow k\text{-quasi-} *\text{-paranormal} \]

\[\Rightarrow (k+1)\text{-quasi-} *\text{-paranormal}. \]

In [14], the authors give an example to show that a quasi-*-paranormal operator need not be a *-paranormal operator.

Example 1.2. Let \(A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \), \(B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \) be operators on \(\mathbb{R}^2 \), and let \(H_n = \mathbb{R}^2 \) for all positive integers \(n \). Consider the operator \(T_{A,B} \) on \(\bigoplus_{n=1}^{+\infty} H_n \) defined by

\[
T_{A,B} = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
A & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & B & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & B & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & B & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}.
\]

Then \(T_{A,B} \) is a quasi-*-paranormal operator, but not a *-paranormal operator.

We give the following example to show that there also exists a \((k+1)\)-quasi-*-paranormal operator, but not a \(k \)-quasi-*-paranormal operator.

Example 1.3. Given a bounded sequence of positive numbers \(\alpha : \alpha_1, \alpha_2, \alpha_3, \ldots \) (called weights), the unilateral weighted shift \(W_\alpha \) associated with \(\alpha \) is the operator on \(l_2 \) defined by \(W_\alpha e_n = \alpha_n e_{n+1} \) for all \(n \geq 1 \), where \(\{e_n\}_{n=1}^{\infty} \) is the canonical orthogonal basis for \(l_2 \). Straightforward
calculations show that W_α is a k-quasi-$*$-paranormal operator if and only if

$$W_\alpha = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & \cdots \\
\alpha_1 & 0 & 0 & 0 & 0 & \cdots \\
0 & \alpha_2 & 0 & 0 & 0 & \cdots \\
0 & 0 & \alpha_3 & 0 & 0 & \cdots \\
0 & 0 & 0 & \alpha_4 & 0 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{pmatrix},$$

where

$$\alpha_{i+1}\alpha_{i+2} \geq \alpha_i^2 \ (i = k, k+1, k+2, \cdots).$$

So, if $\alpha_{k+1} \leq \alpha_{k+2} \leq \alpha_{k+3} \leq \cdots$ and $\alpha_k > \alpha_{k+2}$, then W_α is a $(k+1)$-quasi-$*$-paranormal operator, but not a k-quasi-$*$-paranormal operator.

Now it is natural to ask whether k-quasi-$*$-paranormal operators are normaloid or not. For $k > 1$, an answer has been given: there exists a nilpotent operator which is a k-quasi-$*$-paranormal operator. But it need not be normaloid.

In section 2, we give a necessary and sufficient condition for T to be a k-quasi-$*$-paranormal operator. In section 3, we prove that the spectrum is continuous on the class of all k-quasi-$*$-paranormal operators.

2. k-quasi-$*$-paranormal operators

In the sequel, we shall write $N(T)$ and $R(T)$ for the null space and range space of T, respectively.

Lemma 2.1. [10] T is a k-quasi-$*$-paranormal operator $\iff T^*(T^*T^2 - 2\lambda TT^* + \lambda^2)T_3^k \geq 0$ for all $\lambda > 0$.

Theorem 2.2. If T does not have a dense range, then the following statements are equivalent:

1. T is a k-quasi-$*$-paranormal operator;

2. $T = \begin{pmatrix}
T_1 & T_2 \\
0 & T_3
\end{pmatrix}$ on $H = \overline{R(T^k)} \oplus N(T^*k)$, where $T_1^2T_2^2 - 2\lambda(T_1T_1^* + T_2T_2^*) + \lambda^2 \geq 0$ for all $\lambda > 0$ and $T_3^k = 0$. Furthermore, $\sigma(T) = \sigma(T_1) \cup \{0\}$.

Proof. \((1) \Rightarrow (2)\) Consider the matrix representation of \(T\) with respect to the decomposition \(H = \overline{R(T^k)} \oplus N(T^*k)\):
\[
T = \begin{pmatrix}
T_1 & T_2 \\
0 & T_3
\end{pmatrix}.
\]
Let \(P\) be the projection onto \(\overline{R(T^k)}\). Since \(T\) is a \(k\)-quasi-\(*\)-paranormal operator, we have
\[
P(T^*2T^2 - 2\lambda TT^* + \lambda^2)P \geq 0 \text{ for all } \lambda > 0.
\]
Therefore
\[
T^*2T^2 - 2\lambda(T_1T^*_1 + T_2T^*_2) + \lambda^2 \geq 0 \text{ for all } \lambda > 0.
\]
On the other hand, for any \(x = (x_1, x_2) \in H\), we have
\[
(T^*_3 x_2, x_2) = (T^k(I - P)x, (I - P)x) = ((I - P)x, T^*k(I - P)x) = 0,
\]
which implies \(T^*_3 = 0\).
Since \(\sigma(T) \cup M = \sigma(T_1) \cup \sigma(T_3)\), where \(M\) is the union of the holes in \(\sigma(T)\) which happen to be subset of \(\sigma(T_1) \cap \sigma(T_3)\) by Corollary 7 of [8], and \(\sigma(T_1) \cap \sigma(T_3)\) has no interior point and \(T_3\) is nilpotent, we have
\[
\sigma(T) = \sigma(T_1) \cup \{0\}.
\]
\((2) \Rightarrow (1)\) Suppose that \(T = \begin{pmatrix}
T_1 & T_2 \\
0 & T_3
\end{pmatrix}\) on \(H = \overline{R(T^k)} \oplus N(T^*k)\), where \(T^*2T^2 - 2\lambda(T_1T^*_1 + T_2T^*_2) + \lambda^2 \geq 0 \text{ for all } \lambda > 0\) and \(T^*_3 = 0\). Since
\[
T^k = \begin{pmatrix}
T_1^k & \sum_{j=0}^{k-1} T_1^jT_2T_3^{k-1-j} \\
0 & 0
\end{pmatrix},
\]
we have
\[
T^kT^*k = \begin{pmatrix}
T_1^kT^*_1 + \sum_{j=0}^{k-1} T_1^jT_2T_3^{k-1-j} \sum_{j=0}^{k-1} T_1^jT_2T_3^{k-1-j}^* & 0 \\
0 & 0
\end{pmatrix} = \begin{pmatrix}
A & 0 \\
0 & 0
\end{pmatrix}
\]
where \(A = A^* = T_1^kT^*_1 + \sum_{j=0}^{k-1} T_1^jT_2T_3^{k-1-j} \sum_{j=0}^{k-1} T_1^jT_2T_3^{k-1-j}^*\). Hence, for all \(\lambda > 0\),
\[
T^kT^*k(T^*2T^2 - 2\lambda TT^* + \lambda^2)T^kT^*k
\]
Structural and spectral properties of k-quasi-∗-paranormal operators

\[
\begin{pmatrix}
 A(T_1^*T_1^2 - 2\lambda(T_1T_1^* + T_2T_2^*) + \lambda^2)A & 0 \\
 0 & 0
\end{pmatrix} \geq 0.
\]

It follows that $T^k(T^{*2}T^{2} - 2\lambda TT^{*} + \lambda^2)T^k \geq 0$ on $H = \overline{R(T^k)} \oplus N(T^k)$. Thus T is a k-quasi-∗-paranormal operator. \hfill □

Corollary 2.3. [10] Let T be a k-quasi-∗-paranormal operator, the range of T^k be not dense and

\[
T = \begin{pmatrix}
 T_1 & T_2 \\
 0 & T_3
\end{pmatrix}
\text{ on } H = \overline{R(T^k)} \oplus N(T^{*k}).
\]

Then T_1 is a ∗-paranormal operator, $T_3^k = 0$ and $\sigma(T) = \sigma(T_1) \cup \{0\}$.

Corollary 2.4. [11] If T is a quasi-∗-paranormal operator and $R(T)$ is not dense, then T has the following matrix representation:

\[
T = \begin{pmatrix}
 T_1 & T_2 \\
 0 & 0
\end{pmatrix}
\text{ on } H = \overline{R(T)} \oplus N(T^{*})
\]

where T_1 is a ∗-paranormal operator on $\overline{R(T)}$.

Corollary 2.5. Let T be a k-quasi-∗-paranormal operator and $0 \neq \mu \in \sigma_p(T)$. If T is of the form $T = \begin{pmatrix}
 \mu & B \\
 0 & C
\end{pmatrix}$ on $H = N(T - \mu) \oplus N(T - \mu)^\perp$, then $B = 0.$

Proof. Let P be the projection onto $N(T - \mu)$ and $x \in N(T - \mu)$. Since T is a k-quasi-∗-paranormal operator and $x = \frac{1}{\mu^k}T^kx \in R(T^k)$, we have

\[
P(T^{*2}T^{2} - 2\lambda TT^{*} + \lambda^2)P \geq 0 \text{ for all } \lambda > 0,
\]

then

\[
\mu^4 - 2\lambda(\mu^2 + BB^*) + \lambda^2 \geq 0 \text{ for all } \lambda > 0,
\]

which yields that

\[
\mu^4 - 2\lambda\mu^2 + \lambda^2 \geq 2\lambda BB^* \text{ for all } \lambda > 0.
\]

Hence $B = 0.$ \hfill □
3. Spectral properties of k-quasi-$*$-paranormal operators

For every $T \in B(H)$, $\sigma(T)$ is a compact subset of \mathbb{C}. The function σ viewed as a function from $B(H)$ into the set of all compact subsets of \mathbb{C}, equipped with the Hausdorff metric, is well known to be upper semi-continuous, but fails to be continuous in general. Conway and Morrel [2] have carried out a detailed study of spectral continuity in $B(H)$. Recently, the continuity of spectrum was considered when restricted to certain subsets of the entire manifold of Toeplitz operators in [6, 12]. It has been proved that is continuous in the set of normal operators and hyponormal operators in [7]. And this result has been extended to quasi-hyponormal operators by Djordjević in [3], to p-hyponormal operators by Hwang and Lee in [13], and to (p, k)-quasihyponormal, M-hyponormal, $*$-paranormal and paranormal operators by Duggal, Jeon and Kim in [4]. In this section we extend this result to k-quasi-$*$-paranormal operators.

Lemma 3.1. Let T be a k-quasi-$*$-paranormal operator. Then the following assertions hold:

(1) If T is quasinilpotent, then $T^{k+1} = 0$.

(2) For every non-zero $\lambda \in \sigma_p(T)$, the matrix representation of T with respect to the decomposition $H = N(T - \lambda) \oplus (N(T - \lambda))^\perp$ is: $T = \begin{pmatrix} \lambda & 0 \\ 0 & B \end{pmatrix}$ for some operator B satisfying $\lambda \notin \sigma_p(B)$ and $\sigma(T) = \{\lambda\} \cup \sigma(B)$.

Proof. (1) Suppose T is a k-quasi-$*$-paranormal operator. If the range of T^k is dense, then T is a $*$-paranormal operator, which leads to that T is normaloid, hence $T = 0$. If the range of T^k is not dense, then

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$$

on $H = \overline{R(T^k)} \oplus N(T^k)$

where T_1 is a $*$-paranormal operator, $T_3^k = 0$ and $\sigma(T) = \sigma(T_1) \cup \{0\}$ by Theorem 2.2. Since $\sigma(T_1) = \{0\}$, $T_1 = 0$. Thus

$$T^{k+1} = \begin{pmatrix} 0 & T_2 \\ 0 & T_3 \end{pmatrix}^{k+1} = \begin{pmatrix} 0 & T_2 T_3^{k+1} \\ 0 & T_3^{k+1} \end{pmatrix} = 0.$$

(2) If $\lambda \neq 0$ and $\lambda \in \sigma_p(T)$, we have that $N(T - \lambda)$ reduces T by Corollary 2.5. So we have that $T = \begin{pmatrix} \lambda & 0 \\ 0 & B \end{pmatrix}$ on $H = N(T - \lambda) \oplus \overline{R(T^k)} \oplus N(T^k)$.
Structural and spectral properties of k-quasi-*\ast-paranormal operators

$(N(T - \lambda))^\perp$ for some operator B satisfying $\lambda \notin \sigma_p(B)$ and $\sigma(T) = \{\lambda\} \cup \sigma(B)$.

LEMMA 3.2. [1] Let H be a complex Hilbert space. Then there exists a Hilbert space K such that $H \subset K$ and a map $\varphi : B(H) \to B(K)$ such that

1. φ is a faithful \ast-representation of the algebra $B(H)$ on K;
2. $\varphi(A) \geq 0$ for any $A \geq 0$ in $B(H)$;
3. $\sigma_a(T) = \sigma_a(\varphi(T)) = \sigma_p(\varphi(T))$ for any $T \in B(H)$.

THEOREM 3.3. The spectrum σ is continuous on the set of k-quasi-*\ast-paranormal operators.

Proof. Suppose T is a k-quasi-*\ast-paranormal operator. Let $\varphi : B(H) \to B(K)$ be Berberian’s faithful \ast-representation of Lemma 3.2. In the following, we shall show that $\varphi(T)$ is also a k-quasi-*\ast-paranormal operator. In fact, since T is a k-quasi-*\ast-paranormal operator, we have

$$T^{\ast k}(T^{\ast 2}T^2 - 2\lambda TT^* + \lambda^2)T^k \geq 0$$

for all $\lambda > 0$.

Hence we have

$$((\varphi(T))^{\ast k}(\varphi(T))^{\ast 2}(\varphi(T))^2 - 2\lambda \varphi(T)(\varphi(T))^* + \lambda^2)(\varphi(T))^k$$

$$= \varphi(T)^{\ast k}(T^{\ast 2}T^2 - 2\lambda TT^* + \lambda^2)T^k) \text{ by Lemma 3.2}$$

$$\geq 0 \text{ by Lemma 3.2,}$$

so $\varphi(T)$ is also a k-quasi-*\ast-paranormal operator. By Lemma 3.1, we have T belongs to the set $C(i)$ (see definition in [4]). Therefore, we have that the spectrum σ is continuous on the set of k-quasi-*\ast-paranormal operators by [4, Theorem 1.1].

A complex number λ is said to be in the point spectrum $\sigma_p(T)$ of T if there is a nonzero $x \in H$ such that $(T - \lambda)x = 0$. If in addition, $(T^* - \overline{\lambda})x = 0$, then λ is said to be in the joint point spectrum $\sigma_{jp}(T)$ of T. If T is hyponormal, then $\sigma_{jp}(T) = \sigma_p(T)$. Here we show that if T is a k-quasi-*\ast-paranormal operator, then $\sigma_{jp}(T) \setminus \{0\} = \sigma_p(T) \setminus \{0\}$.

LEMMA 3.4. Let T be a k-quasi-*\ast-paranormal operator and $\lambda \neq 0$. Then $Tx = \lambda x$ implies $T^*x = \overline{\lambda}x$.

Proof. It is obvious from Corollary 2.5.

The following example provides an operator T which is a k-quasi-*\ast-paranormal operator, however, the relation $N(T) \subseteq N(T^*)$ does not hold.
Example 3.5. [14] Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ be operators on \mathbb{R}^2, and let $H_n = \mathbb{R}^2$ for all positive integers n. Consider the operator $T_{A,B}$ on $\bigoplus_{n=1}^{+\infty} H_n$ defined by

$$T_{A,B} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \cdots \\ A & 0 & 0 & 0 & 0 & \cdots \\ 0 & B & 0 & 0 & 0 & \cdots \\ 0 & 0 & B & 0 & 0 & \cdots \\ 0 & 0 & 0 & B & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Then $T_{A,B}$ is a quasi-*\ast-paranormal operator, hence $T_{A,B}$ is a k-quasi-*\ast-paranormal operator, however for the vector $x = (0, 0, 1, -1, 0, 0, \cdots)$, $T_{A,B}(x) = 0$, but $T_{A,B}^*(x) \neq 0$. Therefore, the relation $N(T_{A,B}) \subseteq N(T_{A,B}^*)$ does not always hold.

Theorem 3.6. Let T be a k-quasi-*\ast-paranormal operator. Then $\sigma_{jp}(T) \setminus \{0\} = \sigma_p(T) \setminus \{0\}$.

Proof. It is clearly by Lemma 3.4. \qed

Acknowledgement We wish to thank the referees for careful reading and valuable comments for the origin draft.

References

Structural and spectral properties of k-quasi-$*$-paranormal operators

Fei Zuo
College of Mathematics and Information Science
Henan Normal University
Xinxiang 453007, People’s Republic of China
E-mail: zuoifei2008@sina.com

Hongliang Zuo
College of Mathematics and Information Science
Henan Normal University
Xinxiang 453007, People’s Republic of China
E-mail: zuodke@yahoo.com