BOUNDEDNESS IN PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS VIA t_{∞}-SIMILARITY

Sang Il Choi and Yoon Hoe Goo*

Abstract

In this paper, we investigate bounds for solutions of perturbed functional differential systems using the notion of $t_{\infty^{-}}$ similarity.

1. Introduction and preliminaries

We consider the nonlinear nonautonomous differential system

$$
\begin{equation*}
x^{\prime}(t)=f(t, x(t)), \quad x\left(t_{0}\right)=x_{0}, \tag{1.1}
\end{equation*}
$$

where $f \in C\left(\mathbb{R}^{+} \times \mathbb{R}^{n}, \mathbb{R}^{n}\right), \mathbb{R}^{+}=[0, \infty)$ and \mathbb{R}^{n} is the Euclidean n space. We assume that the Jacobian matrix $f_{x}=\partial f / \partial x$ exists and is continuous on $\mathbb{R}^{+} \times \mathbb{R}^{n}$ and $f(t, 0)=0$. Also, we consider the perturbed functional differential systems of (1.1)

$$
\begin{equation*}
y^{\prime}=f(t, y)+\int_{t_{0}}^{t} g(s, y(s)) d s+r(t, y(t), T y(t)), y\left(t_{0}\right)=y_{0} \tag{1.2}
\end{equation*}
$$

where $g \in C\left(\mathbb{R}^{+} \times \mathbb{R}^{n}, \mathbb{R}^{n}\right), r \in C\left(\mathbb{R}^{+} \times \mathbb{R}^{n} \times \mathbb{R}^{n}, \mathbb{R}^{n}\right), g(t, 0)=0$, $r(t, 0,0)=0$, and $T: C\left(\mathbb{R}^{+}, \mathbb{R}^{n}\right) \rightarrow C\left(\mathbb{R}^{+}, \mathbb{R}^{n}\right)$ is a continuous operator.

For $x \in \mathbb{R}^{n}$, let $|x|=\left(\sum_{j=1}^{n} x_{j}^{2}\right)^{1 / 2}$. For an $n \times n$ matrix A, define the norm $|A|$ of A by $|A|=\sup _{|x| \leq 1}|A x|$.

Received January 14, 2015. Revised June 2, 2015. Accepted June 2, 2015.
2010 Mathematics Subject Classification: 34C11, 34D10, 34D20.
Key words and phrases: h-stability, t_{∞}-similarity, perturbed functional differential system.
*Corresponding author.
(c) The Kangwon-Kyungki Mathematical Society, 2015.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

Let $x\left(t, t_{0}, x_{0}\right)$ denote the unique solution of (1.1) with $x\left(t_{0}, t_{0}, x_{0}\right)=$ x_{0}, existing on $\left[t_{0}, \infty\right)$. Then, we can consider the associated variational systems around the zero solution of (1.1) and around $x(t)$, respectively,

$$
\begin{equation*}
v^{\prime}(t)=f_{x}(t, 0) v(t), v\left(t_{0}\right)=v_{0} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
z^{\prime}(t)=f_{x}\left(t, x\left(t, t_{0}, x_{0}\right)\right) z(t), z\left(t_{0}\right)=z_{0} . \tag{1.4}
\end{equation*}
$$

The fundamental matrix $\Phi\left(t, t_{0}, x_{0}\right)$ of (1.4) is given by

$$
\Phi\left(t, t_{0}, x_{0}\right)=\frac{\partial}{\partial x_{0}} x\left(t, t_{0}, x_{0}\right),
$$

and $\Phi\left(t, t_{0}, 0\right)$ is the fundamental matrix of (1.3).
We recall some notions of h-stability [14].
Definition 1.1. The system (1.1) (the zero solution $x=0$ of (1.1)) is called an h-system if there exist a constant $c \geq 1$, and a positive continuous function h on \mathbb{R}^{+}such that

$$
|x(t)| \leq c\left|x_{0}\right| h(t) h\left(t_{0}\right)^{-1}
$$

for $t \geq t_{0} \geq 0$ and $\left|x_{0}\right|$ small enough (here $h(t)^{-1}=\frac{1}{h(t)}$).
Definition 1.2. The system (1.1) (the zero solution $x=0$ of (1.1)) is called
(hS) h-stable if there exists $\delta>0$ such that (1.1) is an h-system for $\left|x_{0}\right| \leq \delta$ and h is bounded.

The notion of h-stability (hS) was introduced by Pinto [13, 14] with the intention of obtaining results about stability for a weakly stable system (at least, weaker than those given exponential asymptotic stability) under some perturbations. That is, Pinto extended the study of exponential asymptotic stability to a variety of reasonable systems called h-systems. Choi and Koo [2] and Choi et al. [3,4] investigated h-stability and bounds of solutions for the perturbed differential systems. Also, Goo [$6,7,8]$ and Goo et al. [9] studied the boundedness of solutions for the perturbed differential systems.

The main conclusion to be drawn from this paper is that the use of inequalities provides a powerful tool for obtaining bounds for solutions.

Let \mathcal{M} denote the set of all $n \times n$ continuous matrices $A(t)$ defined on \mathbb{R}^{+}and \mathcal{N} be the subset of \mathcal{M} consisting of those nonsingular matrices $S(t)$ that are of class C^{1} with the property that $S(t)$ and $S^{-1}(t)$ are bounded. The notion of t_{∞}-similarity in \mathcal{M} was introduced by Conti [5].

Definition 1.3. A matrix $A(t) \in \mathcal{M}$ is t_{∞}-similar to a matrix $B(t) \in$ \mathcal{M} if there exists an $n \times n$ matrix $F(t)$ absolutely integrable over \mathbb{R}^{+}, i.e.,

$$
\int_{0}^{\infty}|F(t)| d t<\infty
$$

such that

$$
\begin{equation*}
\dot{S}(t)+S(t) B(t)-A(t) S(t)=F(t) \tag{1.5}
\end{equation*}
$$

for some $S(t) \in \mathcal{N}$.
The notion of t_{∞}-similarity is an equivalence relation in the set of all $n \times n$ continuous matrices on \mathbb{R}^{+}, and it preserves some stability concepts [5,10$]$.

In this paper, we investigate bounds for solutions of the nonlinear differential systems using the notion of t_{∞}-similarity.

We give some related properties that we need in the sequal.
Lemma 1.4. [14] The linear system

$$
\begin{equation*}
x^{\prime}=A(t) x, x\left(t_{0}\right)=x_{0}, \tag{1.6}
\end{equation*}
$$

where $A(t)$ is an $n \times n$ continuous matrix, is an h-system (respectively h-stable) if and only if there exist $c \geq 1$ and a positive and continuous (respectively bounded) function h defined on \mathbb{R}^{+}such that

$$
\begin{equation*}
\left|\phi\left(t, t_{0}\right)\right| \leq c h(t) h\left(t_{0}\right)^{-1} \tag{1.7}
\end{equation*}
$$

for $t \geq t_{0} \geq 0$, where $\phi\left(t, t_{0}\right)$ is a fundamental matrix of (1.6).
We need Alekseev formula to compare between the solutions of (1.1) and the solutions of perturbed nonlinear system

$$
\begin{equation*}
y^{\prime}=f(t, y)+g(t, y), y\left(t_{0}\right)=y_{0} \tag{1.8}
\end{equation*}
$$

where $g \in C\left(\mathbb{R}^{+} \times \mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and $g(t, 0)=0$. Let $y(t)=y\left(t, t_{0}, y_{0}\right)$ denote the solution of (1.8) passing through the point $\left(t_{0}, y_{0}\right)$ in $\mathbb{R}^{+} \times \mathbb{R}^{n}$.

The following is a generalization to nonlinear system of the variation of constants formula due to Alekseev [1].

Lemma 1.5. If $y_{0} \in \mathbb{R}^{n}$, then for all t such that $x\left(t, t_{0}, y_{0}\right) \in \mathbb{R}^{n}$,

$$
y\left(t, t_{0}, y_{0}\right)=x\left(t, t_{0}, y_{0}\right)+\int_{t_{0}}^{t} \Phi(t, s, y(s)) g(s, y(s)) d s
$$

Theorem 1.6. [3] If the zero solution of (1.1) is $h S$, then the zero solution of (1.3) is $h S$.

Theorem 1.7. [4] Suppose that $f_{x}(t, 0)$ is t_{∞}-similar to $f_{x}\left(t, x\left(t, t_{0}, x_{0}\right)\right)$ for $t \geq t_{0} \geq 0$ and $\left|x_{0}\right| \leq \delta$ for some constant $\delta>0$. If the solution $v=0$ of (1.3) is $h S$, then the solution $z=0$ of (1.4) is $h S$.

Lemma 1.8. (Bihari - type inequality) Let $u, \lambda \in C\left(\mathbb{R}^{+}\right), w \in$ $C((0, \infty))$ and $w(u)$ be nondecreasing in u. Suppose that, for some $c>0$,

$$
u(t) \leq c+\int_{t_{0}}^{t} \lambda(s) w(u(s)) d s, t \geq t_{0} \geq 0
$$

Then

$$
u(t) \leq W^{-1}\left[W(c)+\int_{t_{0}}^{t} \lambda(s) d s\right], t_{0} \leq t<b_{1}
$$

where $W(u)=\int_{u_{0}}^{u} \frac{d s}{w(s)}, W^{-1}(u)$ is the inverse of $W(u)$ and

$$
b_{1}=\sup \left\{t \geq t_{0}: W(c)+\int_{t_{0}}^{t} \lambda(s) d s \in \operatorname{domW}^{-1}\right\}
$$

Lemma 1.9. Let $u, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}, \lambda_{7} \in C\left(\mathbb{R}^{+}\right), w \in C((0, \infty))$, and $w(u)$ be nondecreasing in $u, u \leq w(u)$. Suppose that for some $c>0$ and $0 \leq t_{0} \leq t$,

$$
\begin{align*}
u(t) \leq & c+\int_{t_{0}}^{t} \lambda_{1}(s) w(u(s)) d s+\int_{t_{0}}^{t} \lambda_{2}(s) \int_{t_{0}}^{s}\left(\lambda_{3}(\tau) u(\tau)\right. \tag{1.9}\\
& \left.+\lambda_{4}(\tau) \int_{t_{0}}^{\tau} \lambda_{5}(r) w(u(r)) d r\right) d \tau d s+\int_{t_{0}}^{t} \lambda_{6}(s) \int_{t_{0}}^{s} \lambda_{7}(\tau) w(u(\tau)) d \tau d s
\end{align*}
$$

Then

$$
\begin{align*}
u(t) & \leq W^{-1}\left[W(c)+\int_{t_{0}}^{t}\left(\lambda_{1}(s)+\lambda_{2}(s) \int_{t_{0}}^{s}\left(\lambda_{3}(\tau)+\lambda_{4}(\tau) \int_{t_{0}}^{\tau} \lambda_{5}(r) d r\right) d \tau\right.\right. \tag{1.10}\\
& \left.\left.+\lambda_{6}(s) \int_{t_{0}}^{s} \lambda_{7}(\tau) d \tau\right) d s\right]
\end{align*}
$$

$t_{0} \leq t<b_{1}$, where W, W^{-1} are the same functions as in Lemma 1.8, and

$$
\begin{aligned}
b_{1}= & \sup \left\{t \geq t_{0}: W(c)+\int_{t_{0}}^{t}\left(\lambda_{1}(s)+\lambda_{2}(s) \int_{t_{0}}^{s}\left(\lambda_{3}(\tau)\right.\right.\right. \\
& \left.\left.\left.+\lambda_{4}(\tau) \int_{t_{0}}^{\tau} \lambda_{5}(r) d r\right) d \tau+\lambda_{6}(s) \int_{t_{0}}^{s} \lambda_{7}(\tau) d \tau\right) d s \in \operatorname{domW}^{-1}\right\}
\end{aligned}
$$

Proof. Define a function $z(t)$ by the right member of (1.9). Then, we have $z\left(t_{0}\right)=c$ and

$$
\begin{aligned}
z^{\prime}(t)= & \lambda_{1}(t) w(u(t))+\lambda_{2}(t) \int_{t_{0}}^{t}\left(\lambda_{3}(s) u(s)+\lambda_{4}(s) \int_{t_{0}}^{s} \lambda_{5}(\tau) w(u(\tau)) d \tau\right) d s \\
& +\lambda_{6}(t) \int_{t_{0}}^{t} \lambda_{7}(s) w(u(s)) d s \\
\leq & \left(\lambda_{1}(t)+\lambda_{2}(t) \int_{t_{0}}^{t}\left(\lambda_{3}(s)+\lambda_{4}(s) \int_{t_{0}}^{s} \lambda_{5}(\tau) d \tau\right) d s\right. \\
& \left.+\lambda_{6}(t) \int_{t_{0}}^{t} \lambda_{7}(s) d s\right) w(z(t)),
\end{aligned}
$$

$t \geq t_{0}$, since $z(t)$ and $w(u)$ are nondecreasing, $u \leq w(u)$, and $u(t) \leq z(t)$. Therefore, by integrating on $\left[t_{0}, t\right]$, the function z satisfies

$$
\begin{array}{r}
z(t) \leq c+\int_{t_{0}}^{t}\left(\lambda_{1}(s)+\lambda_{2}(s) \int_{t_{0}}^{s}\left(\lambda_{3}(\tau)+\lambda_{4}(\tau) \int_{t_{0}}^{\tau} \lambda_{5}(r) d r\right) d \tau\right. \tag{1.11}\\
\left.\left.+\lambda_{6}(s) \int_{t_{0}}^{s} \lambda_{7}(\tau) d \tau\right) w(z(s))\right) d s
\end{array}
$$

It follows from Lemma 1.8 that (1.11) yields the estimate (1.10).
We obtain the following two corollaries from Lemma 1.9.
Corollary 1.10. Let $u, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \in C\left(\mathbb{R}^{+}\right), w \in C((0, \infty))$, and $w(u)$ be nondecreasing in $u, u \leq w(u)$. Suppose that for some $c>0$ and $0 \leq t_{0} \leq t$,
$u(t) \leq c+\int_{t_{0}}^{t} \lambda_{1}(s) \int_{t_{0}}^{s}\left(\lambda_{2}(\tau) w(u(\tau))+\lambda_{3}(\tau) \int_{t_{0}}^{\tau} \lambda_{4}(r) w(u(r)) d r\right) d \tau d s$.
Then
$u(t) \leq W^{-1}\left[W(c)+\int_{t_{0}}^{t}\left(\lambda_{1}(s) \int_{t_{0}}^{s}\left(\lambda_{2}(\tau)+\lambda_{3}(\tau) \int_{t_{0}}^{\tau} \lambda_{4}(r) d r\right) d \tau\right) d s\right]$,
$t_{0} \leq t<b_{1}$, where W, W^{-1} are the same functions as in Lemma 1.8, and

$$
\begin{aligned}
b_{1}=\sup \left\{t \geq t_{0}: W(c)\right. & +\int_{t_{0}}^{t}\left(\lambda _ { 1 } (s) \int _ { t _ { 0 } } ^ { s } \left(\lambda_{2}(\tau)\right.\right. \\
& \left.\left.\left.+\lambda_{3}(\tau) \int_{t_{0}}^{\tau} \lambda_{4}(r) d r\right) d \tau\right) d s \in \operatorname{domW}^{-1}\right\}
\end{aligned}
$$

Corollary 1.11. Let $u, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \in C\left(\mathbb{R}^{+}\right)$, $w \in C((0, \infty))$, and $w(u)$ be nondecreasing in u, $u \leq w(u)$. Suppose that for some $c>0$ and $0 \leq t_{0} \leq t$,
$u(t) \leq c+\int_{t_{0}}^{t} \lambda_{1}(s) \int_{t_{0}}^{s} \lambda_{2}(\tau) u(\tau) d \tau+\int_{t_{0}}^{t} \lambda_{3}(s) \int_{t_{0}}^{s} \lambda_{4}(\tau) w(u(\tau)) d \tau d s$.
Then
$u(t) \leq W^{-1}\left[W(c)+\int_{t_{0}}^{t}\left(\lambda_{1}(s) \int_{t_{0}}^{s} \lambda_{2}(\tau) d \tau+\lambda_{3}(s) \int_{t_{0}}^{s} \lambda_{4}(\tau) d \tau\right) d s\right]$,
$t_{0} \leq t<b_{1}$, where W, W^{-1} are the same functions as in Lemma 1.8, and

$$
\begin{aligned}
b_{1}=\sup \left\{t \geq t_{0}: W(c)\right. & +\int_{t_{0}}^{t}\left(\lambda_{1}(s) \int_{t_{0}}^{s} \lambda_{2}(\tau) d \tau\right. \\
& \left.\left.+\lambda_{3}(s) \int_{t_{0}}^{s} \lambda_{4}(\tau) d \tau\right) d s \in \operatorname{domW}^{-1}\right\}
\end{aligned}
$$

2. Main Results

In this section, we investigate boundedness for solutions of the nonlinear perturbed differential systems via t_{∞}-similarity.

To obtain the bounded property, the following assumptions are needed: (H1) $w(u)$ is nondecreasing in u such that $\frac{1}{v} w(u) \leq w\left(\frac{u}{v}\right)$ for some $v>0$. (H2) $f_{x}(t, 0)$ is t_{∞}-similar to $f_{x}\left(t, x\left(t, t_{0}, x_{0}\right)\right)$ for $t \geq t_{0} \geq 0$ and $\left|x_{0}\right| \leq \delta$ for some constant $\delta>0$.
(H3) The solution $x=0$ of (1.1) is hS with the increasing function h.
Theorem 2.1. Let $a, b, c, k, u, w \in C\left(\mathbb{R}^{+}\right)$. Suppose that (H1), (H2), (H3), and g in (1.2) satisfies

$$
\begin{equation*}
|g(t, y(t))| \leq a(t) w(|y(t)|)+b(t) \int_{t_{0}}^{t} k(s) w(|y(s)|) d s \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
|r(t, y(t), T y(t))| \leq \int_{t_{0}}^{t} c(s) w(|y(s)|) d s \tag{2.2}
\end{equation*}
$$

where $a, b, c, k \in L_{1}\left(\mathbb{R}^{+}\right)$. Then, any solution $y(t)=y\left(t, t_{0}, y_{0}\right)$ of (1.2) is bounded on $\left[t_{0}, \infty\right)$ and it satisfies
$|y(t)| \leq h(t) W^{-1}\left[W(c)+c_{2} \int_{t_{0}}^{t} \int_{t_{0}}^{s}\left(a(\tau)+c(\tau)+b(\tau) \int_{t_{0}}^{\tau} k(r) d r\right) d \tau d s\right]$,
where W, W^{-1} are the same functions as in Lemma 1.8, and

$$
\begin{aligned}
b_{1}=\sup \left\{t \geq t_{0}: W(c)\right. & +c_{2} \int_{t_{0}}^{t} \int_{t_{0}}^{s}(a(\tau)+c(\tau) \\
& \left.\left.+b(\tau) \int_{t_{0}}^{\tau} k(r) d r\right) d \tau d s \in \operatorname{domW}^{-1}\right\}
\end{aligned}
$$

Proof. Using the nonlinear variation of constants formula of Alekseev [1], any solution $y(t)=y\left(t, t_{0}, y_{0}\right)$ of (1.2) passing through $\left(t_{0}, y_{0}\right)$ is given by

$$
\begin{align*}
y\left(t, t_{0}, y_{0}\right)=x\left(t, t_{0}, y_{0}\right) & +\int_{t_{0}}^{t} \Phi(t, s, y(s)) \tag{2.3}\\
& \left(\int_{t_{0}}^{s} g(\tau, y(\tau)) d \tau+r(s, y(s), T y(s))\right) d s
\end{align*}
$$

By Theorem 1.6, since the solution $x=0$ of (1.1) is hS , the solution $v=0$ of (1.3) is hS. Therefore, by Theorem 1.7, the solution $z=0$ of (1.4) is hS. Using the nonlinear variation of constants formula (2.3), Lemma 1.4, the hS condition of $x=0$ of (1.1), (2.1), and (2.2), we have

$$
\begin{aligned}
|y(t)| \leq & c_{1}\left|y_{0}\right| h(t) h\left(t_{0}\right)^{-1}+\int_{t_{0}}^{t} c_{2} h(t) h(s)^{-1}\left(\int_{t_{0}}^{s}(a(\tau) w(|y(\tau)|)\right. \\
& \left.\left.+b(\tau) \int_{t_{0}}^{\tau} k(r) w(|y(r)|) d r\right) d \tau+\int_{t_{0}}^{s} c(\tau) w(|y(\tau)|) d \tau\right) d s \\
\leq & c_{1}\left|y_{0}\right| h(t) h\left(t_{0}\right)^{-1}+\int_{t_{0}}^{t} c_{2} h(t)\left(\int _ { t _ { 0 } } ^ { s } \left((a(\tau)+c(\tau)) w\left(\frac{|y(\tau)|}{h(\tau)}\right) d \tau\right.\right. \\
& \left.\left.+b(\tau) \int_{t_{0}}^{\tau} k(r) w\left(\frac{|y(r)|}{h(r)}\right) d r\right) d \tau\right) d s .
\end{aligned}
$$

Set $u(t)=|y(t)||h(t)|^{-1}$. Then, by Corollary 1.10, we have

$$
|y(t)| \leq h(t) W^{-1}\left[W(c)+c_{2} \int_{t_{0}}^{t} \int_{t_{0}}^{s}\left(a(\tau)+c(\tau)+b(\tau) \int_{t_{0}}^{\tau} k(r) d r\right) d \tau d s\right]
$$

where $c=c_{1}\left|y_{0}\right| h\left(t_{0}\right)^{-1}$. From the above estimation, we obtain the desired result. Thus, the proof is complete.

Remark 2.2. Letting $c(s)=0$ in Theorem 2.1, we obtain the similar result as that of Theorem 3.6 in [8].

We need the following lemma for the proof of Theorem 2.4.
Lemma 2.3. Let $u, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}, \lambda_{7} \in C\left(\mathbb{R}^{+}\right), w \in C((0, \infty))$ and $w(u)$ be nondecreasing in u. Suppose that, for some $c \geq 0$, we have

$$
\begin{align*}
& u(t) \leq c+\int_{t_{0}}^{t} \lambda_{1}(s) w(u(s)) d s+\int_{t_{0}}^{t} \lambda_{2}(s)\left(\int _ { t _ { 0 } } ^ { s } \left(\lambda_{3}(\tau) w(u(\tau))\right.\right. \tag{2.4}\\
& \left.\left.\quad+\lambda_{4}(\tau) \int_{t_{0}}^{\tau} \lambda_{5}(s) w(u(r)) d r\right) d \tau+\lambda_{6}(s) \int_{t_{0}}^{s} \lambda_{7}(\tau) w(u(\tau)) d \tau\right) d s, t \geq t_{0}
\end{align*}
$$

Then

$$
\begin{align*}
u(t) \leq & W^{-1}\left[W(c)+\int_{t_{0}}^{t}\left[\lambda_{1}(s)+\lambda_{2}(s)\left(\int_{t_{0}}^{s}\left(\lambda_{3}(\tau)+\lambda_{4}(\tau) \int_{t_{0}}^{\tau} \lambda_{5}(r) d r\right) d \tau\right.\right.\right. \tag{2.5}\\
& \left.\left.\left.+\lambda_{6}(s) \int_{t_{0}}^{s} \lambda_{7}(\tau) d \tau\right)\right] d s\right], t \geq t_{0}
\end{align*}
$$

where W, W^{-1} are the same functions as in Lemma 1.8, and

$$
\begin{aligned}
b_{1}=\sup \{t & \geq t_{0}: W(c)+\int_{t_{0}}^{t}\left[\lambda_{1}(s)+\lambda_{2}(s)\left(\int _ { t _ { 0 } } ^ { s } \left(\lambda_{3}(\tau)\right.\right.\right. \\
& \left.\left.\left.\left.+\lambda_{4}(\tau) \int_{t_{0}}^{\tau} \lambda_{5}(r) d r\right) d \tau+\lambda_{6}(s) \int_{t_{0}}^{s} \lambda_{7}(\tau) d \tau\right)\right] d s \in \operatorname{domW}^{-1}\right\}
\end{aligned}
$$

Proof. Define a function $v(t)$ by the right member of (2.4). Then, we have $v\left(t_{0}\right)=c$ and

$$
\begin{aligned}
v^{\prime}(t)= & \lambda_{1}(t) w(u(t))+\lambda_{2}(t)\left(\int _ { t _ { 0 } } ^ { t } \left(\lambda_{3}(s) w(u(s))\right.\right. \\
& \left.\left.+\lambda_{4}(s) \int_{t_{0}}^{s} \lambda_{5}(\tau) w(u(\tau)) d \tau\right) d s+\lambda_{6}(t) \int_{t_{0}}^{t} \lambda_{7}(s) w(u(s)) d s\right) \\
\leq & {\left[\lambda_{1}(t)+\lambda_{2}(t)\left(\int_{t_{0}}^{t}\left(\lambda_{3}(s)+\lambda_{4}(s) \int_{t_{0}}^{s} \lambda_{5}(\tau) d \tau\right) d s\right.\right.} \\
& \left.\left.+\lambda_{6}(t) \int_{t_{0}}^{t} \lambda_{7}(s) d s\right)\right] w(v(t)),
\end{aligned}
$$

$t \geq t_{0}$, since $v(t)$ is nondecreasing and $u(t) \leq v(t)$. Now, by integrating the above inequality on $\left[t_{0}, t\right]$ and $v\left(t_{0}\right)=c$, we have

$$
\begin{array}{r}
v(t) \leq c+\int_{t_{0}}^{t}\left(\lambda_{1}(s)+\lambda_{2}(s) \int_{t_{0}}^{s}\left(\lambda_{3}(\tau)+\lambda_{4}(\tau) \int_{t_{0}}^{\tau} \lambda_{5}(r) d r\right) d \tau\right. \tag{2.6}\\
\left.+\lambda_{6}(s) \int_{t_{0}}^{s} \lambda_{7}(\tau) d \tau\right) w(v(s)) d s .
\end{array}
$$

Thus, by Lemma 1.8, (2.6) yields the estimate (2.5).
Theorem 2.4. Let $a, b, c, k, q, u, w \in C\left(\mathbb{R}^{+}\right)$. Suppose that (H1), (H2), (H3), and g in (1.2) satisfies

$$
\begin{equation*}
|g(t, y(t))| \leq a(t) w(|y(t)|)+b(t) \int_{t_{0}}^{t} k(s) w(|y(s)|) d s \tag{2.7}
\end{equation*}
$$

and

$$
\begin{align*}
|r(t, y(t), T y(t))| & \leq c(t)(w(|y(t)|)+|T y(t)|),|T y(t)| \\
& \leq \int_{t_{0}}^{t} q(s) w(|y(s)|) d s, \quad t \geq t_{0} \geq 0 \tag{2.8}
\end{align*}
$$

where $a, b, c, k, q \in L_{1}\left(\mathbb{R}^{+}\right)$. Then, any solution $y(t)=y\left(t, t_{0}, y_{0}\right)$ of (1.2) is bounded on $\left[t_{0}, \infty\right)$ and

$$
\begin{aligned}
|y(t)| \leq h(t) W^{-1}[W(c)+ & c_{2} \int_{t_{0}}^{t}\left(c(s)+\int_{t_{0}}^{s}\left(a(\tau)+b(\tau) \int_{t_{0}}^{\tau} k(r) d r\right) d \tau\right. \\
& \left.\left.+c(s) \int_{t_{0}}^{s} q(\tau) d \tau\right) d s\right]
\end{aligned}
$$

where W, W^{-1} are the same functions as in Lemma 1.8, and

$$
\begin{array}{r}
b_{1}=\sup \left\{t \geq t_{0}: W(c)+c_{2} \int_{t_{0}}^{t}\left(c(s)+\int_{t_{0}}^{s}\left(a(\tau)+b(\tau) \int_{t_{0}}^{\tau} k(r) d r\right) d \tau\right.\right. \\
\left.\left.+c(s) \int_{t_{0}}^{s} q(\tau) d \tau\right) d s \in \operatorname{domW}^{-1}\right\} .
\end{array}
$$

Proof. Let $x(t)=x\left(t, t_{0}, y_{0}\right)$ and $y(t)=y\left(t, t_{0}, y_{0}\right)$ be solutions of (1.1) and (1.2), respectively. By the same argument as the proof in Theorem 2.1, the solution $z=0$ of (1.4) is hS. Applying Lemma 1.4, the hS condition of $x=0$ of (1.1), (2.3), (2.7), (2.8), and the given conditions, we have

$$
\begin{array}{r}
|y(t)| \leq c_{1}\left|y_{0}\right| h(t) h\left(t_{0}\right)^{-1}+\int_{t_{0}}^{t} c_{2} h(t)\left(c(s) w\left(\frac{|y(s)|}{h(s)}\right)+\int_{t_{0}}^{s}\left(a(\tau) w\left(\frac{|y(\tau)|}{h(\tau)}\right)\right.\right. \\
\left.\left.\left.+b(\tau) \int_{t_{0}}^{\tau} k(r) w\left(\frac{|y(r)|}{h(r)}\right) d r\right) d \tau+c(s) \int_{t_{0}}^{s} q(\tau) w\left(\frac{|y(\tau)|}{h(\tau)}\right) d \tau\right)\right) d s .
\end{array}
$$

Set $u(t)=|y(t)||h(t)|^{-1}$. Then, it follows from Lemma 2.3 that we have

$$
\begin{aligned}
|y(t)| \leq & h(t) W^{-1}\left[W(c)+c_{2} \int_{t_{0}}^{t}\left(c(s)+\int_{t_{0}}^{s}\left(a(\tau)+b(\tau) \int_{t_{0}}^{\tau} k(r) d r\right) d \tau\right.\right. \\
& \left.\left.+c(s) \int_{t_{0}}^{s} q(\tau) d \tau\right) d s\right],
\end{aligned}
$$

where $c=c_{1}\left|y_{0}\right| h\left(t_{0}\right)^{-1}$. From the above estimation, we obtain the desired result. Thus, the theorem is proved.

Remark 2.5. Letting $c(t)=0$ in Theorem 2.4, we obtain the similar result as that of Theorem 3.6 in [8].

We obtain the following corollary from Lemma 2.3 to prove Theorem 2.7.

Corollary 2.6. Let $u, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5} \in C\left(\mathbb{R}^{+}\right), w \in C((0, \infty))$ and $w(u)$ be nondecreasing in u. Suppose that, for some $c \geq 0$, we have

$$
\begin{gathered}
u(t) \leq c+\int_{t_{0}}^{t} \lambda_{1}(s) w(u(s)) d s+\int_{t_{0}}^{t} \lambda_{2}(s)\left(\int_{t_{0}}^{s} \lambda_{3}(\tau) w(u(\tau)) d \tau\right. \\
\left.+\lambda_{4}(s) \int_{t_{0}}^{s} \lambda_{5}(\tau) w(u(\tau)) d \tau\right) d s, t \geq t_{0} .
\end{gathered}
$$

Then
$u(t) \leq W^{-1}\left[W(c)+\int_{t_{0}}^{t}\left[\lambda_{1}(s)+\lambda_{2}(s)\left(\int_{t_{0}}^{s} \lambda_{3}(\tau) d \tau+\lambda_{4}(s) \int_{t_{0}}^{s} \lambda_{5}(\tau) d \tau\right)\right] d s\right]$,
$t \geq t_{0}$, where W, W^{-1} are the same functions as in Lemma 1.8, and

$$
\begin{aligned}
& b_{1}=\sup \left\{t \geq t_{0}:\right. W(c)+\int_{t_{0}}^{t}\left[\lambda_{1}(s)+\lambda_{2}(s)\left(\int_{t_{0}}^{s} \lambda_{3}(\tau) d \tau\right.\right. \\
&\left.\left.\left.+\lambda_{4}(s) \int_{t_{0}}^{s} \lambda_{5}(\tau) d \tau\right)\right] d s \in \operatorname{domW} W^{-1}\right\}
\end{aligned}
$$

Theorem 2.7. Let $a, b, c, k, u, w \in C\left(\mathbb{R}^{+}\right)$. Suppose that (H1), (H2), (H3), and g in (1.2) satisfies

$$
\begin{equation*}
\int_{t_{0}}^{t}|g(s, y(s))| d s \leq a(t) w(|y(t)|)+b(t) \int_{t_{0}}^{t} k(s) w(|y(s)|) d s, t \geq t_{0} \geq 0 \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
|r(t, y(t), T y(t))| \leq \int_{t_{0}}^{t} c(s) w(|y(s)|) d s \tag{2.10}
\end{equation*}
$$

where $a, b, c, k \in L_{1}\left(\mathbb{R}^{+}\right)$. Then, any solution $y(t)=y\left(t, t_{0}, y_{0}\right)$ of (1.2) is bounded on $\left[t_{0}, \infty\right)$ and it satisfies

$$
\begin{array}{r}
|y(t)| \leq h(t) W^{-1}\left[W(c)+c_{2} \int_{t_{0}}^{t}\left(a(s)+\int_{t_{0}}^{s} c(\tau) d \tau+b(s) \int_{t_{0}}^{s} k(\tau) d \tau\right) d s\right] \\
t_{0} \leq t<b_{1}
\end{array}
$$

where W, W^{-1} are the same functions as in Lemma 1.8 and

$$
\begin{aligned}
b_{1}=\sup \left\{t \geq t_{0}: W(c)\right. & +c_{2} \int_{t_{0}}^{t}\left(a(s)+\int_{t_{0}}^{s} c(\tau) d \tau\right. \\
& \left.\left.+b(s) \int_{t_{0}}^{s} k(\tau) d \tau\right) d s \in \operatorname{domW}^{-1}\right\}
\end{aligned}
$$

Proof. It is well known that the solution of (1.2) is represented by the integral equation (2.3). By the same argument as the proof in Theorem 2.1, the solution $z=0$ of (1.4) is hS . Using the nonlinear variation of constants formula (2.3), the hS condition of $x=0$ of (1.1), (2.9), and
(2.10), we have

$$
\begin{aligned}
|y(t)| & \leq c_{1}\left|y_{0}\right| h(t) h\left(t_{0}\right)^{-1}+\int_{t_{0}}^{t} c_{2} h(t) a(s) w\left(\frac{|y(s)|}{h(s)}\right) d s \\
& +\int_{t_{0}}^{t} c_{2} h(t)\left(\int_{t_{0}}^{s} c(\tau) w\left(\frac{|y(\tau)|}{h(\tau)}\right) d \tau+b(s) \int_{t_{0}}^{s} k(\tau) w\left(\frac{|y(\tau)|}{h(\tau)}\right) d \tau\right) d s .
\end{aligned}
$$

Set $u(t)=|y(t)||h(t)|^{-1}$. Then, an application of Corollary 2.6 yields
$|y(t)| \leq h(t) W^{-1}\left[W(c)+c_{2} \int_{t_{0}}^{t}\left(a(s)+\int_{t_{0}}^{s} c(\tau) d \tau+b(s) \int_{t_{0}}^{s} k(\tau) d \tau\right) d s\right]$,
where $c=c_{1}\left|y_{0}\right| h\left(t_{0}\right)^{-1}$. Thus, any solution $y(t)=y\left(t, t_{0}, y_{0}\right)$ of (1.2) is bounded on $\left[t_{0}, \infty\right)$, and so the proof is complete.

Remark 2.8. Letting $c(s)=0$ in Theorem 2.7, we obtain the same result as that of Theorem 3.2 in [6].

Theorem 2.9. Let $a, b, c, u, w \in C\left(\mathbb{R}^{+}\right), w(u)$ be nondecreasing in u such that $u \leq w(u)$ and $\frac{1}{v} w(u) \leq w\left(\frac{u}{v}\right)$ for some $v>0$. Suppose that (H2), (H3), and g in (1.2) satisfies

$$
\begin{equation*}
|g(t, y(t))| \leq a(t) w(|y(t)|),|r(t, y(t), T y(t))| \leq b(t) \int_{t_{0}}^{t} c(s)|y(s)| d s \tag{2.11}
\end{equation*}
$$

where $a, b, c \in L_{1}\left(\mathbb{R}^{+}\right)$. Then, any solution $y(t)=y\left(t, t_{0}, y_{0}\right)$ of (1.2) is bounded on $\left[t_{0}, \infty\right)$ and

$$
|y(t)| \leq h(t) W^{-1}\left[W(c)+c_{2} \int_{t_{0}}^{t}\left(b(s) \int_{t_{0}}^{s} c(\tau) d \tau+\int_{t_{0}}^{s} a(\tau) d \tau\right) d s\right]
$$

where W, W^{-1} are the same functions as in Lemma 1.8 and

$$
b_{1}=\sup \left\{t \geq t_{0}: W(c)+c_{2} \int_{t_{0}}^{t}\left(b(s) \int_{t_{0}}^{s} c(\tau) d \tau+\int_{t_{0}}^{s} a(\tau) d \tau\right) d s \in \mathrm{domW}^{-1}\right\} .
$$

Proof. Let $x(t)=x\left(t, t_{0}, y_{0}\right)$ and $y(t)=y\left(t, t_{0}, y_{0}\right)$ be solutions of (1.1) and (1.2), respectively. By the same argument as the proof in Theorem 2.1, the solution $z=0$ of (1.4) is hS. By the hS condition of $x=0$ of
(1.1), (2.3), and (2.11), it follows that

$$
\begin{aligned}
|y(t)| & \leq c_{1}\left|y_{0}\right| h(t) h\left(t_{0}\right)^{-1}+\int_{t_{0}}^{t} c_{2} h(t)\left(b(s) \int_{t_{0}}^{s} c(\tau) \frac{|y(\tau)|}{h(\tau)} d \tau\right. \\
& \left.+\int_{t_{0}}^{s} a(\tau) w\left(\frac{|y(\tau)|}{h(\tau)}\right) d \tau\right) d s
\end{aligned}
$$

Set $u(t)=|y(t)||h(t)|^{-1}$. Then, an application of Corollary 1.11 yields

$$
|y(t)| \leq h(t) W^{-1}\left[W(c)+c_{2} \int_{t_{0}}^{t}\left(b(s) \int_{t_{0}}^{s} c(\tau) d \tau+\int_{t_{0}}^{s} a(\tau) d \tau\right) d s\right]
$$

where $c=c_{1}\left|y_{0}\right| h\left(t_{0}\right)^{-1}$. Thus, any solution $y(t)=y\left(t, t_{0}, y_{0}\right)$ of (1.2) is bounded on $\left[t_{0}, \infty\right)$. This completes the proof.

Remark 2.10. Letting $b(t)=0$ in Theorem 2.9, we obtain the similar result as that of Theorem 3.5 in [9].

Acknowledgement. The authors are very grateful for the referee's valuable comments.

References

[1] V. M. Alekseev, An estimate for the perturbations of the solutions of ordinary differential equations, Vestn. Mosk. Univ. Ser. I. Math. Mekh. 2 (1961), 2836(Russian).
[2] S. K. Choi and N. J. Koo, h-stability for nonlinear perturbed systems, Ann. of Diff. Eqs. 11 (1995), 1-9.
[3] S. K. Choi and H. S. Ryu, h-stability in differential systems, Bull. Inst. Math. Acad. Sinica 21 (1993), 245-262.
[4] S. K. Choi, N. J. Koo and H.S. Ryu, h-stability of differential systems via $t_{\infty^{-}}$ similarity, Bull. Korean. Math. Soc. 34 (1997), 371-383.
[5] R. Conti, Sulla t_{∞}-similitudine tra matricie l'equivalenza asintotica dei sistemi differenziali lineari, Rivista di Mat. Univ. Parma 8 (1957), 43-47.
[6] Y. H. Goo, Boundedness in perturbed nonlinear differential systems, J. Chungcheong Math. Soc. 26 (2013), 605-613.
[7] Y. H. Goo, Boundedness in the perturbed differential systems, J. Korean Soc. Math. Edu. Ser.B: Pure Appl. Math. 20 (2013), 223-232.
[8] Y. H. Goo, Boundedness in the perturbed nonlinear differential systems, Far East J. Math. Sci(FJMS) Vol. 79 (2013), 205-217.
[9] Y. H. Goo, D. G. Park and D. H Ryu, Boundedness in perturbed differential systems, J. Appl. Math. and Informatics 30 (2012), 279-287.
[10] G. A. Hewer, Stability properties of the equation by t_{∞}-similarity, J. Math. Anal. Appl. 41 (1973), 336-344.
[11] V. Lakshmikantham and S. Leela, Differential and Integral Inequalities: Theory and Applications, Academic Press, New York and London, 1969.
[12] B.G. Pachpatte, On some retarded inequalities and applications, J. Ineq. Pure Appl. Math. 3 (2002), 1-7.
[13] M. Pinto, Perturbations of asymptotically stable differential systems, Analysis 4 (1984), 161-175.
[14] M. Pinto, Stability of nonlinear differential systems, Applicable Analysis 43 (1992), 1-20.

Sang Il Choi
Department of Mathematics
Hanseo University
Seosan 356-706, Republic of Korea
E-mail: schoi@hanseo.ac.kr
Yoon Hoe Goo
Department of Mathematics
Hanseo University
Seosan 356-706, Republic of Korea
E-mail: yhgoo@hanseo.ac.kr

