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EVERY LINK IS A BOUNDARY OF A COMPLETE

BIPARTITE GRAPH K2,n

Yongjun Jang, Sang-Min Jeon and Dongseok Kim∗

Abstract. A voltage assignment on a graph was used to enumer-
ate all possible 2-cell embeddings of a graph onto surfaces. The
boundary of the surface which is obtained from 0 voltage on every
edges of a very special diagram of a complete bipartite graph Km,n

is surprisingly the (m,n) torus link. In the present article, we prove
that every link is the boundary of a complete bipartite multi-graph
Km,n for which voltage assignments are either −1 or 1 and that
every link is the boundary of a complete bipartite graph K2,n for
which voltage assignments are either −1, 0 or 1 where edges in the
diagram of graphs may be linked but not knotted.

1. Introduction

Let L be a link in S
3. A compact orientable surface F is a Seifert

surface of L if the boundary of F is isotopic to L. The existence of such
a surface was first proven by Seifert using an algorithm on a diagram of
L, named after him as Seifert’s algorithm [10]. Some of Seifert surfaces
feature some extra structures. For example, Rudolph has introduced
several plumbing Seifert surfaces [8,9]. These surfaces have been studied
extensively for the fibredness of links and surfaces [4, 11]. The third
author proved the existence of basket surfaces, flat plumbing surfaces
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Figure 1. A diagram of the complete bipartite graph
K2,3 whose boundary is the torus knot T (2, 3).

and flat plumbing basket surfaces of a given link L using the induced
graphs of canonical Seifert surfaces [6] and he also showed that every
link is a boundary of a flat string surface [7] using the induced graph
of the link. Since the induced graphs are bipartite, these articles build
a bridge between the Seifert surfaces and bipartite graphs as one can
find a Seifert surface which is the surface obtained from the (+1,−1)
voltage assignment on edges of bipartite graphs. However, these graphs
are not complete in general. In a very recent paper, Baader introduced
ribbon diagrams for strongly quasipositive links [2] to show that every
(m,n) torus link is a boundary of a surface which is obtained from the
0 voltage assignment on all edges of the complete bipartite graphs Km,n

where the diagram of the complete bipartite graph Km,n is chosen to be
in a very special form as explained as the standard diagram.

The main interest of this article can be explained as follows. If the
edges from the top left vertex lie over those of top right vertex of a
complete bipartite graph, such a diagram is called the standard diagram

of the complete bipartite graph. It is known that the boundary of the
surface which is obtained from 0 voltage on every edges of the standard
diagram of the complete bipartite graph Km,n is the (m,n) torus link.
An example of the surface which is obtained from 0 voltage on every
edges of the standard diagram of the complete bipartite graph K2,3 is
illustrated in the left hand side of Figure 1. If we flip the top three bands
down, one can easily obtain the knot in the right hand side of Figure 1
which is the trefoil, or the (2, 3) torus knot.

However, if we are allowed to use different diagrams of Km,n instead
of the standard diagram, we can obtain links other than torus links.
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Figure 2. A different diagram of the complete bipartite
graph K2,3 whose boundary is the figure-eight knot.

For example, the boundaries of the surfaces which are obtained from 0
voltage on every edges of all other non-standard diagrams of K2,3 (one
that all three crossings are changed is in fact a standard diagram if we
look at it from behind) are in fact the figure-eight knot. A typical one
is given in Figure 2.

These examples motivate us to raise the following questions which
address the focus of this article.

Question 1.1. Given a link L, is there a graph diagram D(Km,n) of
a complete bipartite graph Km,n such that the link L is a boundary of
D(Km,n) where all voltage assignments on the edges of Km,n are 0?

A weaker version of Question 1.1 which we are studying is given as
follows.

Question 1.2. Given a link L, is there a graph diagram D(Km,n) of
a complete bipartite graph Km,n such that the link L is a boundary of
D(Km,n) where all voltage assignments on the edges of Km,n are either
0, 1 or −1?

In the present article, we give some partial answers for Question 1.1
and 1.2 as in the following theorems.

Theorem 1.3. For a given link L, there exists a graph diagram
D(Km,n) of a complete bipartite multi-graph Km,n such that the link
L is a boundary of D(Km,n) where all voltage assignments on the edges
of Km,n are either 1 or −1.

Theorem 1.4. For a given link L, there exists a graph diagram
D(K2,n) of a complete bipartite graph K2,n such that the link L is a
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boundary of D(K2,n) where all voltage assignments on the edges of K2,n

are either 0, 1 or −1.

The outline of this paper is as follows. In section 2, we review some
preliminary definitions in graph theory and knot theory. In section 3, we
first examine the boundary of the complete bipartite graphs K1,n, K2,2

and K2,3, then we prove main theorems.

2. Preliminaries

A Seifert surface FL of an oriented link L obtained by applying
Seifert’s algorithm to a link diagram D(L) as shown in Figure 3 (i)
is called a canonical Seifert surface. From such a canonical Seifert sur-
face, we construct an induced graph Γ(FL) by collapsing discs to vertices
and half twist bands to signed edges as illustrated in Figure 3 (ii). From
arbitrary Seifert surfaces, these processes can be done too. Since the
link L is tame and its Seifert surface FL is compact, the induced graph
Γ(FL) is finite. By considering the local orientation as indicated on each
vertices in Figure 3 (ii), Γ(FL) is a bipartite graph. For bipartite graphs,
it is easy to see that the length of a closed path is always even. For gen-
eral terminology for knots and graphs, we refer to [1,5]. It is fairly easy
to see that the number of Seifert circles (half twisted bands), denoted
by s(FL)(c(FL)), is the cardinality of the vertex set, V (Γ(FL)) (edge
set E(Γ(FL)), respectively). A spanning tree T of Γ(FL) is depicted in
Figure 3 (iii). The number of edges of a spanning tree of a connected
graph with n vertices is n− 1. One can see that the length of the path
joining both end vertices of e ∈ Γ(FL) is odd.

However, in the case of 75, there exists a spanning tree which is a
path, thus, any alternating signing κ on the spanning path will satisfy
the condition of Theorem 2.1. To obtain a flat plumbing basket surface
from Seifert surfaces, we need to find a spanning tree T with a coloring
κ : E(T ) → {+,−} such that for any e ∈ E(G)− T , there exists a path
P joining both end vertices of e in T whose coloring is alternating.

Theorem 2.1. ( [6]) For a connected bipartite graph Γ, there exist a
spanning tree T and a vertex v such that for any e ∈ Γ− T , the unique
path Pe in T joining both end vertices of e has alternating signs with
respect to the depth coloring κv : E(T ) → {+,−}.
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Figure 3. (i) A knot 75 and its Seifert surface F75 whose
discs are named a, b, c, d, (ii) its corresponding signed in-
duced graph Γ(F75) and (iii) a spanning tree T of Γ(F75).
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Figure 4. (i) a coloring κ on T of Γ(F75) such that for
any e ∈ E(Γ(F75))−T , the unique path in T joining both
ends of e has an alternating signs., (ii) a new induced
graph Γ(F75) after applying type II Reidemeister move
and (iii) a new knot diagram of 75 and Seifert surface F75

corresponding to Γ(F75).

Let us deal with general cases for the flat plumbing basket number
of L by using canonical Seifert surface FL. Let Γ be the induced graph
of a canonical Seifert surface FL of L where |V (Γ)| = s(FL) = n and
|E(Γ)| = c(FL) = m. Using Theorem 2.1, there is a spanning tree T and
a coloring κ on T such that for any e ∈ E(Γ)− T , the unique path in T
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∼=

Figure 5. How to change the sign of a twisted band by
adding two flat annuli.

joining both ends of e has alternating signs. Let µ : E(Γ) → {+,−} be
coloring representing the signs of edges in Γ. Let

B = {e ∈ T | µ(e) 6= κ(e)}.

First if an edge e in T belongs to B, then we have to isotop the link
by a type II Reidemeister move as shown in Figure 4 (iii). Since we
can completely reverse the sign of all edges in the spanning tree T , we
may assume that the total number of type II Reidemeister moves in the

process is less than or equal to

⌈

n− 1

2

⌉

. Let γ be the minimum of

the cardinality of the set B and n − |B| − 1. Now we set D the disc
corresponding to the spanning tree T as depicted in Figure 4 (iii). Let

C = {e ∈ E(Γ)− T | µ(e) 6=
∑

f∈Pe

κ(f)}.

If an edge e in E(Γ)−T belongs to C, then we can plumb a flat annulus
along a curve α corresponding to the path Pe in the spanning tree T .
Otherwise, we need to add three flat annuli to make the half twisted
band presented by the edge e as shown in Figure 5 [3]. By plumbing all
egdes in E(Γ)− T as described, we have a flat plumbing basket surface
of L. Then by summarizing above description of flat plumbing surface
of L, we obtain the following theorem.
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Theorem 2.2. ( [6]) Let Γ be an induced graph of canonical Seifert
surface F of a link L with the vertex set V (Γ) and the edge set E(Γ)
where V (Γ) = s(F) = n and E(|Γ|) = c(F) = m. Let T be a spanning
tree of Γ and κ a coloring on T chosen in Theorem 2.1. Let γ be the
minimum of |B| and n−|B|−1 and let δ be |C|. Then the flat plumbing
basket number of L is bounded above by 3(m− n) + 2(γ − δ) + 3, i.e.,

fpbk(L) ≤ 3(m− n) + 2(γ − δ) + 3.

Voltage assignments

Originally voltage assignments were used to construct covering graphs.
For terminology and further reading regarding voltage assignments and
voltage graphs, we refer to [5]. In particular, Z2 voltage assignment
can be used to construct embeddings of graphs into surfaces, where 0
represents a flat band and 1 represents a twisted band between vertices.

Furthermore, to obtain surface we cap off each boundary by a 2-
dimensional disc. This process is called a two cell embeddings of graph.
To determine the genera of surfaces in which the given graph, it does not
matter the direction of twisted band whether it is positive or negative
because it only matters the homeomorphic types of surfaces.

3. Boundaries of complete bipartite graphs

In this section, we first look at all possible boundaries of complete
bipartite graphs, K1,n, K2,2 andK2,3. And then we prove main theorems.

3.1. Boundaries of the complete bipartite graphs K1,n, K2,2 and

K2,3. We first look at the boundaries of the complete bipartite graph
K1,n to obtain the following theorem.

Theorem 3.1. The boundaries of the complete bipartite graph K1,n

are unknot for all possible diagrams and arbitrary integral twists.

Next, we examine the boundaries of the complete bipartite graph of
K2,2. All possible diagrams of K2,2 are all isotopic to an unknotted
single band. Even if we use different voltage assignments, we can only
obtain very limited number of links. For the boundaries of the complete
bipartite graph K2,2, we obtain the following theorem.
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(I) (II)

(III) (IV )

Figure 6. Four different modifications of the standard
diagram of K2,3 used in Table 1

Theorem 3.2. The boundaries of the complete bipartite graph K2,2

are closed two braids for all possible diagrams and arbitrary integral
twists.

For the boundaries of the complete bipartite graph K2,3, we only
examine four different cases of the modifications of the standard diagram
of K2,3 which are given in Figure 6. We obtain Table 1 where # presents
the connected sum, +O presents linking a trivial knot by linking number
1 and ∗ presents the link in Figure 7. All detailed isotopies we used to
obtain the table are omitted but one can easily follow it.

3.2. Proof of Theorem 1.3. One might prove the theorem by an
induction on the crossing number of L. However, it is very simple to
observe that the Reidemeister move II can produce two edges between
any two vertices of an induced diagram of link L without changing link
type. Therefore, if an induced diagram of L is a subgraph of a complete
bipartite multi-graphKm,n, then L can be isotop only using Reidemeister
move II such that the link L is a boundary of D(Km,n) where all voltage
assignments on the edges of the complete bipartite multi-graph Km,n are
either 1 or −1.
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Voltage assignment
Diagram I

Name of link
Diagram II
Name of link

Diagram III
Name of link

Diagram IV
Name of link

(0, 0, 0) 41 41 31 41
(1, 0, 0) 31 31 41 31
(0, 1, 0) 31 31 41 31
(0, 0, 1) 52 52 41 31
(1, 1, 0) 31 31 51 421
(1, 0, 1) 421 421 521 221#31
(0, 1, 1) 421 421 521 421
(1, 1, 1) 421+O 421 +O 632 421+O
(−1, 0, 0) 52 52 O 52
(0,−1, 0) 52 52 O 31
(0, 0,−1) 31 31 O 52
(−1,−1, 0) 728 421 O+O 421
(−1, 0,−1) 421 421 O+O 728
(0,−1,−1) 421 728 O+O 421
(−1,−1,−1) 633 633 O+O+O 633
(1, 1,−1) 221+O 221#421 221#221 221#421
(1,−1, 1) 221#421 221#421 221#221 221+O
(−1, 1, 1) 221#421 221+O 221#221 221#421
(−1,−1, 1) * 221#221 221+O 221#221
(−1, 1,−1) 221#221 221#221 221+O See c)
(1,−1,−1) 221#221 * 221+O 221#221
(1, 0,−1) 221 622 221 221
(1,−1, 0) 221#31 622 221 O+O
(0, 1,−1) 221 221#31 221 622
(0,−1, 1) 622 221#31 221 O+O
(−1, 0, 1) 622 221 221 221
(−1, 1, 0) 221#31 221 221 622

Table 1. The boundaries of the complete bipartite graph
K2,3 of diagram I, II, III and IV in Figure 6

Figure 7. A link represented as ∗ in Table 1
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. . .

Figure 8. An induced diagram of the complete bipartite
multi-graph K2,n whose boundary is the trivial link of n
components
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Figure 9. Handle slides moves show how to modify K2,n

plus one handle to K2,n+1 whose boundary is the link L

3.3. Proof of Theorem 1.4. For a given link L, let us induct on the
number of edges in an induced diagramD(L) of L. If the number of edges
in D(L) is zero, then the link L is the trivial link with n components,
and it can be represented by a boundary of the complete bipartite multi-
graph K2,n where the signs of edges connected to the left top vertex are
+ and the signs of edges connected to the right top vertex are 0 as
illustrated in Figure 8.

Suppose that if the number of edges in an induced graph D(L) is less
than n, then the theorem holds. If we remove an edge e from D(L), by
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the induction hypothesis, there exists an n such that the link with the
boundary D(L)− {e} is a boundary of a complete bipartite graph K2,n

as depicted in Figure 9 (i). Then, the link L is a boundary of a surface
F which is obtained from the boundary of a complete bipartite graph
K2,n by adding an half twisted 1-handle as illustrated in Figure 9 (ii).
One can see that both ends of the 1 handle can be slidden to each of
two vertices a, b as shown in Figure 9 (iii). Then we can isotop the 1
handle as given in Figure 9 (iv) to have that the link L is a boundary of
a complete bipartite graph K2,n+1.
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