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EINSTEIN’S CONNECTION IN 3-DIMENSIONAL

ES-MANIFOLD

In Ho Hwang

Abstract. The manifold ∗g−ESXn is a generalized n-dimensional
Riemannian manifold on which the differential geometric structure is
imposed by the unified field tensor ∗gλν through the ES-connection
which is both Einstein and semi-symmetric. The purpose of the
present paper is to prove a necessary and sufficient condition for a
unique Einstein’s connection to exist in 3-dimensional ∗g − ESX3

and to display a surveyable tnesorial representation of 3-dimensional
Einstein’s connection in terms of the unified field tensor, employing
the powerful recurrence relations in the first class.

1. Preliminaries

This paper is a direct continuation of our previous paper [1], which
will be denoted by I in the present paper. All considerations in this
paper are based on the results and symbolism of I. Whenever necessary,
they will be quoted in the present paper. In this section, we introduce a
brief collection of basic concepts, notations, and results of I, which are
frequently used in the present paper([2],[3],[4]).
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(a) n-simensional ∗g-unified field theory

LetXn be an n-dimensional generalized Riemannian manifold referred
to a real coordinate system xν , which obeys the coordinate transforma-
tions xν → xν

′
for which

det(
∂x′

∂x
) 6= 0(1.1)

In n− g − UFT the manifold Xn is endowed with a real nonsymmetric
tensor gλµ, which may be decomposed into its symmetric part hλµ and
skew-symmetric part kλµ:

gλµ = hλµ + kλµ(1.2)

where

g = det(gλµ) 6= 0, h = det(hλµ) 6= 0, k = det(kλµ)(1.3)

In n− ∗g − UFT the algebraic structure on Xn is imposed by the basic
real tensor ∗gλν defined by

gλµ
∗gλν = gµλ

∗gνλ = δνµ(1.4)

It may be also decomposed into its symmetric part ∗hλν and skew-
symmetric part ∗kλν :

∗gλν = ∗hλν + ∗kλν(1.5)

Since det(∗hλν) 6= 0, we may define a unique tensor ∗hλµ by

∗hλµ
∗hλν = δνµ(1.6)

In n− ∗g-UFT we use both ∗hλν and ∗hλµ as tensors for raising and/or
lowering indices of all tensors in Xn in the usual manner. We then have

∗kλµ = ∗kρσ∗hλρ
∗hµσ,

∗gλµ = ∗gρσ∗hλρ
∗hµσ(1.7)

so that
∗gλµ = ∗hλµ + ∗kλµ(1.8)

The differential geometric structure on Xn is imposed by the tensor
∗gλν by means of a connection Γλ

ν
µ defined by a system of equations

Dω
∗gλν = −2Sωα

ν ∗gλα(1.9)
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where Dω denotes the symbol of the covariant derivative with respect to
Γλ

ν
µ and Sλµ

ν is the torsion tensor of Γλ
ν
µ. Under certain conditions

the system (1.9) admits a unique solutions Γλ
ν
µ.

It has been shown in [5] that if the system (1.9) admits Γλ
ν
µ, it must

be of the form

Γλ
ν
µ = ∗

{
ν
λµ

}
+ Uν

λµ + Sλµ
ν .(1.10)

where

Uνλµ =
100

S (λµ)ν + 2
(10)0

S ν(λµ)(1.11)

(b) Some notations and results

The following quantities are frequently used in our further considera-
tions:

∗g = det(∗gλµ), ∗h = det(∗hλµ), ∗k = det(∗kλµ)(1.12)

∗g =
∗g
∗h
, ∗k =

∗k
∗h
.(1.13)

Kp = ∗k[α1

α1 ∗kα2

α2 · · · ∗kαp]
αp , (p = 0, 1, 2, · · · ).(1.14)

(0)∗kλ
ν = δνλ,

(p)∗kλ
ν = ∗kλ

α (p−1)∗kα
ν (p = 1, 2, · · · ).(1.15)

Kωµν = ∇ν
∗kωµ +∇ω

∗kνµ +∇µ
∗kων(1.16)

where ∇ω is the symbolic vector of the covariant derivative with respect

to the christoffel symbols ∗
{

ν
λµ

}
defined by ∗hλµ in the usual way.

In Xn it was proved in [5] that

K0 = 1, Kn = ∗k if n is even, and Kn = 0 if n is odd.(1.17)

∗g = 1 +K2 + · · ·+Kn−σ.(1.18)

n−σ∑
s=0

Ks
(n−s)∗kλ

ν = 0 (p = 0, 1, 2, · · · ).(1.19)
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We also use the following useful abbreviations, denoting an arbitrary
tensor Tωµν skew-symmetric in the first two indices by T :

pqr

T =
pqr

T ωµλ = Tαβγ
(p)∗kω

α(q)∗kµ
β(r)∗kλ

γ(1.20)

and for an arbitrary tensor T ······ for p = 1, 2, 3, · · · :
(p)T ν······ =(p−1) ∗kνα T

α···
··· .(1.21)

On the other hand, it has shown in [6] that the tensor Sλµ
ν satisfies

S = B − 3
(110)

S(1.22)

where

2Bωµν = Kωµν + 3Kα[µβ
∗kω]α∗kν

β(1.23)

In our subsequent chapter, we start with the relation (1.22) to solve the

system (1.9). Furthermore, for the first class, the nonholonomic solution

of (1.22) may be given by

M
xyz
Sxyz = Bxyz(1.24)

or equivalently

4M
xyz
Sxyz = (2 +M

z
M
x

+M
z
M
y

)Kxyz +M
z

(M
x

+M
z

)Kzxy

+M
z

(M
y

+M
z

)Kyzx

(1.25)

where

M
xyz

= 1 +M
x
M
y

+M
y
M
z

+M
z
M
x

(1.26)

Therefore, in virtue of (1.24), we see that a necessary and sufficient
condition for the system (1.9) to have a unique solution in the first class
is

M
xyz
6= 0 for all x, y, z(1.27)

(c) n-dimensional ES manifold n− ∗g-UFT

In this subsection, we display an useful representation of the ES con-
nection in n− ∗g-UFT.
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Definition 1.1. A connection Γλ
ν
µ is said to be semi-symmetric if

its torsion tensor Sλµ
ν is of the form

Sλµ
ν = 2δν[λXµ].(1.28)

for an arbitrary non-null vector Xµ.

A connection which is both semi-symmetric and Einstein is called
an ES connection. An n-dimensional generalized Riemannian manifold
Xn, on which the differential geometric structure is imposed by ∗gλν by
means of an ES connection, is called an n-dimensional ∗g−ES manifold.
We denote this manifold by ∗g − ESXn in our further considerations.

In ∗g − ESXn, the following theorems were proved in I.

Theorem 1.2. The main recurrence relation in the first class is

(p+3)∗kλ
ν = −K2

(p+1)∗kλ
ν , (p = 0, 1, 2, · · · )(1.29)

Theorem 1.3. The basic scalars M
x

satisfy

M
x
M
y

(M
x

+M
y

) = 0, (x 6= y)(1.30)

M
x
M
y

(M
x
M
y
−K2) = 0, (x 6= y)(1.31)

Theorem 1.4. (Recurrence relations in the first class) If Tωµν is a
tensor skew-symmetric in the first two indices, then the following recur-
rence relations hold in the first class of 3− ∗g − ESX3 :

(12)r

T = 0,
22r

T = K2

11r

T(1.32)

r(12)

T ν[ωµ] = 0,
r22

T ν[ωµ] = K2

r11

T ν[ωµ](1.33)

2. Einstein’s connection Γλ
ν
µ in the first class

In this section, we shall derive surveyable tensorial representations of
Sλµ

ν and hence Γλ
ν
µ in terms of ∗gλν , employing the recurrence relations.

In the following theorem, we shall prove two relations in Xn. These
relations will be used in our subsequent theorem when we are concerned
with the solution of (1.9).
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Theorem 2.1. We have

(pq)r

B =
(pq)r

S +
(p′q′)r

S +
(p′q)r′

S +
(pq′)r′

S(2.1)

2
(pq)r

B ωµν =
(pq)r

K ωµν +
r′′(pq)

K ν[ωµ]

+1
2
(
(pq′)r′

K ωµν +
(p′q)r′

K ωµν +
r′p′q

K ν[ωµ] +
r′q′p

K ν[ωµ])(2.2)

where

p′ = p+ 1, q′ = q + 1, r′ = r + 1, r′′ = r + 2(2.3)

Proof. In virtue of (1.22) and (1.20), the first relation (2.1) is obtained
as in the following way:

(pq)r

B =
(pq)r

B ωµν = 1
2
Bωβγ(

(p)∗kω
α(q)∗kµ

β + (q)∗kω
α(p)∗kµ

β)(r)∗kν
γ

= 1
2
(Sαβγ + Sεηγ

∗kα
ε∗kβ

η + Sεβη
∗kα

ε∗kγ
η + Sαεη

∗kβ
ε∗kγ

η)

×((p)∗kω
α(q)∗kµ

β + (q)∗kω
α(p)∗kµ

β)(r)∗kν
γ(2.4)

After a lengthy calculation, we note that the right-hand side of the
above equation is equal to that of (2.1). Similarly, we verify (2.2) using
(1.20) and (1.23).

Theorem 2.2. A necessary and sufficient condition for the system
(1.9) to admit a unique solution Γλ

ν
µ is that

1− (K2)
2 6= 0(2.5)

Proof. Since M
xyz

defined by (1.26), is symmetric in x, y, z and satisfies

M
33x

= 1, M
311

= M
322

= 1−K2, M
123

= M
112

= M
122

= 1 +K2(2.6)

we have the condition (2.5) in virtue of (1.27).

Theorem 2.3. The system of equations (1.22) is reduced to a system
of the following 5 equations:
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

B = S + 2
(10)1

S +
110

S
(10)1

B =
(10)1

S +
(20)2

S +
112

S
110

B = (1 +K2)
110

S
(20)2

B = (K2)
2
(10)1

S +
(20)2

S −K2

112

S
112

B = (1 +K2)
112

S

(2.7)

Proof. This assertion follows from (2.1) using (1.29), (1.32) and (1.33).

Theorem 2.4. The tensor
(pq)r

B ωµν are given as linear combinations

of
(pq)r

K ωµν , as follows:

(2.8)

2
(10)1

B ωµν =
(10)1

K ωµν + 1
2
(
112

K ωµν +
(20)2

K ωµν +
211

K ν[ωµ] −K2

101

K ν[ωµ])

2
110

B ωµν =
110

K ωµν

2
(20)2

B ωµν =
(20)2

K ωµν + 1
2
[(K2)

2
(10)1

K ωµν −K2

112

K ν[ωµ] −K2

202

K ν[ωµ]]

2
112

B ωµν =
112

K ωµν

Proof. These relations are obtained from (2.2) in virtue of (1.29),
(1.32) and (1.33).

Theorem 2.5. If the condition (2.5) is satisfied, the unique solution
of (1.22) is given by

(2.9) [1− (K2)
2](S −B) = −2

(10)1

B + (K2 − 1)
110

B + 2
(20)2

B + 2
112

B
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or equivalently

[1− (K2)
2](2Sωµν −Kωµν −

110

K ν[ωµ] −
200

K ν[ωµ]) =

−
(10)1

K ωµν +
112

K ωµν +
(20)2

K ωµν −
211

K ν[ωµ]

+ (K2 − 1)
110

K ωµν +K2(
101

K ν[ωµ] −
112

K ν[ωµ] −
202

K ν[ωµ])

(2.10)

Proof. (2.9) is the solution of (2.7), while (2.10) is obtained by sub-
stituting (2.8) into (2.9) and making use of recurrence relations.

Theorem 2.6. The tensor Uν
λµ is given by

[1− (K2)
2](Uνλµ −

[10]0

B λµν − 2
(10)0

B ν(λµ)) =

−K2(
[10]2

B λµν + 2
(10)2

B ν(λµ)) + (K2 − 1)
[21]0

B λµν

+
[02]1

B λµν +
[21]2

B λµν − 2
(20)1

B ν(λµ) − 2
111

B ν(λµ)

(2.11)

or equivalently

[1− (K2)
2](2Uνλµ +

[01]0

K λµν − 2
(10)0

K ν(λµ)) = (K2 − 1)
[21]0

K λµν

+
[02]1

K λµν +K2

[01]2

K λµν − 2(K2

(10)2

K ν(λµ) −
(20)1

K ν(λµ) −
111

K ν(λµ))

(2.12)

Proof. The representations (2.11), (2.12) are direct consequences of
substituting (2.9), (2.10) into (1.11).

Now that we have obtained the tensor Sλµ
ν and Uν

λµ in terms of ∗gλν ,
it is possible for us to determine Γλ

ν
µ by only substituting for S and U

into (1.10).
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