ON THE ANTICYCLOTOMIC \mathbb{Z}_p-EXTENSION OF AN IMAGINARY QUADRATIC FIELD

JANGHEON OH

ABSTRACT. We prove that if a subfield of the Hilbert class field of an imaginary quadratic field k meets the anticyclotomic \mathbb{Z}_p-extension k^a_∞ of k, then it is contained in k^a_∞. And we give an example of an imaginary quadratic field k with $\lambda_3(k^a_\infty) \geq 8$.

1. Introduction

An abelian extension L of k is called an anti-cyclotomic extension of k if it is Galois over \mathbb{Q}, and $\text{Gal}(k/\mathbb{Q})$ acts on $\text{Gal}(L/k)$ by -1. For each prime number p, the compositum K of all \mathbb{Z}_p-extensions over k becomes a \mathbb{Z}_p^2-extension, and K is the compositum of the cyclotomic \mathbb{Z}_p-extension k^c_∞ and the anti-cyclotomic \mathbb{Z}_p-extension k^a_∞ of k.

The layers k^c_n of the cyclotomic \mathbb{Z}_p-extension are well understood. Since the Hilbert class field of k is an anti-cyclotomic extension of k, determination of the first layer of the anti-cyclotomic \mathbb{Z}_p-extension becomes complicated as the p-rank of the p-Hilbert class field of k becomes larger. In the papers [3,5,6], using Kummer theory and class field theory, we constructed the first layer k^a_1 of the anti-cyclotomic \mathbb{Z}_p-extension of k under the assumption that the 3-part of Hilbert class field H_k of k is 3-elementary. A criterion on linearly disjointness of k^a_1 and H_k over k is

Received April 9, 2015. Revised July 7, 2015. Accepted July 8, 2015.

2010 Mathematics Subject Classification: 11R23.

Key words and phrases: Iwasawa theory, anticyclotomic extension, Hilbert class field.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
proved in [4] under the assumption. In this paper, we prove the criterion without the assumption. See Corollary 1 of this paper.

Contrary to the case of the cyclotomic \mathbb{Z}_p-extension, the lambda invariant $\lambda_p(k^\infty_n)$ of the anticyclotomic \mathbb{Z}_p-extension of an imaginary quadratic field is not well known. Few examples of computation of $\lambda_p(k^\infty_n)$ are given. Following the idea of Fujii [1], we give an example of k with $\lambda_3(k^\infty_n) \geq 8$.

2. Proof of Theorems

Let p be an odd prime number. Throughout this section, we denote by H_k, h_k, A_k, and M_k the p-part of Hilbert class field, the p-class number, p-part of ideal class group, and the maximal abelian p-extension of an imaginary quadratic field k unramified outside above p, respectively. The first layer of the anti-cyclotomic \mathbb{Z}_p-extension of k may be or may not be contained in the p-Hilbert class field of k. The following theorem and the criterion in [4] gives an answer for this question. We define $\text{rank}_{\mathbb{Z}/p\mathbb{Z}} A$ to be the dimension of A/A^p over $\mathbb{Z}/p\mathbb{Z}$ for any abelian group A. Note that $K \cap H_k = k^\infty_n \cap H_k$.

Theorem 1. Let $d \not\equiv 3 \mod 9$ be a square free positive integer, $k = \mathbb{Q}(\sqrt{-d})$ an imaginary quadratic field. Let L be a subfield of H_k which satisfies the following properties:

$$H_k \cap k^\infty_n = k^\infty_n \leq L(n \geq 1), \quad \text{Gal}(L/k) \text{ is cyclic}.$$

Then

$$L = k^\infty_n.$$

Proof. Assume that $k^\infty_n \neq L$. Then there exists a ramified extension of k of degree p which becomes unramified over k^∞_n. By class field theory, we see that

$$\text{Gal}(M_k/H_k) \simeq \left(\prod_{p|p} U_{1,p} \right),$$

where $U_{1,p}$ is the local units of k which is congruent to 1 mod p. However, by the condition of Theorem 1, there is no p-torsion point in $\prod_{p|p} U_{1,p}$, which contradicts to the fact that the ramified extension of k of degree p exists. This completes the proof. \qed
By Theorem 1 one can easily prove the following corollary, which was proved in [4] with the assumption that $A_{\mathbb{Q}(\sqrt{-d})}$ is 3-elementary, without the assumption. In fact, the following equivalence

$$H_k \cap k_\infty^a = k \iff \text{rank}_{\mathbb{Z}/3} X_{k,\chi} = 1 + \text{rank}_{\mathbb{Z}/3} A_k$$

in [4] holds without the assumption by Theorem 1. Here

$$X_k := \text{Gal}(M_k/k)/p\text{Gal}(M_k/k)$$

and $X_{k,\chi}$ be the χ-component of X_k for the nontrivial character χ of $\text{Gal}(k/\mathbb{Q})$.

COROLLARY 1. Let $d \neq 3 \pmod{9}$ be a square free positive integer, $k = \mathbb{Q}(\sqrt{-d})$ an imaginary quadratic field and k_∞^a the anti-cyclotomic \mathbb{Z}_3-extension over k. Then

$$H_k \cap k_\infty^a = k \iff \text{rank}_{\mathbb{Z}/3} A_{\mathbb{Q}(\sqrt{-3d})} = \text{rank}_{\mathbb{Z}/3} A_{\mathbb{Q}(\sqrt{-d})}.$$

By following the idea of Fujii [1], we give an example of an imaginary quadratic field with large invariant $\lambda_3(k_\infty^a)$.

THEOREM 2.

$$\lambda_3(k_\infty^a) \geq 8,$$

where $k = \mathbb{Q}(\sqrt{-1423})$.

Proof. Denote by K_3^a the compositum of all \mathbb{Z}_3-extensions of k_3^a. First note that the class number of $\mathbb{Q}(\sqrt{3*1423})$ is one. Hence, by Theorem 3 below, $H_k \subset k_\infty^a$. Since the class number of k is 9, $H_k = k_3^a$. By simple computation, we see that 3 stays prime in k. The definition of anticyclotomic extension and class field theory shows that \mathfrak{p}_3, the prime of k above 3, splits completely in k_3^a. Note that the \mathbb{Z}_3-rank of $\text{Gal}(K_3^a/k_3^a)$ is 10. Since the inertia group of primes of k_3^a above 3 is isomorphic to \mathbb{Z}_3^2 and K/k is abelian, the extension K_3^a/K is unramified everywhere. Hence the maximal abelian 3-extension of k_3^a contains K_3^a, and the galois group of K_3^a over K is isomorphic to \mathbb{Z}_3^8. This completes the proof. \(\square\)

The following theorem is given in [2].

THEOREM 3. If $p = 3$ and $d \neq 3 \pmod{9}$, then $H_k \subset k_\infty^a$ if and only if the class number of $\mathbb{Q}(\sqrt{3d})$ is not divisible by 3.
References

Jangheon Oh
Faculty of Mathematics and Statistics
Sejong University
Seoul 143-747, Korea
E-mail: oh@sejong.ac.kr