WEAK PROPERTY (β_k)

KYUGEUN CHO* AND CHONGSUNG LEE

ABSTRACT. In this paper, we define the weak property (β_k) and get the following strict implications.

$$(UC) \Rightarrow w - (\beta_1) \Rightarrow w - (\beta_2) \Rightarrow \cdots \Rightarrow w - (\beta_{\infty}) \Rightarrow (BS).$$

1. Introduction

Let $(X, \|\cdot\|)$ be a real Banach space and X^* the dual space of X. By B_X , we denote the closed unit ball of X. Denote by \mathbb{N} and \mathbb{R} the set of natural numbers and real numbers, respectively.

A Banach space is said to be reflexive if the natural embedding $\eta: X \to X^{**}$ is onto. Cui, Hudzik and Płuciennik introduced the notion of weak property (β) [2]. We say that a Banach space X has the weak property (β) if there is a number $\delta > 0$ such that for any $x \in B_X$ and any weakly null sequence (x_n) in B_X there exists $k \in \mathbb{N}$ such that

$$\left\| \frac{x + x_k}{2} \right\| \le 1 - \delta.$$

We note that non-reflexive Banach space l_1 has the weak property (β) , since weak convergence is equivalent to norm convergence in l_1 . With these notions, we can get the following definition.

Received August 31, 2012. Revised October 7, 2012. Accepted October 10, 2012. 2010 Mathematics Subject Classification: 46B20.

Key words and phrases: Banach-Saks property, weak property (β) .

This work was supported by the Inha University Research Grant.

^{*}Corresponding author.

[©] The Kangwon-Kyungki Mathematical Society, 2012.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Conercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

DEFINITION 1. A Banach space X has the weak property (β_k) if it is reflexive and there exists $\delta > 0$ such that for any $x \in B_X$ and any weakly null sequence $(x_n) \in B_X$ there exist $n_i \in \mathbb{N}, i = 1, 2, \dots, k$ with $n_1 < n_2 < \dots < n_k$ such that

$$\left\| \frac{1}{k+1} \left(x + \sum_{i=1}^{k} x_{n_i} \right) \right\| \le 1 - \delta.$$

We say that X has the weak property (β_{∞}) if it has the weak property (β_k) for some $k \in \mathbb{N}$.

A Banach space X is said to be uniformly convex (UC) if for all $\epsilon > 0$, there exists a $\delta > 0$ such that for $x, y \in B_X$ with $||x - y|| \ge \epsilon$,

$$\left\| \frac{x+y}{2} \right\| \le 1 - \delta.$$

A Banach space X is said to have Banach-Saks property (BS) if any bounded sequence in the space admits a subsequence whose arithmetic means converges in norm. In similar way, we say that a Banach space X has weak Banach-Saks property (w-BS) if any weakly convergent sequence in the space admits a subsequence whose arithmetic means converges in norm. Since any weakly convergent sequence is norm bounded, it follows that Banach-Saks property implies weak Banach-Saks property. We note that weak Banach-Saks property and Banach-Saks property coincide in the reflexive Banach space.

S. Kakutani [3] showed that unform convexity implies Banach-Saks property. T. Nishiura and D. Waterman [4] proved that Banach-Saks property implies reflexivity in Banach spaces.

In the next section, we get the following strict implications.

$$(UC) \Rightarrow w - (\beta_1) \Rightarrow w - (\beta_2) \Rightarrow \cdots \Rightarrow w - (\beta_{\infty}) \Rightarrow (BS).$$

J.R. Partington mentioned the same implications in the spaces which satisfy property (A_k) without proofs [5]. We gave the detailed proofs in proving the implications of alternate signs (A_k) properties [1] and can get the above results in the weak property (β_k) by the similar techniques.

2. Main Parts

We begin with lemma.

LEMMA 2.1. Let $x_n, x \in X$. Suppose that (x_n) is weakly null and let α be a positive number such that $||x|| > \alpha$. Then there exists a subsequence (x_{n_i}) of (x_n) such that $||x - x_{n_i}|| \ge \alpha$ for all $i \in \mathbb{N}$.

Proof. The proof is done by contradiction. Assume the assertion is false; $||x - x_n|| < \alpha$ except finite n. Then

$$\alpha < \|x\| = \sup_{\|x^*\|=1} |x^*(x)|$$

$$= \sup_{\|x^*\|=1} \lim_{n \to \infty} |x^*(x - x_n)|$$

$$\leq \sup_{\|x^*\|=1} \limsup_{n} \|x^*\| \|x - x_n\|$$

$$= \limsup_{n} \|x - x_n\| \leq \alpha.$$

We get the contradiction.

Using the above Lemma 2.1, we get the followings.

Proposition 2.2. Let X be a Banach space.

- (1) If X is uniformly convex, then it has the weak property (β_1) .
- (2) If X has the weak property (β_k) , then it has the weak property (β_{k+1}) .
- (3) If X has the weak property (β_{∞}) , then it has the Banach-Saks property.

Proof. (1) Since X is uniformly convex, there exists $0 < \delta\left(\frac{1}{2}\right) < 1$ such that for all $x, y \in B_X$, if $||x - y|| \ge \frac{1}{2}$, then

$$\frac{1}{2}||x+y|| \le 1 - \delta\left(\frac{1}{2}\right).$$

Let $\delta = \min\left\{\frac{1}{4}, \delta\left(\frac{1}{2}\right)\right\}$. Suppose that $x \in B_X$ and (x_n) is a weakly null sequence $(x_n) \in B_X$. If $||x|| \leq \frac{1}{2}$, then $\left|\left|\frac{1}{2}(x+x_1)\right|\right| \leq \frac{3}{4} \leq 1-\delta$. If $||x|| > \frac{1}{2}$, then by Lemma 2.1, there exists $n_1 \in \mathbb{N}$ such that $||x-x_{n_1}|| \geq \frac{1}{2}$, since (x_n) is weakly null. Then $\left|\left|\frac{1}{2}(x+x_{n_1})\right|\right| \leq 1-\delta\left(\frac{1}{2}\right) \leq 1-\delta$. Since uniform convexity implies reflexivity, we get the result.

(2) Since X has the weak property (β_k) , there exists $0 < \delta_0 < 1$ such that for any $x \in B_X$ and for any weakly null sequence $(x_n) \in B_X$ there exist $n_i \in \mathbb{N}$, $i = 1, 2, \dots, k$ with $n_1 < n_2 < \dots < n_k$ such that

$$\left\| \frac{1}{k+1} \left(x + \sum_{i=1}^k x_{n_i} \right) \right\| \le 1 - \delta_0.$$

Let $\delta = \frac{k+1}{k+2}\delta_0$. Suppose that $y \in B_X$ and (y_n) is a weakly null sequence in B_X . Then there exist $n_i \in \mathbb{N}$, $i = 1, 2, \dots, k$ with $n_1 < n_2 < \dots < n_k$ such that

$$\left\| \frac{1}{k+1} \left(y + \sum_{i=1}^k y_{n_i} \right) \right\| \le 1 - \delta_0.$$

Let $y_{n_{k+1}} = y_{n_k+1}$. Then

$$\left\| \frac{1}{k+2} \left(y + \sum_{i=1}^{k+1} y_{n_i} \right) \right\| \leq \frac{k+1}{k+2} \left\| \frac{1}{k+1} \left(y + \sum_{i=1}^{k} y_{n_i} \right) + \frac{1}{k+1} y_{n_{k+1}} \right\|$$

$$\leq \frac{k+1}{k+2} (1 - \delta_0) + \frac{1}{k+2}$$

$$= 1 - \frac{k+1}{k+2} \delta_0 = 1 - \delta.$$

Since X has the weak property (β_k) , it is reflexive and we get the result.

(3) Suppose that X has the weak property (β_k) . Then there exists $0 < \delta < 1$ such that for all weakly null sequence (x_n) in B_X and x in B_X , there exist $n_i \in \mathbb{N}, i = 1, 2, \dots, k$ with $n_1 < n_2 < \dots < n_k$ such that

$$\left\| \frac{1}{k+1} \left(x + \sum_{i=1}^{k} x_{n_i} \right) \right\| \le 1 - \delta.$$

Let (y_n) be a weakly null sequence in B_X and $n_1 = 1$. Then since $(y_n)_{n>n_1}$ is weakly null, there exist $n_i \in \mathbb{N}$,where $i=2,3,\cdots,k+1$ with $1=n_1 < n_2 < \cdots < n_k$ such that

$$\left\| \frac{1}{k+1} \left(\sum_{i=1}^{k+1} y_{n_i} \right) \right\| \le 1 - \delta.$$

Let $n_{k+2} = n_{k+1} + 1$. Then since $(y_n)_{n > n_{k+2}}$ is weakly null, there exist $n_i \in \mathbb{N}$, where $i = k+3, k+4, \cdots, 2k+2$ with $n_{k+2} < n_{k+3} < \cdots < n_{2k+2}$ such that

$$\left\| \frac{1}{k+1} \left(\sum_{i=k+2}^{2k+2} y_{n_i} \right) \right\| \le 1 - \delta.$$

Continue this process, we obtain a subsequence (y_{n_i}) of (y_n) for which given any $j \in \mathbb{N}$,

$$\left\| \frac{1}{k+1} \left(\sum_{i=(j-1)k+j}^{jk+j} y_{n_i} \right) \right\| \le 1 - \delta.$$

Now, using Kakutani's method [3], we conclude that that there exists a subsequence (y'_n) of (y_n) such that

$$\left\| \frac{1}{n} \sum_{i=1}^{n} y_n' \right\| \to 0$$
 as $n \to \infty$.

This means that X has the weak Banach-Saks property. Since the weak Banach-Saks property is equivalent to the Banach-Saks property in a reflexive Banach space, we get the result.

We now consider the converse of the above proposition.

EXAMPLE 2. There exists a non-uniformly convex Banach space with the weak property (β_1) . Consider $(\mathbb{R}^2, \|\cdot\|_{\infty})$. Then it is easy to see that $(\mathbb{R}^2, \|\cdot\|_{\infty})$ is not uniformly convex. Since weak convergence is equivalent to norm convergence in finite dimensional Banach space, it has the weak property (β_1) .

The following can be found in [5].

EXAMPLE 3. For $x = (x_n) \in l_2$, we define a norm $||x||_{(k)}$ by

$$||x||_{(k)} = \left[\sup_{n_1 < n_2 < \dots < n_k} \left(\sum_{i=1}^k |x_{n_i}| \right)^2 + \sum_{n \neq n_1, n_2, \dots, n_k} |x_n|^2 \right]^{\frac{1}{2}}.$$

Then $||x||_2 \le ||x||_{(k)} \le \sqrt{k} ||x||_2$. Let $X_k = (l_2, ||\cdot||_{(k)})$.

For a finite subset A and subset B of \mathbb{N} , we say A < B if $\max A < \min B$. Let supp $x = \{n \in \mathbb{N} : x = \sum_{n=1}^{\infty} a_n e_n, a_n \neq 0\}$, where (e_n) is a Schauder basis in a Banach space X. For $x, y \in X$, we say x < y only if supp $x < \sup y$. We need the following lemma [1].

LEMMA 2.3. Let X_k be the space defined by in Example 3. If $x_1, x_2, \dots, x_k, x_{k+1} \in B_{X_k}$ with $x_1 < x_2 < \dots < x_k < x_{k+1}$, then

$$\left\| \sum_{i=1}^{k+1} x_i \right\|_{(k)} \le \sqrt{k^2 + 1}.$$

By the above lemma, we get the following.

PROPOSITION 2.4. X_k satisfies the weak property (β_k) but does not satisfy the weak property (β_{k-1}) , where $k \geq 2$.

Proof. Since X_k is isomorphic to l_2 , unit vector basis $(e_n)_{n\geq 1}$ is weakly null and so is $(e_n)_{n\geq 2}$. But

$$\left\| e_1 + \sum_{i=1}^{k-1} e_{n_i} \right\|_{(k)} = k,$$

for all choice of $n_i \in \mathbb{N}$ where $1 < n_1 < n_2 < \cdots, n_{k-1}$. This means that X_k does not have (β_{k-1}) .

Let $\delta = 1 - \frac{\sqrt{k^2+2}}{k+1}$. Then $0 < \delta < 1$, since $k \ge 1$. Suppose that $(x_n) = \left(\sum_{i=1}^{\infty} a_i^{(n)} e_i\right)$ is a weakly null sequence in B_{X_k} and $x = \sum_{i=1}^{\infty} a_i e_i \in B_{X_k}$. Then there exists $p_0 \in \mathbb{N}$ such that

$$\left\| x - \sum_{i=1}^{p_0} a_i e_i \right\|_{(k)} < \frac{1}{k+1} \left(\sqrt{k^2 + 2} - \sqrt{k^2 + 1} \right).$$

Let $u_0 = \sum_{i=1}^{p_0} a_i e_i$. Then $||x - u_0||_{(k)} < \frac{1}{k+1} (\sqrt{k^2 + 2} - \sqrt{k^2 + 1})$.

Since $x_n \to 0$ weakly, $a_i^{(n)} = e_i^*(x_n) \to 0$ as $n \to 0$ for each i. Then there exists $N_1 \in \mathbb{N}$ such that

$$\left\| \sum_{i=1}^{p_0} a_i^{(N_1)} e_i \right\|_{(k)} < \frac{1}{2(k+1)} \left(\sqrt{k^2 + 2} - \sqrt{k^2 + 1} \right).$$

For $x_{N_1} = \sum_{i=1}^{\infty} a_i^{(N_1)} e_i$, there exists $p_1 > p_0$ such that

$$\left\| \sum_{i=p_1+1}^{\infty} a_i^{(N_1)} e_i \right\|_{(k)} < \frac{1}{2(k+1)} \left(\sqrt{k^2 + 2} - \sqrt{k^2 + 1} \right).$$

Let
$$u_1 = \sum_{i=p_0+1}^{p_1} a_i^{(N_1)} e_i$$
. Then $||u_1 - x_{N_1}||_{(k)} < \frac{1}{k+1} (\sqrt{k^2 + 2} - \sqrt{k^2 + 1})$.

Since $x_n \to 0$ weakly, $a_i^{(n)} = e_i^*(x_n) \to 0$ as $n \to 0$ for each i. Then there exists $N_2 \in \mathbb{N}$ such that $N_2 > N_1$ and

$$\left\| \sum_{i=1}^{p_1} a_i^{(N_2)} e_i \right\|_{(k)} < \frac{1}{2(k+1)} \left(\sqrt{k^2 + 2} - \sqrt{k^2 + 1} \right).$$

For $x_{N_2} = \sum_{i=1}^{\infty} a_i^{(N_2)} e_i$, there exists $p_2 > p_1$ such that

$$\left\| \sum_{i=p_2+1}^{\infty} a_i^{(N_2)} e_i \right\|_{(k)} < \frac{1}{2(k+1)} \left(\sqrt{k^2 + 2} - \sqrt{k^2 + 1} \right).$$

Let $u_2 = \sum_{i=p_1+1}^{p_2} a_i^{(N_1)} e_i$. Then $||u_2 - x_{N_2}||_{(k)} < \frac{1}{k+1} (\sqrt{k^2 + 2} - \sqrt{k^2 + 1})$. Continue this process, we get a block sequence $(u_i)_{i \geq 0}$ such that

$$||x - u_0||_{(k)} < \frac{1}{k+1} \left(\sqrt{k^2 + 2} - \sqrt{k^2 + 1} \right)$$

and

$$||u_i - x_{N_i}||_{(k)} < \frac{1}{k+1} \left(\sqrt{k^2 + 2} - \sqrt{k^2 + 1} \right)$$

where $i \geq 1$.

Since unit vector basis $(e_n)_{n\geq 1}$ in X_k is 1-unconditional, $||u_i||_{(k)}\leq 1$, for $i\in\mathbb{N}\cup\{0\}$.

We note that

$$\left\| \sum_{i=0}^k u_i \right\|_{(k)} \le \sqrt{k^2 + 1},$$

by Lemma 2.3. Then we have

$$\left\| x + \sum_{j=1}^{k} x_{N_i} \right\|_{(k)} \le \|x - u_0\|_{(k)} + \sum_{i=1}^{k} \|x_{N_i} - u_i\|_{(k)} + \left\| \sum_{i=0}^{k} u_i \right\|_{(k)} < \sqrt{k^2 + 2}.$$

Thus,

$$\frac{1}{k+1} \left\| x + \sum_{j=1}^{k} x_{N_i} \right\|_{(k)} \le 1 - \delta.$$

This completes our proof.

We finally consider the following.

PROPOSITION 2.5. $\left(\prod_{s\geq 2} X_s\right)_{l_2}$ satisfies the Banach-Saks property but does not satisfy the weak property (β_{∞}) .

Proof. $(\prod_{s\geq 2} X_s)_{l_2}$ has the Banach-Saks property [5]. Let $k\in\mathbb{N}$. If $x^{(n)}=(0,0,\cdots,0,e_n,0,\cdots)$ where usual unit vector e_n in k-th coordinate is only nonzero element of $x^{(n)}$, then $x^{(n)}\in S_{(\prod_{s\geq 2} X_s)_{l_2}}$. We note that $(x^{(n)})_{n\geq 2}$ is weakly null in $(\prod_{s\geq 2} X_s)_{l_2}$. But for any $n_i\geq 2$, $i=1,2,\cdots,k$,

$$\left\| x^{(1)} + \sum_{i=1}^{k} x^{(n_i)} \right\|_{\left(\prod_{s \ge 2} X_s\right)_{l_2}} = \left\| e_1 + \sum_{i=1}^{k} e_{n_i} \right\|_{(k+1)} = k+1$$

This means that $\left(\prod_{s\geq 2} X_s\right)_{l_2}$ has no the weak property (β_{∞}) .

By Proposition 2.2, Example 2, Proposition 2.4 and Proposition 2.5, we can get the following strict implication.

$$(UC) \Rightarrow w - (\beta_1) \Rightarrow w - (\beta_2) \Rightarrow \cdots \Rightarrow w - (\beta_\infty) \Rightarrow (BS).$$

References

- [1] K.G. Cho and C.S. Lee, Alternate signs (A_k) property in Banach spaces, Korean J. Math. 19 (2011), 301–308.
- [2] Y. Cui, H. Hudzik and R. Płuciennik, Weak orthogonality and weak property (β) in some Banach sequence spaces, Czechoslovak Math. J. 49 (1999), 303–316.
- [3] S. Kakutani, Weak convergence in uniformly convex spaces, Tôhoku Math. J. **45** (1938), 347–354.
- [4] T. Nishiura and D. Waterman, *Reflexivity and summability*, Studia Math. **23** (1963), 53–57.
- [5] J.R. Partington, On the Banach-Saks property, Math. Proc. Cambridge Philos. Soc. 82 (1977), 369–374.

Bangmok College of General Education Myong Ji University Yong-In 449-728, Korea E-mail: kgjo@mju.ac.kr

Department of Mathematics education Inha University Inchon 402-751, Korea E-mail: cslee@inha.ac.kr