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WEAK PROPERTY (βk)

Kyugeun Cho∗ and Chongsung Lee

Abstract. In this paper, we define the weak property (βk) and get
the following strict implications.

(UC)⇒ w − (β1)⇒ w − (β2)⇒ · · · ⇒ w − (β∞)⇒ (BS).

1. Introduction

Let (X, ‖ · ‖) be a real Banach space and X∗ the dual space of X. By
BX , we denote the closed unit ball of X. Denote by N and R the set of
natural numbers and real numbers, respectively.

A Banach space is said to be reflexive if the natural embedding η :
X → X∗∗ is onto. Cui, Hudzik and P luciennik introduced the notion
of weak property (β) [2]. We say that a Banach space X has the weak
property (β) if there is a number δ > 0 such that for any x ∈ BX and
any weakly null sequence (xn) in BX there exists k ∈ N such that∥∥∥∥x+ xk

2

∥∥∥∥ ≤ 1− δ.

We note that non-reflexive Banach space l1 has the weak property (β),
since weak convergence is equivalent to norm convergence in l1. With
these notions, we can get the following definition.
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Definition 1. A Banach space X has the weak property (βk) if it
is reflexive and there exists δ > 0 such that for any x ∈ BX and any
weakly null sequence (xn) ∈ BX there exist ni ∈ N, i = 1, 2, · · · , k with
n1 < n2 < · · · < nk such that∥∥∥∥∥ 1

k + 1

(
x+

k∑
i=1

xni

)∥∥∥∥∥ ≤ 1− δ.

We say that X has the weak property (β∞) if it has the weak property
(βk) for some k ∈ N.

A Banach space X is said to be uniformly convex (UC) if for all ε > 0,
there exists a δ > 0 such that for x, y ∈ BX with ‖x− y‖ ≥ ε,∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ.

A Banach space X is said to have Banach-Saks property (BS) if any
bounded sequence in the space admits a subsequence whose arithmetic
means converges in norm. In similar way, we say that a Banach space
X has weak Banach-Saks property (w-BS) if any weakly convergent se-
quence in the space admits a subsequence whose arithmetic means con-
verges in norm. Since any weakly convergent sequence is norm bounded,
it follows that Banach-Saks property implies weak Banach-Saks prop-
erty. We note that weak Banach-Saks property and Banach-Saks prop-
erty coincide in the reflexive Banach space.

S. Kakutani [3] showed that unform convexity implies Banach-Saks
property. T. Nishiura and D. Waterman [4] proved that Banach-Saks
property implies reflexivity in Banach spaces.

In the next section, we get the following strict implications.

(UC)⇒ w − (β1)⇒ w − (β2)⇒ · · · ⇒ w − (β∞)⇒ (BS).

J.R. Partington mentioned the same implications in the spaces which
satisfy property (Ak) without proofs [5]. We gave the detailed proofs in
proving the implications of alternate signs (Ak) properties [1] and can
get the above results in the weak property (βk) by the similar techniques.

2. Main Parts

We begin with lemma.
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Lemma 2.1. Let xn, x ∈ X. Suppose that (xn) is weakly null and
let α be a positive number such that ‖x‖ > α. Then there exists a
subsequence (xni

) of (xn) such that ‖x− xni
‖ ≥ α for all i ∈ N.

Proof. The proof is done by contradiction. Assume the assertion is
false ; ‖x− xn‖ < α except finite n. Then

α < ‖x‖ = sup
‖x∗‖=1

|x∗(x)|

= sup
‖x∗‖=1

lim
n→∞

|x∗(x− xn)|

≤ sup
‖x∗‖=1

lim sup
n
‖x∗‖‖x− xn‖

= lim sup
n
‖x− xn‖ ≤ α.

We get the contradiction.

Using the above Lemma 2.1, we get the followings.

Proposition 2.2. Let X be a Banach space.

(1) If X is uniformly convex, then it has the weak property (β1).
(2) If X has the weak property (βk), then it has the weak property

(βk+1).
(3) If X has the weak property (β∞), then it has the Banach-Saks

property.

Proof. (1) Since X is uniformly convex, there exists 0 < δ
(
1
2

)
< 1

such that for all x, y ∈ BX , if ‖x− y‖ ≥ 1
2
, then

1

2
‖x+ y‖ ≤ 1− δ

(
1

2

)
.

Let δ = min
{

1
4
, δ
(
1
2

)}
. Suppose that x ∈ BX and (xn) is a weakly null

sequence (xn) ∈ BX . If ‖x‖ ≤ 1
2
, then

∥∥1
2

(x+ x1)
∥∥ ≤ 3

4
≤ 1− δ.

If ‖x‖ > 1
2
, then by Lemma 2.1, there exists n1 ∈ N such that ‖x−xn1‖ ≥

1
2
, since (xn) is weakly null. Then ‖1

2
(x + xn1)‖ ≤ 1 − δ

(
1
2

)
≤ 1 − δ.

Since uniform convexity implies reflexivity, we get the result.
(2) Since X has the weak property (βk), there exists 0 < δ0 < 1 such

that for any x ∈ BX and for any weakly null sequence (xn) ∈ BX there
exist ni ∈ N, i = 1, 2, · · · , k with n1 < n2 < · · · < nk such that∥∥∥∥∥ 1

k + 1

(
x+

k∑
i=1

xni

)∥∥∥∥∥ ≤ 1− δ0.
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Let δ = k+1
k+2

δ0. Suppose that y ∈ BX and (yn) is a weakly null sequence
in BX . Then there exist ni ∈ N, i = 1, 2, · · · , k with n1 < n2 < · · · < nk

such that ∥∥∥∥∥ 1

k + 1

(
y +

k∑
i=1

yni

)∥∥∥∥∥ ≤ 1− δ0.

Let ynk+1
= ynk+1. Then∥∥∥∥∥ 1

k + 2

(
y +

k+1∑
i=1

yni

)∥∥∥∥∥ ≤ k + 1

k + 2

∥∥∥∥∥ 1

k + 1

(
y +

k∑
i=1

yni

)
+

1

k + 1
ynk+1

∥∥∥∥∥
≤ k + 1

k + 2
(1− δ0) +

1

k + 2

= 1− k + 1

k + 2
δ0 = 1− δ.

Since X has the weak property (βk), it is reflexive and we get the result.

(3) Suppose that X has the weak property (βk). Then there exists
0 < δ < 1 such that for all weakly null sequence (xn) in BX and x in
BX , there exist ni ∈ N, i = 1, 2, · · · , k with n1 < n2 < · · · < nk such
that ∥∥∥∥∥ 1

k + 1

(
x+

k∑
i=1

xni

)∥∥∥∥∥ ≤ 1− δ.

Let (yn) be a weakly null sequence in BX and n1 = 1. Then since
(yn)n>n1 is weakly null, there exist ni ∈ N ,where i = 2, 3, · · · , k+1 with
1 = n1 < n2 < · · · < nk such that∥∥∥∥∥ 1

k + 1

(
k+1∑
i=1

yni

)∥∥∥∥∥ ≤ 1− δ.

Let nk+2 = nk+1 + 1. Then since (yn)n>nk+2
is weakly null, there exist

ni ∈ N, where i = k+3, k+4, · · · , 2k+2 with nk+2 < nk+3 < · · · < n2k+2

such that ∥∥∥∥∥ 1

k + 1

(
2k+2∑
i=k+2

yni

)∥∥∥∥∥ ≤ 1− δ.
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Continue this process, we obtain a subsequence (yni
) of (yn) for which

given any j ∈ N, ∥∥∥∥∥∥ 1

k + 1

 jk+j∑
i=(j−1)k+j

yni

∥∥∥∥∥∥ ≤ 1− δ.

Now, using Kakutani’s method [3], we conclude that that there exists a
subsequence (y′n) of (yn) such that∥∥∥∥∥ 1

n

n∑
i=1

y′n

∥∥∥∥∥→ 0 as n→∞.

This means that X has the weak Banach-Saks property. Since the weak
Banach-Saks property is equivalent to the Banach-Saks property in a
reflexive Banach space, we get the result.

We now consider the converse of the above proposition.

Example 2. There exists a non-uniformly convex Banach space with
the weak property (β1). Consider (R2, ‖ · ‖∞). Then it is easy to see
that (R2, ‖ · ‖∞) is not uniformly convex. Since weak convergence is
equivalent to norm convergence in finite dimensional Banach space, it
has the weak property (β1).

The following can be found in [5].

Example 3. For x = (xn) ∈ l2, we define a norm ‖x‖(k) by

‖x‖(k) =

 sup
n1<n2<···<nk

(
k∑

i=1

|xni
|

)2

+
∑

n6=n1,n2,··· ,nk

|xn|2
 1

2

.

Then ‖x‖2 ≤ ‖x‖(k) ≤
√
k‖x‖2. Let Xk =

(
l2, ‖ · ‖(k)

)
.

For a finite subset A and subset B of N, we say A < B if maxA <
minB. Let supp x = {n ∈ N : x =

∑∞
n=1 anen, an 6= 0}, where (en) is a

Schauder basis in a Banach space X. For x, y ∈ X, we say x < y only if
supp x < supp y. We need the following lemma [1].
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Lemma 2.3. Let Xk be the space defined by in Example 3.
If x1, x2, · · · , xk, xk+1 ∈ BXk

with x1 < x2 < · · · < xk < xk+1, then∥∥∥∥∥
k+1∑
i=1

xi

∥∥∥∥∥
(k)

≤
√
k2 + 1.

By the above lemma, we get the following.

Proposition 2.4. Xk satisfies the weak property (βk) but does not
satisfy the weak property (βk−1), where k ≥ 2.

Proof. Since Xk is isomorphic to l2, unit vector basis (en)n≥1 is weakly
null and so is (en)n≥2 . But∥∥∥∥∥e1 +

k−1∑
i=1

eni

∥∥∥∥∥
(k)

= k,

for all choice of ni ∈ N where 1 < n1 < n2 < · · · , nk−1. This means that
Xk does not have (βk−1).

Let δ = 1−
√
k2+2
k+1

. Then 0 < δ < 1, since k ≥ 1. Suppose that (xn) =(∑∞
i=1 a

(n)
i ei

)
is a weakly null sequence in BXk

and x =
∑∞

i=1 aiei ∈ BXk
.

Then there exists p0 ∈ N such that∥∥∥∥∥x−
p0∑
i=1

aiei

∥∥∥∥∥
(k)

<
1

k + 1

(√
k2 + 2−

√
k2 + 1

)
.

Let u0 =
∑p0

i=1 aiei. Then ‖x− u0‖(k) < 1
k+1

(√
k2 + 2−

√
k2 + 1

)
.

Since xn → 0 weakly, a
(n)
i = e∗i (xn) → 0 as n → 0 for each i. Then

there exists N1 ∈ N such that∥∥∥∥∥
p0∑
i=1

a
(N1)
i ei

∥∥∥∥∥
(k)

<
1

2(k + 1)

(√
k2 + 2−

√
k2 + 1

)
.

For xN1 =
∑∞

i=1 a
(N1)
i ei, there exists p1 > p0 such that∥∥∥∥∥

∞∑
i=p1+1

a
(N1)
i ei

∥∥∥∥∥
(k)

<
1

2(k + 1)

(√
k2 + 2−

√
k2 + 1

)
.

Let u1 =
∑p1

i=p0+1 a
(N1)
i ei. Then ‖u1−xN1‖(k) < 1

k+1

(√
k2 + 2−

√
k2 + 1

)
.
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Since xn → 0 weakly, a
(n)
i = e∗i (xn) → 0 as n → 0 for each i. Then

there exists N2 ∈ N such that N2 > N1 and∥∥∥∥∥
p1∑
i=1

a
(N2)
i ei

∥∥∥∥∥
(k)

<
1

2(k + 1)

(√
k2 + 2−

√
k2 + 1

)
.

For xN2 =
∑∞

i=1 a
(N2)
i ei, there exists p2 > p1 such that∥∥∥∥∥

∞∑
i=p2+1

a
(N2)
i ei

∥∥∥∥∥
(k)

<
1

2(k + 1)

(√
k2 + 2−

√
k2 + 1

)
.

Let u2 =
∑p2

i=p1+1 a
(N1)
i ei. Then ‖u2−xN2‖(k) < 1

k+1

(√
k2 + 2−

√
k2 + 1

)
.

Continue this process, we get a block sequence (ui)i≥0 such that

‖x− u0‖(k) <
1

k + 1

(√
k2 + 2−

√
k2 + 1

)
and

‖ui − xNi
‖(k) <

1

k + 1

(√
k2 + 2−

√
k2 + 1

)
where i ≥ 1.

Since unit vector basis (en)n≥1 in Xk is 1-unconditional, ‖ui‖(k) ≤ 1,
for i ∈ N ∪ {0}.

We note that ∥∥∥∥∥
k∑

i=0

ui

∥∥∥∥∥
(k)

≤
√
k2 + 1,

by Lemma 2.3. Then we have∥∥∥∥∥x+
k∑

j=1

xNi

∥∥∥∥∥
(k)

≤ ‖x− u0‖(k) +
k∑

i=1

‖xNi
− ui‖(k) +

∥∥∥∥∥
k∑

i=0

ui

∥∥∥∥∥
(k)

≤
√
k2 + 2.

Thus,

1

k + 1

∥∥∥∥∥x+
k∑

j=1

xNi

∥∥∥∥∥
(k)

≤ 1− δ.

This completes our proof.

We finally consider the following.
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Proposition 2.5.
(∏

s≥2Xs

)
l2

satisfies the Banach-Saks property

but does not satisfy the weak property (β∞).

Proof.
(∏

s≥2Xs

)
l2

has the Banach-Saks property [5]. Let k ∈ N. If

x(n) = (0, 0, · · · , 0, en, 0, · · · ) where usual unit vector en in k-th coordi-
nate is only nonzero element of x(n), then x(n) ∈ S(

∏
s≥2 Xs)

l2

. We note

that (x(n))n≥2 is weakly null in
(∏

s≥2Xs

)
l2

. But for any ni ≥ 2, i =

1, 2, · · · , k,∥∥∥∥∥x(1) +
k∑

i=1

x(ni)

∥∥∥∥∥
(
∏

s≥2 Xs)
l2

=

∥∥∥∥∥e1 +
k∑

i=1

eni

∥∥∥∥∥
(k+1)

= k + 1

This means that
(∏

s≥2Xs

)
l2

has no the weak property (β∞).

By Proposition 2.2, Example 2, Proposition 2.4 and Proposition 2.5, we
can get the following strict implication.

(UC)⇒ w − (β1)⇒ w − (β2)⇒ · · · ⇒ w − (β∞)⇒ (BS).
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