ON (m, n)-IDEALS OF AN ORDERED ABEL-GRASSMANN GROUPOID

Faisal Yousafzai, Asad Khan, and Aiyared Iampan

Abstract

In this paper, we introduce the concept of (m, n)-ideals in a non-associative ordered structure, which is called an ordered Abel-Grassmann's groupoid, by generalizing the concept of (m, n) ideals in an ordered semigroup [14]. We also study the (m, n)-regular class of an ordered $\mathcal{A \mathcal { G }}$-groupoid in terms of (m, n)-ideals.

1. Introduction

The concept of a left almost semigroup ($\mathcal{L \mathcal { A }}$-semigroup) was first given by Kazim and Naseeruddin in 1972 [3]. In [2], the same structure is called a left invertive groupoid. Protić and Stevanović called it an AbelGrassmann's groupoid ($\mathcal{A} \mathcal{G}$-groupoid) [13].

An $\mathcal{A} \mathcal{G}$-groupoid is a groupoid S satisfying the left invertive law $(a b) c=(c b) a$ for all $a, b, c \in S$. This left invertive law has been obtained by introducing braces on the left of ternary commutative law $a b c=c b a$. An $\mathcal{A G}$-groupoid satisfies the medial law $(a b)(c d)=(a c)(b d)$ for all $a, b, c, d \in S$. Since $\mathcal{A G}$-groupoids satisfy medial law, they belong to the class of entropic groupoids which are also called abelian quasigroups [15]. If an $\mathcal{A \mathcal { G }}$-groupoid S contains a left identity (unitary $\mathcal{A G}$-groupoid), then it satisfies the paramedial law $(a b)(c d)=(d c)(b a)$ and the identity $a(b c)=b(a c)$ for all $a, b, c, d \in S[6]$.

Received December 18, 2014. Revised August 24, 2015. Accepted August 26, 2015.

2010 Mathematics Subject Classification: 20M10, 20 N99.
Key words and phrases: ordered $\mathcal{A} \mathcal{G}$-groupoid, left invertive law, left identity and (m, n)-ideal.
(c) The Kangwon-Kyungki Mathematical Society, 2015.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

An $\mathcal{A} \mathcal{G}$-groupoid is a useful algebraic structure, midway between a groupoid and a commutative semigroup. An $\mathcal{A G}$-groupoid is nonassociative and non-commutative in general, however, there is a close relationship with semigroup as well as with commutative structures. It has been investigated in [6] that if an $\mathcal{A G}$-groupoid contains a right identity, then it becomes a commutative semigroup. The connection of a commutative inverse semigroup with an $\mathcal{A G}$-groupoid has been given by Yousafzai et. al. in [17] as, a commutative inverse semigroup ($S,$.) becomes an $\mathcal{A \mathcal { G }}$-groupoid $(S, *)$ under $a * b=b a^{-1} r^{-1} \forall a, b, r \in S$. An $\mathcal{A G}$-groupoid S with left identity becomes a semigroup under the binary operation " o_{e} " defined as, $x \circ_{e} y=(x e) y$ for all $x, y \in S$ [18]. An $\mathcal{A G}$-groupoid is the generalization of a semigroup theory [6] and has vast applications in collaboration with semigroups like other branches of mathematics. Many interesting results on $\mathcal{A G}$-groupoids have been investigated in $[6,9,10]$. The structure of $\mathcal{A} \mathcal{G}$-groupoids and other generalizations have been recently considered and studied by Mushtaq and Khan in $[11,12]$, respectively. Minimal ideals of an $\mathcal{A \mathcal { G }}$-groupoid were also considered and studied in [4].

If S is an $\mathcal{A G}$-groupoid with product $\cdot: S \times S \rightarrow S$, then $a b \cdot c$ and $(a b) c$ both denote the product $(a \cdot b) \cdot c$.

Definition 1.1. [19] An $\mathcal{A G}$-groupoid (S, \cdot) together with a partial order \leq on S that is compatible with an \mathcal{A}-groupoid operation, meaning that for $x, y, z \in S$,

$$
x \leq y \Rightarrow z x \leq z y \text { and } x z \leq y z
$$

is called an ordered $\mathcal{A G}$-groupoid.
Let (S, \cdot, \leq) be an ordered $\mathcal{A \mathcal { G }}$-groupoid. If A and B are nonempty subsets of S, we let

$$
A B=\{x y \in S \mid x \in A, y \in B\}
$$

and

$$
(A]=\{x \in S \mid x \leq a \text { for some } a \in A\} .
$$

Definition 1.2. [19] Let (S, \cdot, \leq) be an ordered $\mathcal{A G}$-groupoid. A nonempty subset A of S is called a left (resp. right) ideal of S if the followings hold:
(i) $S A \subseteq A(r e s p . A S \subseteq A) ;$
(ii) $x \in A$ and $y \in S, y \leq x$ implies $y \in A$.

Equivalently, $(S A] \subseteq A$ (resp. $(A S] \subseteq A)$. If A is both a left and a right ideal of S, then A is called a two-sided ideal or an ideal of S.

A nonempty subset A of an ordered $\mathcal{A \mathcal { G }}$-groupoid (S, \cdot, \leq) is called an $\mathcal{A} \mathcal{G}$-subgroupoid of S if $x y \in A$ for all $x, y \in A$.

It is clear to see that every left and and right ideals of an ordered $\mathcal{A G}$-groupoid is an $\mathcal{A \mathcal { G }}$-subgroupoid.

Let (S, \cdot, \leq) be an ordered $\mathcal{A} \mathcal{G}$-groupoid and let A and B be nonempty subsets of S, then the following was proved in [16]:
(i) $A \subseteq(A]$;
(ii) If $A \subseteq B$, then $(A] \subseteq(B]$;
(iii) $(A](B] \subseteq(A B]$;
(iv) $(A]=((A]]$;
(v) $((A])(B]]=(A B]$.

Also for every left (resp. right) ideal T of $S,(T]=T$.
The concept of (m, n)-ideals in ordered semigroups were given by J. Sanborisoot and T. Changphas in [14] which was obtained by generalizing the idea of (m, n)-ideals in semigroup [5]. It's natural to ask whether the concept of (m, n)-ideals in ordered $\mathcal{A \mathcal { G }}$-groupoids is valid or not? The aim of this paper is to deal with (m, n)-ideals in ordered $\mathcal{A} \mathcal{G}$-groupoids. We introduce the concept of (m, n)-ideals in ordered $\mathcal{A \mathcal { G }}$-groupoids as follows:

Definition 1.3. Let (S, \cdot, \leq) be an ordered $\mathcal{A} \mathcal{G}$-groupoid and let m, n be non-negative integers. An $\mathcal{A \mathcal { G }}$-subgroupoid A of S is called an (m, n)-ideal of S if the followings hold:
(i) $A^{m} S \cdot A^{n} \subseteq A$;
(ii) for $x \in A$ and $y \in S, y \leq x$ implies $y \in A$.

Here, A^{0} is defined as $A^{0} S \cdot A^{n}=S A^{n}=S$ if $n=0$ and $A^{m} S \cdot A^{0}=$ $A^{m} S=S$ if $m=0$. Equivalently, an $\mathcal{A G}$-subgroupoid A of S is called an (m, n)-ideal of S if

$$
\left(A^{m} S \cdot A^{n}\right] \subseteq A
$$

If A is an (m, n)-ideal of an ordered $\mathcal{A G}$-groupoid (S, \cdot, \leq), then $(A]=$ A.

Note that the powers of an ordered $\mathcal{A \mathcal { G }}$-groupoid (S, \cdot, \leq) are noncommutative and non associative, that is $a a \cdot a \neq a \cdot a a$ and $(a a \cdot a) a \neq$ $a(a a \cdot a)$ for all $a \in S$. But a unitary ordered $\mathcal{A} \mathcal{G}$-groupoid has associative powers, that is $(a a \cdot a) a=a(a a \cdot a)$ for all $a \in S$.

Assume that (S, \cdot, \leq) is a unitary ordered $\mathcal{A G}$-groupoid. Let us define $a^{m+1}=a^{m} a$ and $a^{m}=((((a a) a) a) \ldots a) a=a^{m-1} a=a a^{m-1}$ for all $a \in S$ where $m \geq 4$. Also, we can show by induction, $(a b)^{m}=a^{m} b^{m}$ and $a^{m} a^{n}=a^{m+n}$ hold for all $a, b \in S$ and $m, n \geq 4$. Throughout this paper, we will use $m, n \geq 4$.

2. (m, n)-ideals in ordered \mathcal{A}-groupoids

Definition 2.1. If there is an element 0 of an ordered $\mathcal{A G}$-groupoid (S, \cdot, \leq) such that $x \cdot 0=0 \cdot x=x \forall x \in S$, we call 0 a zero element of S.

Example 2.2. Let $S=\{a, b, c, d, e\}$ with a left identity d. Then the following multiplication table and order shows that (S, \cdot, \leq) is a unitary ordered $\mathcal{A G}$-groupoid with a zero element a.

$$
\begin{aligned}
& \begin{array}{l|lllll}
\cdot & a & b & c & d & e \\
\hline a & a & a & a & a & a \\
b & a & e & e & c & e \\
c & a & e & e & b & e \\
d & a & b & c & d & e \\
e & a & e & e & e & e
\end{array} \\
& \leq:=\{(a, a),(a, b),(c, c),(a, c),(d, d),(a, e),(e, e),(b, b)\} .
\end{aligned}
$$

Lemma 2.3. If R and L are the right and the left ideals of a unitary ordered $\mathcal{A G}$-groupoid (S, \cdot, \leq) respectively, then ($R L]$ is an (m, n)-ideal of S.

Proof. Let R and L be the right and the left ideals of S respectively, then

$$
\begin{aligned}
\left(\left((R L)^{m}\right] S \cdot\left((R L)^{n}\right]\right] & \subseteq\left(\left((R L)^{m}\right](S] \cdot\left((R L)^{n}\right]\right] \subseteq\left((R L)^{m} S \cdot\left((R L)^{n}\right]\right] \\
& =\left(\left(R^{m} L^{m} \cdot S\right)\left(R^{n} L^{n}\right)\right]=\left(\left(R^{m} L^{m} \cdot R^{n}\right)\left(S L^{n}\right)\right] \\
& =\left(\left(L^{m} R^{m} \cdot R^{n}\right)\left(S L^{n}\right)\right]=\left(\left(R^{n} R^{m} \cdot L^{m}\right)\left(S L^{n}\right)\right] \\
& =\left(\left(R^{m} R^{n} \cdot L^{m}\right)\left(S L^{n}\right)\right]=\left(\left(R^{m+n} L^{m}\right)\left(S L^{n}\right)\right] \\
& =\left(S\left(R^{m+n} L^{m} \cdot L^{n}\right)\right]=\left(S\left(L^{n} L^{m} \cdot R^{m+n}\right)\right] \\
& =\left((S S] \cdot L^{m+n} R^{m+n}\right] \subseteq\left(S S \cdot L^{m+n} R^{m+n}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left(S L^{m+n} \cdot S R^{m+n}\right]=\left(R^{m+n} S \cdot L^{m+n} S\right] \\
& =\left(\left(R^{m} R^{n} \cdot(S S]\right)\left(L^{m} L^{n} \cdot(S S]\right)\right] \\
& \subseteq\left(\left(\left(R^{m} R^{n}\right] \cdot(S S]\right)\left(\left(L^{m} L^{n}\right] \cdot(S S]\right)\right] \\
& \subseteq\left(\left(R^{m} R^{n} \cdot S S\right)\left(L^{m} L^{n} \cdot S S\right)\right] \\
& =\left(\left(S S \cdot R^{n} R^{m}\right)\left(S S \cdot L^{n} L^{m}\right)\right] \\
& \subseteq\left(\left((S S] \cdot R^{n} R^{m}\right)\left((S S] \cdot L^{n} L^{m}\right)\right]=\left(S R^{m+n} \cdot S L^{m+n}\right] .
\end{aligned}
$$

Now

$$
\begin{aligned}
\left(S R^{m+n} \cdot S L^{m+n}\right] & =\left(\left(S \cdot R^{m+n-1} R\right)\left(S \cdot L^{m+n-1} L\right)\right] \\
& =\left(\left(S\left(R^{m+n-2} R \cdot R\right)\right)\left(S\left(L^{m+n-2} L \cdot L\right)\right)\right] \\
& =\left(S\left(R R \cdot R^{m+n-2}\right)\right)\left(S\left(L L \cdot L^{m+n-2}\right)\right) \\
& \subseteq\left(\left(S S \cdot R R^{m+n-2}\right)\left(S S \cdot L L^{m+n-2}\right)\right] \\
& \subseteq\left(\left(S R \cdot S R^{m+n-2}\right)\left(S L \cdot S L^{m+n-2}\right)\right] \\
& \subseteq\left(\left(R^{m+n-2} S \cdot R S\right)\left(L \cdot S L^{m+n-2}\right)\right] \\
& \subseteq\left(\left(R^{m+n-2} S \cdot(R S]\right)\left(L \cdot S L^{m+n-2}\right)\right] \\
& \subseteq\left(\left(R^{m+n-2} S \cdot R\right)\left(S \cdot L L^{m+n-2}\right)\right] \\
& \subseteq\left(\left((R S] \cdot R^{m+n-2}\right)\left(S L^{m+n-1}\right)\right] \\
& \subseteq\left(R R^{m+n-2} \cdot S L^{m+n-1}\right] \\
& \subseteq\left(S R^{m+n-1} \cdot S L^{m+n-1}\right]
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left(\left((R L)^{m}\right] S \cdot\left((R L)^{n}\right]\right] & \subseteq\left(S R^{m+n} \cdot S L^{m+n}\right] \subseteq\left(S R^{m+n-1} \cdot S L^{m+n-1}\right] \\
& \subseteq \ldots \subseteq(S R \cdot S L \subseteq \subseteq(S R \cdot(S L]] \\
& \subseteq(S R \cdot L] \subseteq((S S \cdot R) L] \\
& =((R S \cdot S) L] \subseteq(((R S] \cdot S) L] \subseteq(R L]
\end{aligned}
$$

Also

$$
\begin{aligned}
(R L] \cdot(R L] & \subseteq(R L \cdot R L]=(L R \cdot L R]=((L R \cdot R) L] \\
& =((R R \cdot L) L] \subseteq(((R S] \cdot S) L] \subseteq(R L] .
\end{aligned}
$$

This shows that $(R L]$ is an (m, n)-ideal of S.
Definition 2.4. An (m, n)-ideal M of an ordered $\mathcal{A G}$-groupoid $(S, \cdot, \leq$) with zero is said to be nilpotent if $M^{l}=\{0\}$ for some positive integer l.

Definition 2.5. An (m, n)-ideal A of an ordered $\mathcal{A} \mathcal{G}$-groupoid $(S, \cdot, \leq$) with zero is said to be 0 -minimal if $A \neq\{0\}$ and $\{0\}$ is the only (m, n)ideal of S properly contained in A.

Theorem 2.6. Let (S, \cdot, \leq) be a unitary ordered $\mathcal{A G}$-groupoid with zero. If S has the property that it contains no non-zero nilpotent (m, n) ideals and if $R(L)$ is a 0-minimal right (left) ideal of S, then either $(R L]=\{0\}$ or $(R L]$ is a 0 -minimal (m, n)-ideal of S.

Proof. Assume that $R(L)$ is a 0 -minimal right (left) ideal of S such that $(R L] \neq\{0\}$, then by Lemma $2.3,(R L]$ is an (m, n)-ideal of S. Now we show that $(R L]$ is a 0 -minimal (m, n)-ideal of S. Let $\{0\} \neq M \subseteq(R L]$ be an (m, n)-ideal of S. Note that since $(R L] \subseteq R \cap L$, we have $M \subseteq R \cap L$. Hence $M \subseteq R$ and $M \subseteq L$. By hypothesis, $M^{m} \neq\{0\}$ and $M^{n} \neq\{0\}$. Since $\{0\} \neq\left(S M^{m}\right]=\left(M^{m} S\right]$, therefore

$$
\begin{aligned}
\{0\} & \neq\left(M^{m} S\right] \subseteq\left(R^{m} S\right]=\left(R^{m-1} R \cdot S\right]=\left(S R \cdot R^{m-1}\right] \\
& =\left(S R \cdot R^{m-2} R\right] \subseteq\left(R R^{m-2} \cdot(R S]\right] \\
& \subseteq\left(R R^{m-2} \cdot R\right]=\left(R^{m}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\left(R^{m}\right] & \subseteq S\left(R^{m}\right] \subseteq\left(S R^{m}\right] \subseteq\left(S S \cdot R R^{m-1}\right] \\
& \subseteq\left(R^{m-1} R \cdot S\right]=\left(\left(R^{m-2} R \cdot R\right) S\right] \\
& =\left(\left(R R \cdot R^{m-2}\right) S\right] \subseteq\left(S R^{m-2} \cdot(R S]\right] \\
& \subseteq\left(S R^{m-2} \cdot R\right] \subseteq\left(\left(S S \cdot R^{m-3} R\right) R\right] \\
& =\left(\left(R R^{m-3} \cdot S S\right) R\right] \subseteq\left(\left((R S] \cdot R^{m-3} S\right) R\right] \\
& \subseteq\left(\left(R \cdot R^{m-3} S\right) R\right] \subseteq\left(\left(R^{m-3} \cdot(R S]\right) R\right] \\
& \subseteq\left(R^{m-3} R \cdot R\right]=\left(R^{m-1}\right]
\end{aligned}
$$

therefore $\{0\} \neq\left(M^{m} S\right] \subseteq\left(R^{m}\right] \subseteq\left(R^{m-1}\right] \subseteq \ldots \subseteq(R]=R$. It is easy to see that $\left(M^{m} S\right]$ is a right ideal of S. Thus $\left(M^{m} S\right]=R$ since R is 0 -minimal. Also

$$
\begin{aligned}
\{0\} & \neq\left(S M^{n}\right] \subseteq\left(S L^{n}\right]=\left(S \cdot L^{n-1} L\right] \\
& \subseteq\left(L^{n-1} \cdot(S L]\right] \subseteq\left(L^{n-1} L\right]=\left(L^{n}\right],
\end{aligned}
$$

and

$$
\begin{aligned}
\left(L^{n}\right] & \subseteq\left(S L^{n}\right] \subseteq\left(S S \cdot L L^{n-1}\right] \subseteq\left(L^{n-1} L \cdot S\right] \\
& =\left(\left(L^{n-2} L \cdot L\right) S\right] \subseteq\left((S L] \cdot L^{n-2} L\right] \\
& \subseteq\left(L \cdot L^{n-2} L\right] \subseteq\left(L^{n-2} \cdot S L\right] \\
& \subseteq\left(L^{n-2} L\right]=\left(L^{n-1}\right] \subseteq \ldots \subseteq(L]
\end{aligned}
$$

therefore $\{0\} \neq\left(S M^{n}\right] \subseteq\left(L^{n}\right] \subseteq\left(L^{n-1}\right] \subseteq \ldots \subseteq(L]=L$. It is easy to see that $\left(S M^{n}\right]$ is a left ideal of S. Thus $\left(S M^{n}\right]=L$ since L is 0 -minimal. Therefore

$$
\begin{aligned}
M & \subseteq(R L]=\left(\left(M^{m} S\right] \cdot\left(S M^{n}\right]\right]=\left(M^{n} S \cdot S M^{m}\right] \\
& =\left(\left(S M^{m} \cdot S\right) M^{n}\right] \subseteq\left(\left(S M^{m} \cdot S S\right) M^{n}\right] \\
& \subseteq\left(\left(S \cdot M^{m} S\right) M^{n}\right]=\left(\left(M^{m} \cdot S S\right) M^{n}\right] \\
& \subseteq\left(M^{m} S \cdot M^{n}\right] \subseteq M
\end{aligned}
$$

Thus $M=(R L]$, which means that $(R L]$ is a 0 -minimal (m, n)-ideal of S.

Note that if (S, \cdot, \leq) is a unitary ordered $\mathcal{A G}$-groupoid and $M \subseteq S$, then it is easy to see that $\left(S M^{2}\right]$ and $(S M]$ are the left and the right ideals of S respectively.

Theorem 2.7. Let (S, \cdot, \leq) be a unitary ordered $\mathcal{A G}$-groupoid with zero. If $R(L)$ is a 0 -minimal right (left) ideal of S, then either $\left(R^{m} L^{n}\right]=$ $\{0\}$ or $\left(R^{m} L^{n}\right]$ is a 0 -minimal (m, n)-ideal of S.

Proof. Assume that $R(L)$ is a 0 -minimal right (left) ideal of S such that $\left(R^{m} L^{n}\right] \neq\{0\}$, then $R^{m} \neq\{0\}$ and $L^{n} \neq\{0\}$. Hence $\{0\} \neq R^{m} \subseteq R$ and $\{0\} \neq L^{n} \subseteq L$, which shows that $R^{m}=R$ and $L^{n}=L$ since $R(L)$ is a 0 -minimal right (left) ideal of S. Thus by lemma $2.3,\left(R^{m} L^{n}\right]=(R L]$ is an (m, n)-ideal of S. Now we show that $\left(R^{m} L^{n}\right]$ is a 0 -minimal (m, n) ideal of S. Let $\{0\} \neq M \subseteq\left(R^{m} L^{n}\right]=(R L] \subseteq R \cap L$ be an (m, n)-ideal of S. Hence

$$
\{0\} \neq\left(S M^{2}\right] \subseteq(M M \cdot S S]=(M S \cdot M S] \subseteq((R S] \cdot(R S]] \subseteq R,
$$

and $\{0\} \neq(S M] \subseteq(S L] \subseteq L$. Thus $R=\left(S M^{2}\right]$ and $(S M]=L$ since R (L) is a 0 -minimal right (left) ideal of S. Since

$$
\left(S M^{2}\right] \subseteq(M M \cdot S S]=(S M \cdot M] \subseteq(S M],
$$

therefore

$$
\begin{aligned}
M & \subseteq\left(R^{m} L^{n}\right] \subseteq\left(\left((S M)^{m}\right]\left((S M)^{n}\right]\right]=\left((S M)^{m}(S M)^{n}\right] \\
& =\left(S^{m} M^{m} \cdot S^{n} M^{n}\right]=\left(S S \cdot M^{m} M^{n}\right] \subseteq\left(M^{n} M^{m} \cdot S\right] \\
& \subseteq\left((S S)\left(M^{m-1} M\right) \cdot M^{n}\right]=\left(\left(M M^{m-1}\right)(S S) \cdot M^{n}\right] \\
& \subseteq\left(M^{m} S \cdot M^{n}\right] \subseteq M,
\end{aligned}
$$

Thus $M=\left(R^{m} L^{n}\right.$, which shows that $\left(R^{m} L^{n}\right]$ is a 0 -minimal (m, n)-ideal of S.

Theorem 2.8. Let (S, \cdot, \leq) be a unitary ordered $\mathcal{A G}$-groupoid. Assume that A is an (m, n)-ideal of S and B is an (m, n)-ideal of A such that B is idempotent. Then B is an (m, n)-ideal of S.

Proof. It is trivial that B is an $\mathcal{A \mathcal { G }}$-subgroupoid of S. Secondly, since $\left(A^{m} S \cdot A^{n}\right] \subseteq A$ and $\left(B^{m} A \cdot B^{n}\right] \subseteq B$, then

$$
\begin{aligned}
\left(B^{m} S \cdot B^{n}\right] & \subseteq\left(\left(B^{m} B^{m} \cdot S\right)\left(B^{n} B^{n}\right)\right]=\left(\left(B^{n} B^{n}\right)\left(S \cdot B^{m} B^{m}\right)\right] \\
& =\left(\left(\left(S \cdot B^{m} B^{m}\right) B^{n}\right) B^{n}\right] \subseteq\left(\left(\left(B^{n} \cdot B^{m} B^{m}\right)(S S)\right) B^{n}\right] \\
& =\left(\left(\left(B^{m} \cdot B^{n} B^{m}\right)(S S)\right) B^{n}\right]=\left(\left(S\left(B^{n} B^{m} \cdot B^{m}\right)\right) B^{n}\right] \\
& =\left(\left(S\left(B^{n} B^{m} \cdot B^{m-1} B\right)\right) B^{n}\right]=\left(\left(S\left(B B^{m-1} \cdot B^{m} B^{n}\right)\right) B^{n}\right] \\
& =\left(\left(S\left(B^{m} \cdot B^{m} B^{n}\right)\right) B^{n}\right] \subseteq\left(\left(B^{m}\left(S S \cdot B^{m} B^{n}\right)\right) B^{n}\right] \\
& =\left(\left(B^{m}\left(B^{n} B^{m} \cdot S S\right)\right) B^{n}\right] \subseteq\left(\left(B^{m}\left(S B^{m} \cdot B^{n}\right)\right) B^{n}\right] \\
& \subseteq\left(\left(B^{m}\left(\left(S S \cdot B^{m-1} B\right) B^{n}\right)\right) B^{n}\right] \subseteq\left(\left(B^{m}\left(B^{m} S \cdot B^{n}\right)\right) B^{n}\right] \\
& \subseteq\left(\left(B^{m}\left(A^{m} S \cdot A^{n}\right]\right) B^{n}\right] \subseteq\left(B^{m} A \cdot B^{n}\right] \subseteq B,
\end{aligned}
$$

which shows that B is an (m, n)-ideal of S.

Lemma 2.9. Let (S, \cdot, \leq) be a unitary ordered $\mathcal{A G}$-groupoid. Then $\langle a\rangle_{(m, n)}=\left(a^{m} S \cdot a^{n}\right]$ is an (m, n)-ideal of S.

Proof. Assume that S is a unitary $\mathcal{A} \mathcal{G}$-groupoid. It is easy to see that $\left(\langle a\rangle_{(m, n)}\right)^{n} \subseteq\langle a\rangle_{(m, n)}$. Now

$$
\begin{aligned}
\left(\left(\left(\langle a\rangle_{(m, n)}\right)^{m} S\right)\left(\langle a\rangle_{(m, n)}\right)^{n}\right] & =\left(\left(\left(\left(\left(a^{m} S\right) a^{n}\right)\right)^{m}\right] S \cdot\left(\left(\left(a^{m} S\right) a^{n}\right)^{n}\right]\right] \\
& \subseteq\left(\left(\left(a^{m} S\right) a^{n}\right)^{m} S \cdot\left(\left(a^{m} S\right) a^{n}\right)^{n}\right] \\
& =\left(\left(\left(a^{m m} S^{m}\right) a^{m n}\right) S \cdot\left(a^{m n} S^{n}\right) a^{n n}\right] \\
& =\left(a^{n n}\left(a^{m n} S^{n}\right) \cdot S\left(\left(a^{m m} S^{m}\right) a^{m n}\right)\right] \\
& =\left(\left(S\left(\left(a^{m m} S^{m}\right) a^{m n}\right) \cdot a^{m n} S^{n}\right) a^{n n}\right] \\
& =\left(\left(a^{m n} \cdot\left(S\left(\left(a^{m m} S^{m}\right) a^{m n}\right)\right) S^{n}\right) a^{n n}\right] \\
& \subseteq\left(a^{m n} S \cdot a^{n n}\right] \subseteq\left(a^{m n} S^{n} \cdot a^{n n}\right] \\
& =\left(\left(a^{m} S \cdot a^{n}\right)^{n}\right] \subseteq\left(\left(\left(a^{m} S \cdot a^{n}\right)\right]^{n}\right] \\
& =\left(\left(\langle a\rangle_{(m, n)}\right)^{n}\right] \subseteq\left(\langle a\rangle_{(m, n)}\right],
\end{aligned}
$$

which shows that $\langle a\rangle_{(m, n)}$ is an (m, n)-ideal of S.
Theorem 2.10. Let (S, \cdot, \leq) be a unitary ordered $\mathcal{A} \mathcal{G}$-groupoid and $\langle a\rangle_{(m, n)}$ be an (m, n)-ideal of S. Then the following statements hold:
(i) $\left(\left(\langle a\rangle_{(1,0)}\right)^{m} S\right]=\left(a^{m} S\right]$;
(ii) $\left(S\left(\langle a\rangle_{(0,1)}\right)^{n}\right]=\left(S a^{n}\right]$;
(iii) $\left(\left(\langle a\rangle_{(1,0)}\right)^{m} S \cdot\left(\langle a\rangle_{(0,1)}\right)^{n}\right]=\left(a^{m} S \cdot a^{n}\right]$.

Proof. (i) As $\langle a\rangle_{(1,0)}=(a S]$, we have

$$
\begin{aligned}
\left(\left(\langle a\rangle_{(1,0)}\right)^{m} S\right] & =\left(((a S])^{m} S\right] \subseteq\left(\left((a S)^{m}\right] S\right] \subseteq\left((a S)^{m} S\right] \\
& =\left((a S)^{m-1}(a S) \cdot S\right]=\left(S(a S) \cdot(a S)^{m-1}\right] \\
& \subseteq\left((a S)(a S)^{m-1}\right]=\left((a S) \cdot(a S)^{m-2}(a S)\right] \\
& =\left((a S)^{m-2}(a S \cdot a S)\right]=\left((a S)^{m-2}\left(a^{2} S\right)\right] \\
& =\ldots=\left((a S)^{m-(m-1)}\left(a^{m-1} S\right)\right][\text { if } m \text { is odd }] \\
& =\ldots=\left(\left(a^{m-1} S\right)(a S)^{m-(m-1)}\right][\text { if } m \text { is even] } \\
& =\left(a^{m} S\right] .
\end{aligned}
$$

Analogously, we can prove (ii) and (iii) as well.
Corollary 2.11. Let (S, \cdot, \leq) be a unitary ordered $\mathcal{A G}$-groupoid and let $\langle a\rangle_{(m, n)}$ be an (m, n)-ideal of S. Then the following statements hold:
(i) $\left(\left(\langle a\rangle_{(1,0)}\right)^{m} S\right]=\left(S a^{m}\right]$;
(ii) $\left(S\left(\langle a\rangle_{(0,1)}\right)^{n}\right]=\left(a^{n} S\right]$;
(iii) $\left(\left(\langle a\rangle_{(1,0)}\right)^{m} S \cdot\left(\langle a\rangle_{(0,1)}\right)^{n}\right]=\left(S a^{m} \cdot a^{n} S\right]$.

3. (m, n)-ideals in (m, n)-regular ordered $\mathcal{A} \mathcal{G}$-groupoids

Definition 3.1. Let m, n be non-negative integers and (S, \cdot, \leq) be an ordered $\mathcal{A G}$-groupoid. We say that S is (m, n)-regular if for every element $a \in S$ there exists some $x \in S$ such that $a \leq a^{m} x \cdot a^{n}$. Note that a^{0} is defined as an operator element such that $a^{m} x \cdot a^{0}=a^{m} x=x$ if $m=0$, and $a^{0} x \cdot a^{n}=x a^{n}=x$ if $n=0$.

Let $\mathfrak{L}_{(0, n)}, \mathfrak{R}_{(m, 0)}$ and $\mathfrak{A}_{(m, n)}$ denote the sets of ($0, n$)-ideals, $(m, 0)$ ideals and (m, n)-ideals of an ordered $\mathcal{A G}$-groupoid $(S, \cdot, \leq$) respectively.

Theorem 3.2. Let (S, \cdot, \leq) be a unitary ordered $\mathcal{A G}$-groupoid. Then the following statements hold:
(i) S is (0,1)-regular if and only if $\forall L \in \mathfrak{L}_{(0,1)}, L=(S L]$;
(ii) S is (2,0)-regular if and only if $\forall R \in \mathfrak{R}_{(2,0)}, R=\left(R^{2} S\right]$ such that every R is semiprime;
(iii) S is (0,2)-regular if and only if $\forall U \in \mathfrak{A}_{(0,2)}, U=\left(U^{2} S\right]$ such that every U is semiprime.

Proof. (i) Let S be (0,1)-regular, then for $a \in S$ there exists $x \in S$ such that $a \leq x a$. Since L is (0,1)-ideal, therefore $(S L] \subseteq L$. Let $a \in L$, then $a \leq x a \in(S L] \subseteq L$. Hence $L=(S L]$. Converse is simple.
(ii) Let S be $(2,0)$-regular and R be $(2,0)$-ideal of S, then it is easy to see that $R=\left(R^{2} S\right]$. Now for $a \in S$ there exists $x \in S$ such that $a \leq a^{2} x$. Let $a^{2} \in R$, then

$$
a \leq a^{2} x \in R S=\left(R^{2} S\right] \cdot S \subseteq\left(R^{2} S \cdot S\right]=\left(S S \cdot R^{2}\right] \subseteq\left(R^{2} S\right]=R,
$$

which shows that every $(2,0)$-ideal is semiprime.
Conversely, let $R=\left(R^{2} S\right]$ for every $R \in \mathfrak{R}_{(2,0)}$. Since $\left(S a^{2}\right]$ is a (2,0)-ideal of S such that $a^{2} \in\left(S a^{2}\right]$, therefore $a \in\left(S a^{2}\right]$. Thus

$$
\begin{aligned}
a & \in\left(S a^{2}\right]=\left(\left(\left(S a^{2}\right)^{2}\right] S\right] \subseteq\left(\left(S a^{2} \cdot S a^{2}\right) S\right]=\left(\left(a^{2} S \cdot a^{2} S\right) S\right] \\
& =\left(\left(a^{2}\left(a^{2} S \cdot S\right)\right) S\right] \subseteq\left(\left(a^{2} \cdot S a^{2}\right) S\right]=\left(\left(S \cdot S a^{2}\right) a^{2}\right] \\
& \subseteq\left(S a^{2}\right] \subseteq\left(a^{2} S\right],
\end{aligned}
$$

which implies that S is $(2,0)$-regular.
Analogously, we can prove (iii).

Lemma 3.3. Let (S, \cdot, \leq) be a unitary ordered $\mathcal{A} \mathcal{G}$-groupoid. Then the following statements hold:
(i) If S is $(0, n)$-regular, then $\forall L \in \mathfrak{L}_{(0, n)}, L=\left(S L^{n}\right]$;
(ii) If S is ($m, 0$)-regular, then $\forall R \in \mathfrak{R}_{(m, 0)}, R=\left(R^{m} S\right]$;
(iii) If S is (m, n)-regular, then $\forall U \in \mathfrak{A}_{(m, n)}, U=\left(U^{m} S \cdot U^{n}\right]$.

Proof. It is simple.
Corollary 3.4. Let (S, \cdot, \leq) be a unitary ordered $\mathcal{A} \mathcal{G}$-groupoid. Then the following statements hold:
(i) If S is $(0, n)$-regular, then $\forall L \in \mathfrak{L}_{(0, n)}, L=\left(L^{n} S\right]$;
(ii) If S is ($m, 0$)-regular, then $\forall R \in \mathfrak{R}_{(m, 0)}, R=\left(S R^{m}\right]$;
(iii) If S is (m, n)-regular, then $\forall U \in \mathfrak{A}_{(m, n)}, U=\left(U^{m+n} S\right]=$ $\left(S U^{m+n}\right]$.

Theorem 3.5. Let (S, \cdot, \leq) be a unitary (m, n)-regular ordered $\mathcal{A G}$ groupoid. Then for every $R \in \mathfrak{R}_{(m, 0)}$ and $L \in \mathfrak{L}_{(0, n)}, R \cap L=\left(R^{m} L\right] \cap$ ($R L^{n}$.

Proof. It is simple.
Theorem 3.6. Let (S, \cdot, \leq) be a unitary (m, n)-regular ordered $\mathcal{A G}$ groupoid. If $M(N)$ is a 0 -minimal $(m, 0)$-ideal $((0, n)$-ideal) of S such that $(M N] \subseteq M \cap N$, then either $(M N]=\{0\}$ or $(M N]$ is a 0 -minimal (m, n)-ideal of S.

Proof. Let $M(N)$ be a 0 -minimal $(m, 0)$-ideal $((0, n)$-ideal) of S. Let $O=(M N]$, then clearly $O^{2} \subseteq O$. Moreover

$$
\begin{aligned}
\left(O^{m} S \cdot O^{n}\right] & =\left((M N]^{m} S \cdot(M N]^{n}\right] \subseteq\left(\left((M N)^{m}\right] S \cdot\left((M N)^{n}\right]\right] \\
& \subseteq\left((M N)^{m} S \cdot(M N)^{n}\right]=\left(\left(M^{m} N^{m}\right) S \cdot M^{n} N^{n}\right] \\
& \subseteq\left(\left(M^{m} S\right) S \cdot S N^{n}\right] \subseteq\left(S M^{m} \cdot S N^{n}\right] \\
& \subseteq\left(M^{m} S \cdot S N^{n}\right] \subseteq\left(\left(M^{m} S\right] \cdot\left(S N^{n}\right]\right] \\
& \subseteq(M N]=O,
\end{aligned}
$$

which shows that O is an (m, n)-ideal of S. Let $\{0\} \neq P \subseteq O$ be a non-zero (m, n)-ideal of S. Since S is (m, n)-regular, therefore by using

Lemma 3.3, we have

$$
\begin{aligned}
\{0\} & \neq P=\left(P^{m} S \cdot P^{n}\right] \subseteq\left(\left(P^{m} \cdot S S\right) P^{n}\right]=\left(\left(S \cdot P^{m} S\right) P^{n}\right] \\
& \subseteq\left(\left(P^{n} \cdot P^{m} S\right)(S S)\right]=\left(\left(P^{n} S\right)\left(P^{m} S \cdot S\right)\right] \\
& \subseteq\left(P^{n} S \cdot S P^{m}\right]=\left(P^{m} S \cdot S P^{n}\right] \\
& =\left(\left(P^{m} S\right] \cdot\left(S P^{n}\right]\right]
\end{aligned}
$$

Hence $\left(P^{m} S\right] \neq\{0\}$ and $\left(S P^{n}\right] \neq\{0\}$. Further $P \subseteq O=(M N] \subseteq M \cap N$ implies that $P \subseteq M$ and $P \subseteq N$. Therefore $\{0\} \neq\left(P^{m} S\right] \subseteq\left(M^{m} S\right] \subseteq M$ which shows that $\left(P^{m} S\right]=M$ since M is 0 -minimal. Likewise, we can show that $\left(S P^{n}\right]=N$. Thus we have

$$
\begin{aligned}
P & \subseteq O=(M N]=\left(\left(P^{m} S\right] \cdot\left(S P^{n}\right]\right]=\left(P^{m} S \cdot S P^{n}\right] \\
& =\left(P^{n} S \cdot S P^{m}\right] \subseteq\left(\left(S P^{m} \cdot S S\right) P^{n}\right] \\
& \subseteq\left(\left(S \cdot P^{m} S\right) P^{n}\right] \subseteq\left(P^{m} S \cdot P^{n}\right] \subseteq P
\end{aligned}
$$

This means that $P=(M N]$ and hence ($M N]$ is 0 -minimal.
Theorem 3.7. Let (S, \cdot, \leq) be a unitary (m, n)-regular ordered $\mathcal{A G}$ groupoid. If $M(N)$ is a 0 -minimal $(m, 0)$-ideal $((0, n)$-ideal) of S, then either $M \cap N=\{0\}$ or $M \cap N$ is a 0 -minimal (m, n)-ideal of S.

Proof. Once we prove that $M \cap N$ is an (m, n)-ideal of S, the rest of the proof is the same as in Theorem 3.5. Let $O=M \cap N$, then it is easy to see that $O^{2} \subseteq O$. Moreover

$$
\left(O^{m} S \cdot O^{n}\right] \subseteq\left(\left(M^{m} S\right] \cdot N^{n}\right] \subseteq\left(M N^{n}\right] \subseteq\left(S N^{n}\right] \subseteq N
$$

But, we also have

$$
\begin{aligned}
\left(O^{m} S \cdot O^{n}\right] & \subseteq\left(M^{m} S \cdot N^{n}\right] \subseteq\left(\left(M^{m} \cdot S S\right) N^{n}\right]=\left(\left(S \cdot M^{m} S\right) N^{n}\right] \\
& =\left(\left(N^{n} \cdot M^{m} S\right) S\right] \subseteq\left(\left(M^{m} \cdot N^{n} S\right)(S S)\right] \\
& =\left(\left(M^{m} S\right)\left(N^{n} S \cdot S\right)\right] \subseteq\left(M^{m} S \cdot S N^{n}\right] \\
& \subseteq\left(M^{m} S \cdot N^{n} S\right]=\left(N^{n}\left(M^{m} S \cdot S\right)\right] \\
& \subseteq\left(N^{n} \cdot S M^{m}\right] \subseteq\left(N^{n} \cdot M^{m} S\right]=\left(M^{m} \cdot N^{n} S\right] \\
& \subseteq\left(M^{m} \cdot\left(S N^{n}\right]\right] \subseteq\left(M^{m} N\right] \subseteq\left(M^{m} S\right] \subseteq M
\end{aligned}
$$

Thus $\left(O^{m} S \cdot O^{n}\right] \subseteq M \cap N=O$ and therefore O is an (m, n)-ideal of S.

4. Conclusions

All the results of this paper can be obtain for an $\mathcal{A G}$-groupoid without order which will give us the extension of the carried out in [1] on (m, n) ideals in an $\mathcal{A G}$-groupoid. Also the results of this paper can be trivially followed for a locally associative ordered $\mathcal{A} \mathcal{G}$-groupoid which will generalize and extend the concept of a locally associative $\mathcal{A \mathcal { G }}$-groupoid [7].

Acknowledgements. The first author is highly thankful to CAS-TWAS President's Fellowship.

References

[1] M. Akram, N. Yaqoob and M. Khan, On (m, n)-ideals in LA-semigroups, Applied mathematical Sciences 7 (2013), 2187-2191.
[2] P. Holgate, Groupoids satisfying a simple invertive law, The Math. Stud., 1-4, 61 (1992), 101-106.
[3] M. A. Kazim and M. Naseeruddin, On almost semigroups, The Alig. Bull. Math. 2 (1972), 1-7.
[4] M. Khan, F. Yousafsai and K. P. Shum, Minimal ideals of Abel Grassmann groupoids, to appear in Quasi-groups and related systems.
[5] S. Lajos, Generalized ideals in semigroups, Acta Sci. Math. 22 (1961), 217-222.
[6] Q. Mushtaq and S. M. Yusuf, On LA-semigroups, The Alig. Bull. Math. 8 (1978), 65-70.
[7] Q. Mushtaq and S. M. Yusuf, On locally associative LA-semigroups, J. Nat. Sci. Math. 19 (1979), 57-62.
[8] Q. Mushtaq and S. M. Yusuf, On LA-semigroup defined by a commutative inverse semigroups, Math. Bech. 40 (1988), 59-62.
[9] Q. Mushtaq and M. S. Kamran, On LA-semigroups with weak associative law, Scientific Khyber 1 (1989), 69-71.
[10] Q. Mushtaq and M. Khan, Ideals in left almost semigroups, Proceedings of 4th International Pure Mathematics Conference, (2003), 65-77.
[11] Q. Mushtaq and M. Khan, M-systems in LA-semigroups, Southeast Asian Bull. Math. 33 (2009), 321-327.
[12] Q. Mushtaq, M. Khan and K. P. Shum, Topological structure on LA-semigroups, Bull Malays Math. Sci. 36 (2013), 901-906.
[13] P. V. Protić and N. Stevanović, AG-test and some general properties of AbelGrassmann's groupoids, PU. M. A., 4, 6 (1995), 371-383.
[14] J. Sanborisoot and T. Changphas, On Characterizations of (m, n)-regular ordered semigroups, Far East J. Math. Sci 65 (2012), 75-86.
[15] N. Stevanović and P. V. Protić, Composition of Abel-Grassmann's 3-bands, Novi Sad, J. Math., 2, 34 (2004),175-182.
[16] X. Y. Xie and J. Tang, Fuzzy radicals and prime fuzzy ideals of ordered semigroups, Inform. Sci. 178 (2008), 4357-4374.
[17] F. Yousafzai, N. Yaqoob and A. Ghareeb, Left regular $\mathcal{A \mathcal { G }}$-groupoids in terms of fuzzy interior ideals, Afrika Mathematika 24 (2013), 577-587.
[18] F. Yousafzai, A. Khan and B. Davvaz, On fully regular $\mathcal{A} \mathcal{G}$-groupoids, Afrika Mathematika 25 (2014), 449-459.
[19] F. Yousafzai, A. Khan, V. Amjad and A. Zeb, On fuzzy fully regular ordered $\mathcal{A G}$-groupoids, Journal of Intelligent \& Fuzzy Systems 26 (2014), 2973-2982.

Faisal Yousafzai
School of Mathematical Sciences
University of Science and Technology of China
Hefei, China
E-mail: yousafzaimath@gmail.com
Asad Khan
School of Mathematical Sciences
University of Science and Technology of China
Hefei, China
E-mail: asad@mail.ustc.edu.cn
Aiyared Iampan
Department of Mathematics, School of Science
University of Phayao
Phayao 56000, Thailand
E-mail: aiyared.ia@up.ac.th

