NONTRIVIAL SOLUTIONS FOR AN ELLIPTIC SYSTEM

Hyewon Nam* and Seong Cheol Lee

Abstract. In this work, we consider an elliptic system

$$
\left\{\begin{array}{cc}
-\triangle u=a u+b v+\delta_{1} u^{+}-\delta_{2} u^{-}+f_{1}(x, u, v) & \text { in } \Omega, \\
-\triangle v=b u+c v+\eta_{1} v^{+}-\eta_{2} v^{-}+f_{2}(x, u, v) & \text { in } \Omega, \\
u=v=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where $\Omega \subset R^{N}$ be a bounded domain with smooth boundary. We prove that the system has at least two nontrivial solutions by applying linking theorem.

1. Introduction and Background

Presently there are many significant results with respect to the elliptic system

$$
\left\{\begin{array}{l}
-\triangle u=\lambda u+\delta v+h_{1}(x, u, v) \\
-\triangle v=\theta u+\nu v+h_{2}(x, u, v)
\end{array}\right.
$$

in Ω, where $\Omega \subset R^{n}$ is bounded smooth domain, subject to Dirichlet boundary conditions $u=v=0$ on $\partial \Omega, h_{i}, i=1,2$ are real valued functions and λ, δ, ν and θ are real numbers. [2,6-8]

Received December 2, 2014. Revised March 16, 2015. Accepted March 16, 2015. 2010 Mathematics Subject Classification: 35J55; 49J35.
Key words and phrases: Elliptic system, Linking inequality.
This work was supported by Namseoul University.
*Corresponding author.
(c) The Kangwon-Kyungki Mathematical Society, 2015.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

Many authors also investigated the problem

$$
\left\{\begin{array}{rlr}
-\triangle u & =a u+b v+\left(u^{+}\right)^{p}+f_{1} & \text { in } \Omega, \\
-\triangle v & =b u+a v+\left(v^{+}\right)^{q}+f_{2} & \text { in } \Omega, \\
u & =v=0 & \text { on } \partial \Omega .
\end{array}\right.
$$

where $u^{+}=\max \{0, u(x)\}$. Here Ω is a bounded smooth domain in R^{n} with $n \geq 2$. $[4,5]$

In this paper we prove the existence of two nontrivial solutions for a general elliptic system. We use a variational approach and look for critical points of a suitable functional I on a Hilbert space H. Since the functional is strongly indefinite, it is convenient to use the notion of linking theorem. In Section 2, we find a suitable functional I on a Hilbert space H. In Section 3, we prove the suitable version of the Palais-Smale condition for the topological method. In Section 4, we apply the two critical points theorem.

We recall some basic theorem and set up some terminology. Let H be a Hilbert space and V a C^{2} complete connected Finsler manifold. Suppose $H=H_{1} \oplus H_{2}$ and let $H_{n}=H_{1 n} \oplus H_{2 n}$ be a sequence of closed subspaces of H such that

$$
H_{i n} \subset H_{i}, \quad 1 \leq \operatorname{dim} H_{\text {in }}<+\infty \quad \text { for each } \quad i=1,2 \quad \text { and } \quad n \in N
$$

Moreover suppose that there exist $e_{1} \in \cap_{n=1}^{\infty} H_{1 n}$, and $e_{2} \in \cap_{n=1}^{\infty} H_{2 n}$, with $\left\|e_{1}\right\|=\left\|e_{2}\right\|=1$.

For any Y subspace of H, consider $B_{\rho}(Y):=\{u \in Y \mid\|u\| \leq \rho\}$ and denote by $\partial B_{\rho}(Y)$ the boundary of $B_{\rho}(Y)$ relative to Y. Furthermore define, for any $e \in H$,

$$
Q_{R}(Y, e):=\{u+a e \in Y \oplus[e] \mid u \in Y, a \geq 0,\|u+a d\| \leq R\}
$$

and denote by $\partial Q_{R}(Y, e)$ its boundary relative to $Y \oplus[e]$, and denote by $X=H \times V$.

We recall the two critical points theorem in [3].
Theorem 1.1. Suppose that f satisfies the $(P S)^{*}$ condition with respect to H_{n}. In addition assume that there exist ρ, R, such that $0<\rho<R$ and

$$
\begin{aligned}
\sup _{\partial Q_{R}\left(H_{2}, e_{1}\right) \times V} f & <\inf _{\partial B_{\rho}\left(H_{1}\right) \times V} f, \\
\sup _{Q_{R}\left(H_{2}, e_{1}\right) \times V} f<+\infty, & \inf _{B_{\rho}\left(H_{1}\right) \times V} f<-\infty,
\end{aligned}
$$

Then there exist at least 2 critical levels of f. Moreover the critical levels satisfy the following inequalities

$$
\inf _{B_{\rho}\left(H_{1}\right) \times V} f \leq c_{1} \leq \sup _{\partial Q_{R}\left(H_{2}, e_{1}\right) \times V} f<\inf _{\partial B_{\rho}\left(H_{1}\right) \times V} f \leq c_{2} \leq \sup _{Q_{R}\left(H_{2}, e_{1}\right) \times V} f,
$$

and there exist at least $2+2$ cuplength (V) critical points of f.

2. Notations and main result

Let $\Omega \subset R^{N}$ be a bounded domain with smooth boundary and $H=$ $W_{0}^{1, p}(\Omega)$, the usual Sobolev space with the norm $\|u\|^{2}=\int_{\Omega}|\nabla u|^{2} d x$.

In this paper, we consider the existence of nontrivial solutions to the elliptic system
(1) $\left\{\begin{array}{cc}-\triangle u=a u+b v+\delta_{1} u^{+}-\delta_{2} u^{-}+f_{1}(x, u, v) & \text { in } \Omega, \\ -\triangle v=b u+c v+\eta_{1} v^{+}-\eta_{2} v^{-}+f_{2}(x, u, v) & \text { in } \Omega, \\ u=v=0 & \text { on } \partial \Omega .\end{array}\right.$

And there exists a function $F: \bar{\Omega} \times R^{2} \rightarrow R$ such that $\frac{\partial F}{\partial u}=f_{1}$ and $\frac{\partial F}{\partial v}=f_{2}$ without loss of generality, we set

$$
F(x, u, v)=\int_{(0,0)}^{(u, v)} f_{1}(x, u, v) d u+f_{2}(x, u, v) d v
$$

Then $F \in C^{1}\left(\bar{\Omega} \times R^{2}, R\right)$.
We consider the following assumptions.
(F1) There exist $M>0$ and $\alpha>2$ such that

$$
0<\alpha F(x, u, v) \leq u F_{u}(x, u, v)+v F_{v}(x, u, v)
$$

for all $(x, u, v) \in \bar{\Omega} \times R^{2}$ with $u^{2}+v^{2}>M^{2}$.
(F2) There exist constants $a_{1}>0$ and $a_{2}>0$ such that

$$
\left|F_{u}(x, u, v)\right|+\left|F_{v}(x, u, v)\right| \leq a_{1}+a_{2}\left(|u|^{r}+|v|^{r}\right)
$$

where $1 \leq r<(N+2) /(N-2)$ if $N>2,1 \leq r<\infty$ otherwise.
(F3) For $(0, v) \rightarrow(0,0)$,

$$
\frac{F(x, 0, v)}{v^{2}} \rightarrow 0
$$

Remark 2.1. The condition (F1) shows that there exist constants $b_{1}>0$ and b_{2} such that(cf. [1])

$$
F(x, u, v) \geq b_{1}\left(|u|^{\alpha}+|v|^{\alpha}\right)-b_{2} .
$$

Let λ_{k} denote the eigenvalues and e_{k} the corresponding eigenfunctions, suitably normalized with respect to $L^{2}(\Omega)$ inner product, of the eigenvalue problem $-\Delta u=\lambda u$ in Ω, with Dirichlet boundary condition, where each eigenvalue λ_{k} is respected as often as its multiplicity. We recall that $0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots, \lambda_{i} \rightarrow+\infty$ and that $e_{1}>0$ for all $x \in \Omega$. Then $H=\operatorname{span}\left\{e_{i} \mid i \in N\right\}$.

Let $e_{i}^{1}=\left(e_{i}, 0\right)$ and $e_{i}^{2}=\left(0, e_{i}\right)$. We define $H_{j}=\operatorname{span}\left\{e_{i}^{j} \mid i \in N\right\}$, for $j=1,2$ and $E=H_{1} \oplus H_{2}$ with the norm $\|(u, v)\|_{E}^{2}=\|u\|^{2}+\|v\|^{2}$.

We define the energy functional associated to (1) as

$$
\begin{aligned}
I(u, v)= & \frac{1}{2} \int_{\Omega}\left(|\nabla u|^{2}+|\nabla v|^{2}\right) d x-\frac{1}{2} \int_{\Omega}\left(a u^{2}+2 b u v+c v^{2}\right) d x \\
& -\frac{1}{2} \int_{\Omega}\left(\delta_{1}\left(u^{+}\right)^{2}-\delta_{2}\left(u^{-}\right)^{2}+\eta_{1}\left(v^{+}\right)^{2}-\eta_{2}\left(v^{-}\right)^{2}\right) d x \\
& -\int_{\Omega} F(x, u, v, w) d x
\end{aligned}
$$

It is easy to see that $I \in C^{1}(E, R)$ and thus it makes sense to lock for solutions to (1) in weak sense as critical points for I i.e. $(u, v) \in E$ such that $I^{\prime}(u, v)=0$, where

$$
\begin{aligned}
I^{\prime}(u, v) \cdot(\phi, \psi)= & \int_{\Omega}(\nabla u \nabla \phi+\nabla v \nabla \psi) d x \\
& -\int_{\Omega}(a u \phi+b v \phi+b u \psi+c v \psi) d x \\
& -\int_{\Omega}\left(\delta_{1} u^{+} \phi-\delta_{2} u^{-} \phi+\eta_{1} v^{+} \psi-\eta_{2} v^{-} \psi\right) d x \\
& -\int_{\Omega}\left(f_{1}(x, u, v) \phi+f_{2}(x, u, v) \psi\right) d x .
\end{aligned}
$$

We will prove the following theorem.
Theorem 2.1. Assume F satisfies (F1), (F2) and (F3) with $\alpha=$ $r+1$. If a, b, c, δ, and η are positive with $a+b+\delta_{1}+\delta_{2}<\lambda_{1}$ and $b+c+\eta_{1}+\eta_{2}<\lambda_{1}$ then system (1) has at least two nontrivial solutions.

3. The Palais Smale star condition

In this section we will prove the $(P S)_{c}^{*}$ condition which was required for the application of Theorem 1.1. In the following, we consider the
following sequence of subspaces of E :

$$
E_{n}=\operatorname{span}\left\{e_{i}^{j} \mid i=1, \cdots, n \quad \text { and } \quad j=1,2\right\}, \quad \text { for } n \geq 1
$$

Lemma 3.1. Assume F satisfies (F1) and (F2) with $\alpha=r+1$. If $a+b+\delta_{1}+\delta_{2}<\lambda_{1}$ and $b+c+\eta_{1}+\eta_{2}<\lambda_{1}$, then any $(P S)_{c}^{*}$ sequence is bounded.

Proof. Let $\left\{\left(u_{n}, v_{n}\right)\right\} \subset E$ be a sequence such that

$$
\left(u_{n}, v_{n}\right) \in E_{n}, \quad I\left(u_{n}, v_{n}\right) \rightarrow c, \quad I_{n}^{\prime}\left(u_{n}, v_{n}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

In the following we denote different constants by C_{1}, C_{2} etc. (F1) and Remark imply that

$$
\begin{align*}
C_{1}+\frac{1}{2} o(1)\left(\left\|u_{n}\right\|+\left\|v_{n}\right\|\right) & \geq I\left(u_{n}, v_{n}\right)-\frac{1}{2} I_{n}^{\prime}\left(u_{n}, v_{n}\right) \cdot\left(u_{n}, v_{n}\right) \\
& =\frac{1}{2} \int_{\Omega}\left(u_{n} f_{1}+v_{n} f_{2}\right) d x-\int_{\Omega} F d x \\
& \geq\left(\frac{\alpha}{2}-1\right) \int_{\Omega} F\left(x, u_{n}, v_{n}\right) d x \tag{3}\\
& \geq\left(\frac{\alpha}{2}-1\right) b_{1} \int_{\Omega}\left(\left|u_{n}\right|^{\alpha}+\left|v_{n}\right|^{\alpha}\right) d x-C_{2} \\
& \geq\left(\frac{\alpha}{2}-1\right) b_{1}\left(\left\|u_{n}\right\|_{L^{\alpha}}^{\alpha}+\left\|v_{n}\right\|_{L^{\alpha}}^{\alpha}\right)-C_{2}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
o(1)\left\|u_{n}\right\| \geq & I_{n}^{\prime}\left(u_{n}, v_{n}\right) \cdot\left(u_{n}, 0\right) \\
= & \left\|u_{n}\right\|^{2}-\int_{\Omega}\left(a u_{n}^{2}+b u_{n} v_{n}\right) d x \\
& -\int_{\Omega}\left(\delta_{1}\left(u_{n}^{+}\right)^{2}-\delta_{2}\left(u_{n}^{-}\right)^{2}\right) d x-\int_{\Omega} f_{1}\left(x, u_{n}, v_{n}\right) u_{n} d x \\
o(1)\left\|v_{n}\right\| \geq & I_{n}^{\prime}\left(u_{n}, v_{n}\right) \cdot\left(0, v_{n}\right) \\
= & \left\|v_{n}\right\|^{2}-\int_{\Omega}\left(b u_{n} v_{n}+c v_{n}^{2}\right) d x \\
& -\int_{\Omega}\left(\eta_{1}\left(v_{n}^{+}\right)^{2}-\eta_{2}\left(v_{n}^{-}\right)^{2}\right) d x-\int_{\Omega} f_{2}\left(x, u_{n}, v_{n}\right) v_{n} d x .
\end{aligned}
$$

We know that

$$
\int_{\Omega}\left(u^{+}\right)^{2} d x \leq\|u\|_{L^{2}}^{2} \leq \frac{1}{\lambda_{1}}\|u\|^{2}
$$

and

$$
\int_{\Omega}\left(u^{-}\right)^{2} d x \leq\|u\|_{L^{2}}^{2} \leq \frac{1}{\lambda_{1}}\|u\|^{2}
$$

for $u \in H$. Using (F2), we obtain

$$
\begin{aligned}
\left\|u_{n}\right\|^{2}+\left\|v_{n}\right\|^{2} \leq & o(1)\left(\left\|u_{n}\right\|+\left\|v_{n}\right\|\right) \\
& +\int_{\Omega}\left(a u_{n}^{2}+2 b u_{n} v_{n}+c v_{n}^{2}\right) d x+\int_{\Omega}\left(\delta_{1}\left(u_{n}^{+}\right)^{2}-\delta_{2}\left(u_{n}^{-}\right)^{2}\right) d x \\
& +\int_{\Omega}\left(\eta_{1}\left(v_{n}^{+}\right)^{2}-\eta_{2}\left(v_{n}^{-}\right)^{2}\right) d x+\int_{\Omega}\left(u_{n} f_{1}+v_{n} f_{2}\right) d x \\
\leq & o(1)\left(\left\|u_{n}\right\|+\left\|v_{n}\right\|\right) \\
& +\frac{a+b+\delta_{1}+\delta_{2}}{\lambda_{1}}\left\|u_{n}\right\|^{2}+\frac{a+b+\eta_{1}+\eta_{2}}{\lambda_{1}}\left\|v_{n}\right\|^{2} \\
& +C_{3} \int_{\Omega}\left(\left|u_{n}\right|^{r+1}+\left|v_{n}\right|^{r+1}\right) d x+C_{4} .
\end{aligned}
$$

(4) imply that if $a+b+\delta_{1}+\delta_{2}<\lambda_{1}$ and $b+c+\eta_{1}+\eta_{2}<\lambda_{1}$ then

$$
\begin{align*}
\left\|u_{n}\right\|^{2}+\left\|v_{n}\right\|^{2} \leq & o(1) C_{5}\left(\left\|u_{n}\right\|+\left\|v_{n}\right\|\right) \\
& +C_{6} \int_{\Omega}\left(\left|u_{n}\right|^{r+1}+\left|v_{n}\right|^{r+1}\right) d x+C_{7} . \tag{5}
\end{align*}
$$

Combining (3), (5) and using $\alpha=r+1$, one infers that

$$
\left\|u_{n}\right\|^{2}+\left\|v_{n}\right\|^{2} \leq o(1) C_{8}\left(\left\|u_{n}\right\|+\left\|v_{n}\right\|\right)+C_{9}
$$

This yields $\left\{\left(u_{n}, v_{n}\right)\right\}$ is bounded.
Lemma 3.2. Assume F satisfies (F1) and (F2) with $\alpha=r+1$. If $a+b+\delta_{1}+\delta_{2}<\lambda_{1}$ and $b+c+\eta_{1}+\eta_{2}<\lambda_{1}$, then the functional I satisfies the $(P S)_{c}^{*}$ condition with respect to E_{n}.

Proof. By Lemma 3.1, any $(P S)_{c}^{*}$ sequence $\left\{\left(u_{n}, v_{n}\right)\right\}$ in E is bounded and hence $\left\{\left(u_{n}, v_{n}\right)\right\}$ has a weakly convergent subsequence. That is there exist a subsequence $\left\{\left(u_{n_{j}}, v_{n_{j}}\right)\right\}$ and $(u, v) \in E$, with $u_{n_{j}} \rightharpoonup u$ and $v_{n_{j}} \rightharpoonup v$. Since $\left\{u_{n_{j}}\right\}$ and $\left\{v_{n_{j}}\right\}$ are bounded, by Remark of RellichKondrachov compactness theorem [4], $u_{n_{j}} \rightarrow u, v_{n_{j}} \rightarrow v$ and thus I satisfies $(P S)_{c}^{*}$ condition.

4. Proof of main theorem

Lemma 4.1. Assume F satisfies (F3). If $c<\lambda_{1}$, then there exists $\rho_{1}>0$ such that

$$
\inf _{\partial B_{\rho_{1}}\left(H_{2}\right)} I>0 .
$$

Proof. By (F3), for any $\varepsilon>0$, there exists $\rho>0$ such that

$$
0<\|v\|<\rho \Rightarrow|F(x, 0, v)|<\varepsilon|v|^{2} .
$$

Then $\left|\int_{\Omega} F(x, 0, v) d x\right|<\int_{\Omega}|F(x, 0, v)| d x<\int_{\Omega} \varepsilon|v|^{2} d x<\frac{\varepsilon}{\lambda_{1}}\|v\|^{2}$ and hence

$$
\begin{aligned}
I(0, v)= & \frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\frac{c}{2} \int_{\Omega} v^{2} d x \\
& -\frac{1}{2} \int_{\Omega}\left(\eta_{1}\left(v^{+}\right)^{2}-\eta_{2}\left(v^{-}\right)^{2}\right) d x-\int_{\Omega} F(x, 0, v) d x \\
> & \frac{1}{2}\|v\|^{2}-\frac{c+\eta_{1}+\eta_{2}}{2 \lambda_{1}}\|v\|^{2}-\frac{\varepsilon}{\lambda_{1}}\|v\|^{2} \\
= & \frac{1}{2}\left(1-\frac{c+\eta_{1}+\eta_{2}+2 \varepsilon}{\lambda_{1}}\right)\|v\|^{2}>0
\end{aligned}
$$

which gives the result for sufficiently small ε. Therefore we can choose $0<\rho_{1}<\rho$ such that $I(0, v)>0$ for any $\|v\|=\rho_{1}$.

Lemma 4.2. Assume F satisfies (F1). If $a, b, c, \delta_{1}, \delta_{2}, \eta_{1}$, and η_{2} are positive, then there exists an $R>0$ such that for any $R_{1}>R$

$$
\sup _{\partial Q_{R_{1}}\left(H_{1}, e_{1}^{2}\right)} I<0 .
$$

Proof. In the following we denote different constants by C_{1}, C_{2} etc. Remark implies that

$$
\begin{aligned}
I\left(u, \beta e_{1}\right)= & \frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x+\frac{\lambda_{1} \beta^{2}}{2}-\frac{1}{2} \int_{\Omega} a u^{2} d x-b \lambda_{1} \beta-\frac{c \beta^{2}}{2} \\
& -\frac{1}{2} \int_{\Omega}\left(\delta_{1}\left(u^{+}\right)^{2}-\delta_{2}\left(u^{-}\right)^{2}\right) d x \\
& -\frac{1}{2} \int_{\Omega}\left(\eta_{1}\left(\left(\beta e_{1}\right)^{+}\right)^{2}-\eta_{2}\left(\left(\beta e_{1}\right)^{-}\right)^{2}\right) d x-\int_{\Omega} F\left(x, u, \beta e_{1}\right) d x \\
\leq & \frac{1}{2}\|u\|^{2}+\frac{\lambda_{1} \beta^{2}}{2}-b \lambda_{1} \beta+\frac{\delta_{2}}{2} \int_{\Omega}\left(u^{-}\right)^{2} d x \\
& +\frac{\eta_{2}}{2} \int_{\Omega}\left(\left(\beta e_{1}\right)^{-}\right)^{2} d x-\int_{\Omega} F\left(x, u, \beta e_{1}\right) d x \\
\leq & \frac{1}{2}\|u\|^{2}+\frac{\lambda_{1} \beta^{2}}{2}-b \lambda_{1} \beta+\frac{\delta_{2}}{2 \lambda_{1}}\|u\|^{2}+\frac{\eta_{2} \beta^{2}}{2 \lambda_{1}} \\
& -b_{1} \int_{\Omega}\left(|u|^{\alpha}+\left|\beta e_{1}\right|^{\alpha}\right) d x+C_{1} \\
\leq & \frac{\lambda_{1}+\delta_{2}}{2 \lambda_{1}}\|u\|^{2}+\frac{\left(\lambda_{1}^{2}+\eta_{2}\right) \beta^{2}}{2 \lambda_{1}}-b \lambda_{1} \beta-C_{2}\|u\|^{\alpha}-C_{3}|\beta|^{\alpha}+C_{4},
\end{aligned}
$$

for any $(u, 0) \in H_{1}$ and any constant β. Since $\alpha>2, I\left(u, \beta e_{1}\right) \rightarrow-\infty$ for $\|u\| \rightarrow \infty$ or $|\beta| \rightarrow \infty$. Therefore we can choose $0<R_{1}<\infty$ such that $I\left(u, \beta e_{1}\right)<0$ for any $\left\|\left(u, \beta e_{1}\right)\right\|_{E}=R_{1}$.

Proof of Theorem 2.1.

By Lemma 4.1 and 4.2, there exists $0<\rho_{1}<R_{1}$ such that

$$
\sup _{\partial Q_{R_{1}}\left(H_{1}, e_{1}^{2}\right)} I<0<\inf _{\partial B_{\rho_{1}}\left(H_{2}\right)} I .
$$

By Theorem 1.1, $I(u, v)$ has at least two nonzero critical values c_{1}, c_{2}

$$
\inf _{B \rho_{1}\left(H_{2}\right)} I \leq c_{1} \leq \sup _{\partial Q_{R_{1}}\left(H_{1}, e_{1}^{2}\right)} I<\inf _{\partial B \rho_{1}\left(H_{2}\right)} I \leq c_{2} \leq \sup _{Q_{R_{1}}\left(H_{1}, e_{1}^{2}\right)} I
$$

Therefore, (1) has at least two nontrivial solutions.

References

[1] A.Szulkin, Critical point theory of Ljusterni-Schnirelmann type and applications to partial differential equations. Sem. Math. Sup., Vol. 107, pp. 35-96, Presses Univ. Montreal, Montreal, QC, 1989.
[2] D.D.Hai, On a class of semilinear elliptic systems, J. Math. Anal. Appl., 285 (2003), 477-486.
[3] D.Lupo and A.M.Micheletti, Two applications of a three critical points theorem, J. Differential Equations 132 (2) (1996), 222-238.
[4] Eugenio Massa, Multiplicity results for a subperlinear elliptic system with partial interference with the spectrum, Nonlinear Anal. 67 (2007), 295-306.
[5] Hyewon Nam, Multiplicity results for the elliptic system using the minimax theorem, Korean J. Math. 16 (2008) (4), 511-526.
[6] Jin Yinghua, Nontrivial solutions of nonlinear elliptic equations and elliptic systems, Inha U. 2004.
[7] Yukun An, Mountain pass solutions for the coupled systems of second and fourth order elliptic equations, Nonlinear Anal. 63 (2005), 1034-1041.
[8] Zou, Wenming, Multiple solutions for asymptotically linear elliptic systems. J. Math. Anal. Appl. 255 (2001) (1), 213-229.

Hyewon Nam
Department of General Education
Namseoul University
Chonam, 330-707 Korea
E-mail: hwnam@nsu.ac.kr
Seong Cheol Lee
Department of General Education
Namseoul University
Chonam, 330-707 Korea
E-mail: sclee@nsu.ac.kr

